AUGUST 2024 MONITORING EVENT REPORT - DAYLESFORD LANDFILL

Hepburn Shire Council
02/09/2024
Author:
Lucy Edwards
Ping Yao

COMMERCIAL IN CONFIDENCE

Issue/Rev	Date	Revision Description	Ву	Checked	Approved
Report 1.0	30/08/2024	Draft	Lucy Edwards Ping Yao	Lucy Edwards Ping Yao	Bryan Woods
Report 1.1	2/09/2024	Final	Lucy Edwards Ping Yao	Lucy Edwards Ping Yao	Bryan Woods

Table of Contents Executive Summary......4 Groundwater 4 Leachate 4 Introduction 5 Monitoring Program Overview 5 2.1. 2.2. 3. Sampling and Analysis Schedule...... 8 Groundwater 8 3.1. 3.2. Sampling Methodology 9 4.1. 4.2. 4.3. Grab Sampling......9 WEATHER CONDITIONS......11 7.1. 8.1. 8.2. 10.4. Appendices......21

AUGUST 2024 MONITORING EVENT REPORT – DAYLESFORD LANDFILL

Appendix B – Field Record Sheets	22
Appendix C – Laboratory Results	23
Appendix D – QA QC Results	24
Appendix E – Laboratory Reports	25
Appendix F - All Historical Records	26

The information contained in this document is solely for the use of the Hepburn Shire Council. The information may be provided to other third parties. However, Ventia Utility Services Pty Ltd does not guarantee to such third parties the accuracy of any documentation or information provided and makes no representation as to its completeness or accuracy. The use of or reliance on any such information is at the third parties' risk.

EXECUTIVE SUMMARY

Ventia Utility Services Pty Ltd has been engaged by the Hepburn Shire Council to undertake groundwater and leachate monitoring and reporting at the Daylesford landfill site. This report summarises the major findings of the August 2024 monitoring event and provides further interpretation of results.

The current monitoring program is required to satisfy specific environmental conditions as requested by the Hepburn Shire Council. The annual program is comprised of biannual groundwater and leachate bore monitoring. The monitoring network consists of four groundwater bore monitoring locations and one leachate bore monitoring location. All sites were located and were able to be sampled during the August 2024 event.

GROUNDWATER

All groundwater sites exceeded at least one of the adopted assessment criteria during the August 2024 monitoring event (ANZECC 2000 guidelines for Fresh Water 95%, Irrigation and Livestock). Results were in line with historic trends at the majority of monitoring bores.

ANZECC 2000 Fresh Water 95% guideline had manganese exceedances at BH1, BH3 and BH4, the ANZECC 2000 Irrigation guidelines had groundwater bore exceedances at all bores for sodium and chloride, and at BH2 for manganese. Lastly the ANZECC 2000 Livestock Guidelines had exceedances in BH4 for TDS.

All sites were able to be located, gauged and sampled via low flow equipment during the event. No issues were reported at any of the bore locations.

LEACHATE

LB1 was able to be located and sampled during the August 2024 Monitoring Event out at Daylesford Landfill. All water quality results fit in line with historic, however field pH was more acidic than it has been at 6.68 (comparison of historic records can be found in Appendix F). No exceedances against quidelines were noted at Leachate site LB1.

1. INTRODUCTION

Ventia Utility Services Pty Ltd (Ventia) was engaged by Hepburn Shire Council to undertake groundwater and leachate monitoring and event reporting at the former Daylesford Landfill and current Waste Transfer Station located at 16 Ajax Road, Daylesford, Victoria (the site). The site is approximately 5.6 hectares and is registered under A13c (waste and resource recovery – small).

2. MONITORING PROGRAM OVERVIEW

2.1. SITE CONTEXT

Daylesford Landfill and surrounding land to the west of the site is listed on the Victorian Landfill Register. There are several sensitive receptors located nearby; Boomerang Holiday Ranch is directly West, while Sailers Creek is located 100 m West, and an area of Aboriginal Cultural Heritage sensitivity is situated 180 m West. As well as these, residential properties are noted to be approximately 70 m to the East, while no domestic or stock watering bores are located within 250 m of the site. Daylesford Landfill operated until 2004 and when licensed the landfill could accept a range of wastes including municipal solid waste and was classed as a Type 2 landfill (putrescible waste). The site is now the location of a transfer station.

The current monitoring program is required to satisfy specific environmental conditions as requested by the Hepburn Shire Council. There is currently no aftercare management plan or third-party management plan (audit) available for Daylesford closed Landfill, Ventia provides biannual monitoring of the site, along with Event reports for Hepburn Shire Council.

2.2. Scope of Works

Ventia was engaged to undertake groundwater and leachate monitoring at the Daylesford Landfill comprising:

- Biannual monitoring of the 4 groundwater bores;
- Biannual monitoring of 1 leachate pond;

This report includes information from the August 2024 monitoring event.

A map of the landfill site location, groundwater bores and leachate pond are provided in Figure 1 and Figure 2, below.

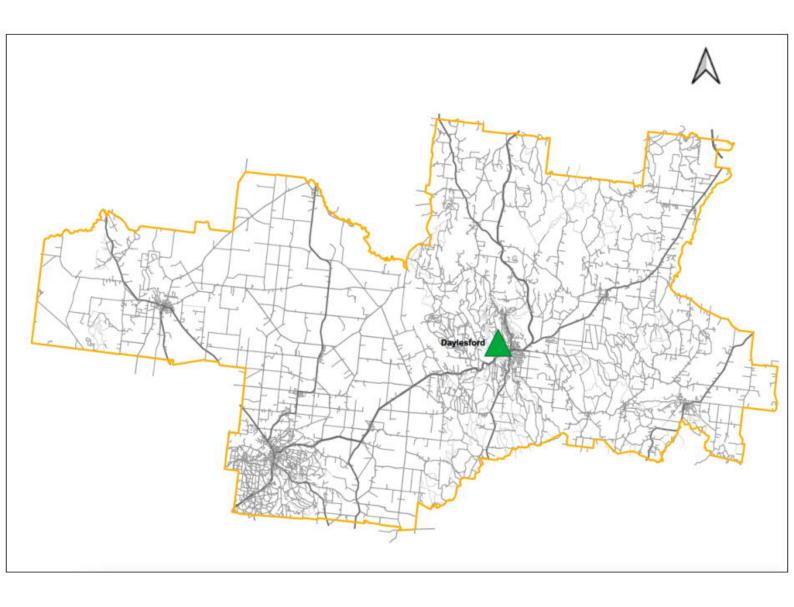


Figure 1 Site location of Daylesford Landfill

Figure 2 Groundwater Bores and Leachate Pond at Daylesford Landfill

3. SAMPLING AND ANALYSIS SCHEDULE

3.1. GROUNDWATER

Four groundwater bores were monitored in the August 2024 monitoring program (Table 1). All bores were sampled via low flow techniques.

Table 1 Groundwater Bore Sites

Bore	Installation Date	Northing (Zone 54)	Eastings (Zone 54)	Screen Depth (mBTOC)	Installation Depth (mBTOC)
BH1	Unknown	777271.622	5863383.638	Unknown	26.90
BH2	Unknown	777247.891	5863473.309	Unknown	20.75
ВН3	Unknown	777216.441	5863576.347	Unknown	18.33
BH4	Unknown	777400.804	5863488.237	Unknown	39.14

Notes:

mBTOC – Metres Below Top of Casing mAHD – Metres Australian Height Datum

3.2. LEACHATE SITES

The leachate pond (LB1) was visited and sampled in the August 2024 monitoring program (Table 2).

Table 2 Leachate Bore Sites

Bore	Installation Date	Easting	Northing	Bore Elevation* (mAHD)	Maximum Leachate Levels (mAHD)
LB1	1 Unknown 777215.334 5863		5863534.941	556.500	Unknown

Notes:

mBTOC – Metres Below Top of Casing mAHD – Metres Australian Height Datum

4. SAMPLING METHODOLOGY

4.1. FIELD MEASUREMENTS

Groundwater quality parameters were recorded using a calibrated multi-parameter water quality instrument.

Field record sheets are included as Appendix A.

Groundwater quality measurements recorded include:

- Electrical Conductivity;
- pH;
- Temperature;
- Oxidation Reduction Potential (ORP, or Redox); and
- Dissolved Oxygen.

4.2. Low Flow Sampling

All groundwater bores were sampled using low flow methods during the August 2024 monitoring event as per the Ventia low flow groundwater sampling procedures which are based on the EPA's Groundwater Sampling Guidelines (Publication 669, April 2000). Sample tubing is left in the bore and replaced every year.

A flow through cell was utilised for field stabilisation measurements during the purging cycle. Measurements were taken at approximate five-minute intervals depending on the flow rate during the purging cycle and recorded on the Ventia Groundwater Sampling Field Sheet provided within the individual monitoring event reports.

Samples were considered stable after three successive measurements were recorded within a defined range as per Table 3.

Table 3 Stabilisation Parameters

Parameter	Range
EC	+/- 3%
pH	+/- 0.05
Redox	+/-10mV
Temperature	+/-10%
Dissolved Oxygen	+/-10%

Signed chain of custodies and laboratory sample receipt records are included within Appendix E.

4.3. GRAB SAMPLING

If the low flow technique is unable to be used bores will be sampled via bailer. This can occur when there are access or bore issues which negates the use of low flow techniques.

All water quality measurements are still able to be collected, however, only one set of parameters per site is collected.

5. <u>REPORTING</u>

5.1. ASSESSMENT CRITERIA

5.1.1. Groundwater and Surface Water Quality Objectives

Beneficial uses for the site were assessed against the Environmental Reference Standard (ERS, DELWP 2021, previously SEPP, Waters). Protected beneficial uses applicable to the site along with the screening criteria that have been adopted in relation to each of the identified potential beneficial uses, is supplied in Table 4.

Table 4 Beneficial Uses and Adopted Assessment Criteria

Beneficial Use Classification	Adopted Assessment Criteria
Maintenance of ecosystems	ANZECC (2000) 95% protection for slightly to moderately modified
ividiffice of ecosystems	freshwater aquatic ecosystems
Livestock	ANZECC (2000) Livestock
Irrigation	ANZECC (2000) Irrigation
Buildings and structures	Varied: No guideline applied
Primary contact recreation	Varied: No guideline applied

Requirements for site laboratory analysis, as requested by Hepburn Shire, are tabulated below (Table 5).

Table 5 Water Quality Objectives

Analytes	Detection Limit	Groundwater Quality Objectives
рН	0.01 pH units	6.5 to 8.0
Electrical conductivity (EC)	1 μS/cm	-
Total dissolved solids (TDS)	10 mg/L	2,000 mg/L
Calcium (CA)	1 mg/L	1,000 mg/L
Magnesium (Mg)	1 mg/L	2,000 mg/L
Sodium (Na)	1 mg/L	115 mg/L
Potassium (K)	1 mg/L	-
Chloride (CI)	1 mg/L	25-700 mg/L
Sulphate (SO4)	1 mg/L	250 mg/L
Bicarbonate alkalinity (as CaCO3)	1 mg/L	-
Total organic carbon (TOC)	1 mg/L	-
Chemical oxygen demand (COD)	10 mg/L	-
Ammonia (NH3)	0.01 mg/L	0.9 mg/L (as NH3)
Nitrate (NO3)	0.01 mg/L	0.16 mg/L (as N)
Total Kjeldahl nitrogen (TKN)	0.1 mg/L	25 mg/L
Volatile fatty acids (VFA)	5 mg/L	-
Arsenic (As)	0.005 mg/L	0.01 mg/L
Cadmium (Cd)	0.005 mg/L	0.002 mg/L
Chromium (Cr)	0.001 mg/L	0.001 mg/L
Copper (Cu)	0.001 mg/L	0.0014 mg/L
Lead (Pb)	0.001 mg/L	0.0034 mg/L
Mercury (Hg)	0.0001 mg/L	0.001 mg/L
Nickel (Ni)	0.001 mg/L	0.011 mg/L
Zinc (Zn)	0.005 mg/L	0.008 mg/L

6. WEATHER CONDITIONS

Temperature and rainfall data was taken from the Bureau of Meteorology (BOM) Weather Station Castlemaine Prison (station 088110), located at Castlemaine (approximately 30 km north of the Site), while barometric pressure data was obtained from Bendigo Airport (station 081123) which is approximately 68 km north of the Site.

Figure 3 and Figure 4 depict weather and barometric pressure readings leading up to and during the monitoring event. No rainfall was recorded during the August 2024 groundwater monitoring event. The barometric pressure was falling during the August 2024 groundwater monitoring event.

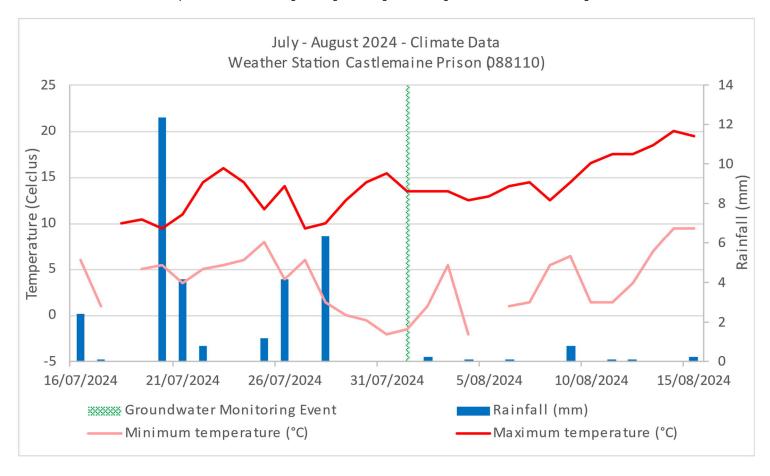


Figure 3 August 2024 temperature and rainfall readings from Castlemaine Prison and corresponding Ventia site visits

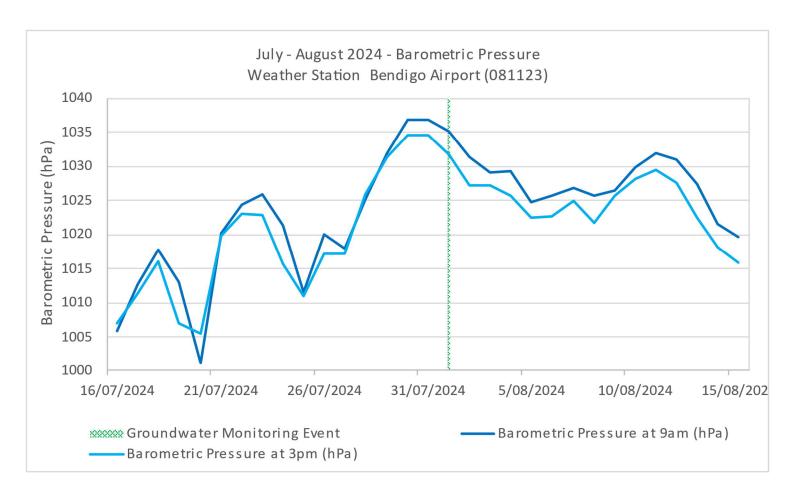


Figure 4 July/August 2024 twice daily barometric pressure readings from Bendigo Airport and corresponding Ventia site visits

7. WATER MONITORING RESULTS

7.1. GROUNDWATER MONITORING RESULTS

7.1.1 Groundwater Field Measurements

A summary of the groundwater field measurements at Daylesford Landfill during the August 2024 monitoring event is provided below (Table 6).

Table 6 Groundwater and Leachate Gauging Data and Field Measurements

ID	Date	WD (mBTOC)	SWL (mBTOC)	EC µS/cm	рН	Temp °C	ORP mV	DO mg/L
BH1	1/08/2024	27.92	17.43	2041	5.60	14.2	52.7	4.51
BH2	1/08/2024	20.10	7.72	2962	6.18	12.7	43.8	4.67
BH3	1/08/2024	18.30	3.83	3198	6.01	12.5	40.3	4.69
BH4	1/08/2024	37.00	25.87	4339	5.42	14.4	-5.5	0.43

Notes:

WD -- Well Depth

SWL – Standing Water Level

mBTOC – Metres Below Top of Casing mAHD – Metres Australian Height Datum

7.1.2 Groundwater Quality

Table 7 provides a summary of groundwater exceedances against the adopted ANZECC 2000 Freshwater 95% Species Protection, ANZECC 2000 Irrigation and ANZECC 2000 Livestock guidelines. A complete results table is provided in Appendix C, while copies of the laboratory analysis certificates are provided in Appendix E.

Table 7 Groundwater Exceedances

			Solids	Majo	r lons	Metals
			TDS	Chloride	Sodium	Manganese
			mg/L	mg/L	mg/L	mg/L
EQL			10	1	0.5	0.005
ANZECC 2000 FW 95%						1.9
ANZECC 2000 Irrigation				175	115	0.2
ANZECC 2000 Livestock			2,000			
Field ID	Date	Lab Report Number				
BH1	01 Aug 2024	1124550	1,200	490	150	6.2
BH2	01 Aug 2024	1124550	1,700	570	270	1.4
BH3	01 Aug 2024	1124550	1,900	630	290	2.0
BH4	01 Aug 2024	3		940	360	5.8

Environmental Standards

Australian and New Zealand Environment and Conservation Council, October 2000, ANZECC 2000 FW 95%

Australian and New Zealand Environment and Conservation Council, October 2000, ANZECC 2000 Irrigation

Australian and New Zealand Environment and Conservation Council, October 2000, ANZECC 2000 Livestock

All groundwater sites exceeded at least one of the adopted assessment criteria including ANZECC 2000 Fresh Water 95% guideline, ANZECC 2000 Irrigation, ANZECC 2000 Livestock and groundwater quality objectives during the August 2024 monitoring event.

Manganese exceeded the ANZECC 2000 Fresh Water 95% guideline at all groundwater bores except BH2, where it exceeded the Irrigation guideline instead. Chloride and sodium exceeded the ANZECC 2000 Irrigation guideline at all sites. The only TDS exceedance was detected at BH4 (2,800 mg/L), which breached the ANZECC 2000 Livestock guidelines. All primary laboratory results from this program are located in Appendix C.

A summary of guideline exceedances of groundwater samples collected from the August 2024 monitoring period are provided below. Table 8 indicates potential impacts against the adopted assessment criteria.

Table 8 Summary of Potential Groundwater Impacts against the Adopted Assessment Criteria

Monitoring Location	ANZECC 2000 FW 95% Species Protection	ANZECC 2000 Irrigation	ANZECC 2000 Livestock
BH1	Manganese	 - Chloride and sodium 	✓
BH2	✓	 - Chloride, sodium and manganese 	✓
BH3	Manganese	 - Chloride and sodium 	✓
BH4	× - Manganese	 Chloride and sodium 	× - TDS

Notes:

- * indicates potential impact to the protected Beneficial Use
- ✓ indicates no identified impact to protected Beneficial Use

7.2. LEACHATE MONITORING RESULTS

7.2.1 Leachate Field Measurements

The Leachate bore LB1 was visited and sampled during the August monitoring event. Leachate field monitoring results have been provided in Table 9.

Table 9 Leachate Field Measurements

ID	Date	SWL (mBTOC)	SWL (mAHD)	EC (µS/cm)	рН	Temperature (°C)	ORP (mV)	DO (mg/L)
LP1	1/08/2024	-	-	706	6.68	12.9	61.1	7.36

7.2.2 Leachate Quality

No exceedances against the adopted ANZECC 2000 Freshwater 95% Species Protection, ANZECC 2000 Irrigation and ANZECC 2000 Livestock guidelines were detected from the Leachate Pond sample. A complete results table is provided in Appendix B, while copies of the laboratory analysis certificates are provided in Appendix E.

8. QUALITY CONTROL / QUALITY ASSURANCE

8.1. PROGRAM

A summary of the QA/QC procedures adopted for the monitoring program are provided in Table 10.

Table 10 Quality Assurance and Quality Control program

Item	Description
Laboratory accreditation	Groundwater samples were submitted to laboratories that are accredited by NATA for the analytes tested. All primary samples were submitted to Eurofins and secondary samples to ALS.
Sample collection and transport	All samples were collected by suitably qualified Ventia personnel trained in the relevant procedures. Samples were sealed into laboratory prepared containers then transferred to the laboratory using the correct sample preservation and chain of custody protocols.
Field and inter-lab duplicates	Blind and split duplicate samples were collected at greater than the nominated rate of 1 in 20 primary samples. One duplicate set was taken for the August 2024 monitoring event.
Relative percentage difference (RPD)	The relative percentage difference (RPD) is assessed to evaluate the sampling methodology and the analytical techniques used. The RPD is calculated using the following formula:
	$RPD = \frac{(Result 1 - Result 2)}{(Result 1 + Result 2)/2} X 100\%$
	RPD's have been assessed under the following criteria:
	1. RPDs have only been considered where a concentration is greater than 1 times the EQL
	2. Acceptable RPDs for each EQL multiplier range are: 81 (1-10 x EQL); 50 (10-30 x EQL); 20 (> 30 x EQL)
	3. The significance of RPD of results should be evaluated on the basis of sampling technique, sample variability, absolute concentration relative to criteria and laboratory performance
	4. This variation can be expected to be higher for organic analysis than for inorganics, and for low concentration of analytes.
Sample blanks	Sample blanks were submitted to verify that no cross contamination had occurred during sampling or in the transfer of samples to the laboratory (Table I2):
	• Equipment rinsate samples were collected at the nominated rate of 1 in 20 primary samples or one per sample type, which ever was greater.
	The frequency of sample blanks was considered suitable to satisfy the data quality objectives of the program. One rinsate was taken for the August 2024 monitoring event.

Item	Description
Laboratory quality control procedures	All analytical laboratories used by Ventia are required to adhere to NATA endorsed methodologies and conduct regular control checks on their analyses. Ventia requires these laboratories to regularly provide results of control method blanks, repeat blind replicates and recoveries. The following summarises pertinent acceptance limits for internal laboratory analysis: • Surrogates: 75 - 125% recovery • Matrix spikes: 70% - 130% • Laboratory control samples: 75% - 125% • Laboratory Duplicate Samples: Acceptable RPDs for each EQL multiplier range are: Not Applicable (1-10 x EQL); 50 (10-30 x EQL)*; 20 (> 30 x EQL)*. • Method Blanks: 0 to <pql *unless="" established.<="" heterogeneity="" is="" sample="" td=""></pql>

8.2. RESULTS

The QA/QC program consisted of the collection of duplicate samples and rinsate samples. A summary of the QA/QC results is provided in Appendix D. All samples were collected by suitably qualified Ventia personnel and the sampling methods, including sample preservation, transport and decontamination, were consistent with Ventia procedures.

Across the sampling program, 5 primary samples were collected during the August 2024 monitoring program. One blind and one split duplicate sample was collected for comparison, in accordance with the data quality objective. This meets the National Environment Protection (Assessment of Site Contamination) Measure 1999 (NEPM) recommended minimum rate of one per 20 samples.

A review of exceedances indicates that where RPDs were above the adopted criteria, differences can generally be attributed to two different categories. Table 12 (below) displays all high RPD's, results that are coloured yellow are those that are less than 10 times the Estimated Quantitation Limit (EQL). Results coloured green are where the primary samples were higher than the secondary value which provides a more conservative observation of the analyte. Results highlighted blue are discussed below.

Volatile fatty acids (as acetic acid) had a high RPD of 165% between the primary and the split sample taken at BH2. Volatile Fatty Acid analysis is carried out differently by the Primary and Secondary laboratories and a large difference in results between the primary and split sample is often seen. Total organic carbon was found to have a high RPD between the primary and the split sample (taken at BH2) and the primary and the blind sample (taken at BH1). It is possible this is due to heterogeneity of the samples as both sites were noted to be turbid. There are no nominated exceedance values for the ANZECC guidelines, but for a more conservative observation the secondary sample results should be used.

The Relative Percentage Difference (RPD) for field duplicates and inter-lab duplicates were calculated for all results and are summarised in Appendix D.

Table 11 RPD Exceedances

Site	Secondary Sample	Date	Primary Lab Report	Secondary Lab Report	Analyte	Units	EQL	Primary Result	Secondary Result	RPD
					Volatile Fatty Acids (as Acetic Acid)	ug/L	5,000	<5000	52000	165
BH2	Split	1/08/2024	1124550	EM2413118	Potassium	mg/L	0.5	1.4	2	35
					Kjeldahl Nitrogen Total	mg/L	0.1	0.5	<0.1	133
					TOC	mg/L	1	<5	38	153
					Iron	mg/L	0.05	8.8	2.88	101
BH1	Blind	1/08/2024	1124550	1124550	TOC	mg/L	1	<5	15	100

There were detects in the rinsate samples during the August 2024 monitoring round. The results are displayed in Appendix C. COD results were less than 10 times the Limit of reporting (LOR), while iron and manganese were marginally over 10 times the LOR. The results indicate care needs to be taken when cleaning the equipment used, however, rinsate results have been compared against primary samples and results are in line with historic, showing this has not adversely impacted results.

Based on the QA/QC program, the analytical data is sufficient for the purposes of this monitoring program.

9. CONCLUSIONS

9.1. GROUNDWATER

All groundwater sites exceeded at least one of the adopted assessment criteria during each monitoring event (ANZECC 2000 guidelines for Fresh Water 95%, Irrigation and Livestock) Results were in line with historic trends at the majority of monitoring bores.

BH1, BH3 and BH4 all had exceedances against ANZECC 2000 FW95% guidelines, BH4 also exceeded ANZECC 2000 Livestock guidelines. All sites (BH1, BH2, BH3 and BH4) were found to exceed against the ANZECC 2000 Irrigation guidelines.

All four of the groundwater locations were accessible and able to be sampled by low flow equipment. There were no issues noted for any of these sampling locations.

10.3. LEACHATE

Leachate bore LB1 was able to be accessed and sampled in August 2024. No issues were noted at the site and there were no exceedances against any of the adopted guidelines.

10.4. DATA UNCERTAINTY AND STATEMENT OF LIMITATIONS

Ventia has used a degree of skill and care ordinarily exercised by reputable members of our profession practising in the same or similar locality. The conclusions presented in this report are relevant to the condition of the site and the state of legislation currently enacted as at the date of this report. Ventia does not make any representation or warranty that the conclusions in this report will be applicable in the future as there may be changes in the condition of the site, applicable legislation or other factors that would affect the conclusions contained in this report.

11. DECLARATION

This declaration acknowledges that Ventia has been requested by Hepburn Shire Council to undertake an Environmental Monitoring Program in accordance with sampling and analysis as delegated by Hepburn Shire.

Ventia sampling procedures were adopted for all environmental monitoring undertaken. All groundwater and surface water monitoring were conducted in accordance with EPA Victoria's Groundwater Sampling Guidelines (Publication 669; April 2000) and Sampling and Analysis of Waters, Wastewaters, Soils and Wastes (IWRG701; EPA, 2009).

This report provides a summary of the analysis conducted under the monitoring program, an assessment of the likely offsite water quality and air quality impacts associated with the landfill as well as recommendations for improvements to the monitoring program.

Ventia is of the opinion that this report prepared on behalf of Hepburn Shire Council and titled 'August 2024 Monitoring Event Report - Daylesford Landfill' contains adequate information of suitable quality to enable the Hepburn Shire Council to fulfill its monitoring requirements.

12. REFERENCES

DELWP 2021. Environment Reference Standard 2021. Department of Environment, Land, Water and Planning, State Government of Victoria.

EPA 2000. A Guide to the Sampling and Analysis of Waters, Wastewaters, Soils and Wastes. Publication 441.7, Environmental Protection Authority, State Government of Victoria.

EPA 2000. Groundwater Sampling Guidelines. Publication 669. Environmental Protection Authority, State Government of Victoria.

EPA 2009. Industrial Waste Resource Guidelines: Sampling & Analysis of Waters, Wastewaters, Soils & Wastes. Publication IWRG701 – June 2009. Environmental Protection.

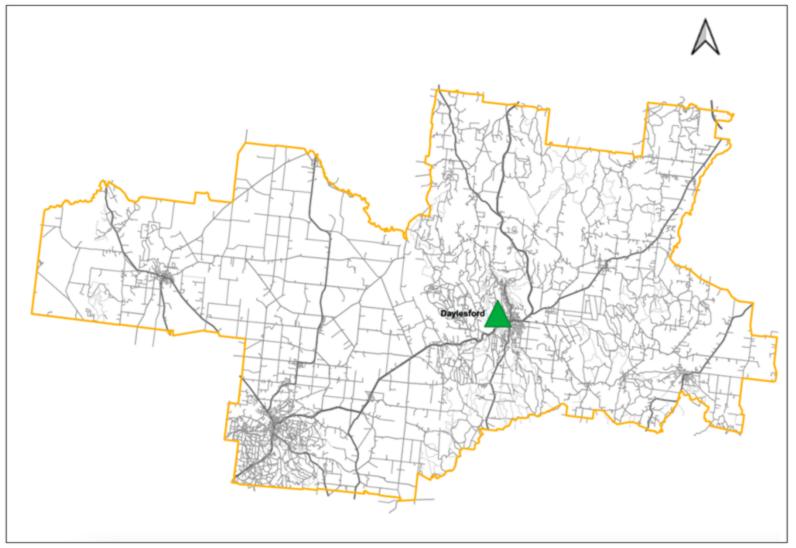
EPA 2018. Landfill Gas Fugitive Emissions Monitoring Guidelines. Publication 1684, February 2018. Authorised and published by EPA Victoria.

EPA 2015. Siting, Design, Operation and Rehabilitation of Landfills Publication 788.3, August 2015. Authorised and published by EPA Victoria.

National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended in 2013)

Nation Partners 2022. Hepburn Shire Council Separation Distances Assessment – Daylesford Former Landfill and Current Waste Transfer Station. (Dated 23 December 2022)

SEPP 2018. State Environment Protection Policy (Waters). Victorian Government Gazette S 493. Environment Protection Act 1970, Act No. 8056/1970.


Last Waltz Consulting 2006. Environmental Improvement Plan, Last Waltz Consulting, December 2006.

Philip Vawdrey Engineering Pty Ltd 2010. Geotechnical Investigation Proposed Extension to the Waste Sorting Shed, Philip Vawdrey Engineering Pty Ltd, October 2010

SKM 1998. Daylesford Municipal Landfill Site, Hydrogeological Assessment, July 1998.

<u>APPENDICES</u>

APPENDIX A - MAP

APPENDIX B - FIELD RECORD SHEETS

Daylesford Landfill Sampling

23/08/2024 1/6

SAMPLING RESULTS SUBMISSION SHEET (SAMPLING UNDERTAKEN BY VENTIA)

Hepburn Shire Council Client: **Daylesford Landfill** Site:

Program: **Groundwater/Surface Water Sampling**

Samping Period: **AUG 2024** Sampler: PR, AM Phone: 0408 405 305

Bore/Sample Point	Date	Time (EST)	Depth (mbmp)	SWL m (mbtoc)	Electrical Conductivity (us/cm @ 25°C)	рН	Temp. (°C)	Redox (mV)	DO (mg/L)	Comments
ВН1	1/08/2024	14:05	27.92	17.43	2041	5.60	14.2	52.7	4.51	Clear, no odour. Blind and split samples taken.
BH2	1/08/2024	11:23	20.10	7.72	2962	6.18	12.7	43.8	4.67	Little bit turbid, no odour. Rinsate and Split taken/done here.
ВН3	1/08/2024	12:51	18.30	3.83	3198	6.01	12.5	40.3	4.69	Little bit turbid, no odour.
ВН4	1/08/2024	14:30	37.00	25.87	4339	5.42	14.4	-5.5	0.43	Cloudy no odour, light grey.
LP1	1/08/2024	15:03	-	-	706	6.68	12.9	61.1	7.36	

Groundwater samples taken using the low-flow method (as per EPA Publication 669) unless otherwise noted All depths measured from the top of the PVC casing $\frac{1}{2}$ NOTES: 1

Notes: All bore measuremen	ts are referenc	ed to the marke					l sheet -	- Fnv l	Monitorin	g V	entia	
Bore ID No	В	BH1		Project Name	•	Ü				pling Staff	AM &	PR
Project Area:			-							ter Model		a
Date	1/08	3/2024		Project No						er Serial #	7490039	7101
Expe	cted Bore D	etails										
Internal Dia	ameter (mm)		_	Easting		_	Total [Depth (m)		Screen	Depth From (n	n)
Drop Tube already ir	n bore? (Y/N)	N/A					Water	Level (m)		Scre	en Depth To (n	1)
	e Length (m)									_		
				Zone		=	set Pump ir	ilet at (m)		_	Set Pump at (n	1)
	I Information											
Time of SWL	eld Measur		otal Depth (m)	27.92	Mid-screen	accessible?	Clea	ar	Depth pump	set at (m)	25.0	n
Static Water Level (m)			re Diam (mm)			en Length(m)			Depth of pum			
Wel	l Purging De	etails			Sampling D	etails			Sa	mple Bott	les Required	
Purge Method	LF	Pump Type	MP	Samp	oling Method	LF	-		Bottle Type	Quantity	Bottle Type	Quantity
Time Pump in	13:40	Pump in' WL	17.19	=	Time Started	14:05	WL m (start)	17.43				
Time Started		_					WL m (end)	17.43				
		_ WL m (end)	17.43		e sample ID?		-					
Volume Removed (I) Discharge Rate (I/m)		=			e sample ID?		=					
	ump Remov	- val		Milisate	sample ib.							
Time of removal			m(post-removal)	17.45	Bore De	pth at end (m)	27.92					
F	ump Setting	gs										
Fill / Discharge used	9/11	CPM	3	Air/Gas	s Pressure (kPa)	50psi						
Comments					Sa	ample taken						
						odour, clea						
						nd taken here						
	62	= vol required for		able when within t	+/- 0.05 pH	3 consecutive m +/- 10%	+/- 10mV	+/- 10%]			
Time	Cumulative Volume	Water Level (m	Stability of Field	Specific Conductance	pH	Temp.	Redox	DO		Commen	ts (colour,	
IIIIC	Removed (I)	below MP)	Params	EC (uS/cm) @25°C		(°C)	ORP (mV)	(mg/L)		turbidity, od	dours, other)	
13:53	0.5	17.35	Keep purging	2045	5.74	13.00	61.6	5.17	Clear, no odou	r		
13:56	0.9	17.39	Keep purging	2049	5.63	13.97	51.4	4.64	Clear, no odou			
13:59	1.2	17.39	Keep purging	2048	5.59	14.17	50.1	4.52	Clear, no odou			
14:02	1.5	17.42	Keep purging	2046	5.56	14.33	45.0	4.48	Clear, no odou			
14:05	2	17.43	OK to sample	2041	5.60	14.21	52.7	4.51	Clear, no odou	I		

Notes: All bore measuremen	its are reference	ced to the mark					l choot	Fpy /	Monitorin	·	ventia	
					•	Ü			Monitorin	•		
	В	5H2	=	Project Name						pling Staff		
Project Area:				Client					WQ. Me	ter Model	Hann	а
Date		3/2024		Project No					WQ. Met	er Serial #	7490039	101
Expe	cted Bore D	etails										
Internal Dia	imeter (mm)		i	Easting		=	Total [Depth (m)		Screen	Depth From (m)
Drop Tube already in	bore? (Y/N)	N		Northing		-	Water	Level (m)		Scre	en Depth To (m)
Drop Tube	e Length (m)	N/A		Zone			Set Pump in	ilet at (m)			Set Pump at (m)
			-			-				_	,	
	Information eld Measur											_
Time of SWL			otal Depth (m)	20.10	Mid-screen	accessible?	Clea	ar	Depth pump	set at (m)	18.00)
Static Water Level (m)			re Diam (mm)	50		n Length(m)	-		Depth of pum			
Well	l Purging De	etails			Sampling D	_					les Required	
Purge Method	LF	Pump Type	MP	Samp	oling Method	LF	_		Bottle Type	Quantity	Bottle Type	Quantity
Time Pump in	10:50	Pump in' WL	7.49		Time Started	11:23	WL m (start)	7.82				
Time Started	10:59	WL m (start)	7.49	Ti	ime Stopped	11:35	WL m (end)	7.82				
Time Stopped	11:23	WL m (end)	7.72		sample ID?							
Volume Removed (I)		=			sample ID?		=					
Discharge Rate (I/m)				Rinsate	sample ID?							
Time of removal	ump Remov 11:47		n(post-removal)	7.89	Poro Do	oth at end (m)	20.10					
	ump Setting	_	n(post-removar)	7.09	воге ре	pin at end (m)	20.10					
Fill / Discharge used		CPM	3	Air/Gas	Pressure (kPa)	35 Psi						
Comments		-			Sé	ample taken	-					
						t turbid, no o						
												_
					Rinsate and	Split taken/c	done here.					
		Field Parameters	are considered sta	able when within t								
	74	Field Parameters = vol required for		+/- 3%				+/- 10%]			
Time	Cumulative Volume	= vol required for Water Level (m	3V method (L) Stability of Field	+/- 3% Specific Conductance	he EPA limits for 3	+/- 10% Temp.	+/- 10mV Redox	+/- 10% DO		Commen	ts (colour,	
	Cumulative Volume Removed (I)	= vol required for Water Level (m below MP)	3V method (L) Stability of Field Params	+/- 3% Specific Conductance EC (uS/cm) @25°C	+/- 0.05 pH	+/- 10% Temp. (°C)	+/- 10mV Redox ORP (mV)	DO (mg/L)		turbidity, oc		
11:11	Cumulative Volume Removed (I)	= vol required for Water Level (m below MP)	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) @25°C 2793	+/- 0.05 pH pH	+/- 10% Temp. (*C)	+/- 10mV Redox ORP (mV) 40.0	DO (mg/L) 4.98	Little bit turbid,	turbidity, od		
11:11	Cumulative Volume Removed (I) 0.1	= vol required for Water Level (m below MP) 7.54 7.67	3V method (L) Stability of Field Params Keep purging Keep purging	+/- 3% Specific Conductance EC (us/cm) @25°C 2793 2962	+/- 0.05 pH pH 6.16 6.15	+/- 10% Temp. (°C) 12.50 13.09	+/- 10mV Redox ORP (mV) 40.0 39.2	DO (mg/L) 4.98 4.66	Little bit turbid,	turbidity, oc no odour. no odour.		
11:11 11:14 11:17	Cumulative Volume Removed (I) 0.1 0.5 0.7	= vol required for Water Level (m below MP) 7.54 7.67	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) @25°C 2793 2962 2972	+/- 0.05 pH pH 6.16 6.15	+/- 10% Temp. (°C) 12.50 13.09	+/- 10mV Redox ORP (mV) 40.0 39.2	DO (mg/L) 4.98 4.66 4.62	Little bit turbid, Little bit turbid,	no odour. no odour. no odour. no odour.		
11:11 11:14 11:17 11:20	Cumulative Volume Removed (I) 0.1 0.5 0.7	= vol required for Water Level (m below MP) 7.54 7.67 7.67	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging OK to sample	+/- 3% Specific Conductance EC (uS/cm) #25°C 2793 2962 2972 2963	+/- 0.05 pH pH 6.16 6.15 6.17	+/- 10% Temp. (°C) 12.50 13.09 13.22 13.04	+/- 10mV Redox ORP (mV) 40.0 39.2 39.5	DO (mg/L) 4.98 4.66 4.62 4.65	Little bit turbid, Little bit turbid, Little bit turbid,	no odour. no odour. no odour. no odour.		
11:11 11:14 11:17	Cumulative Volume Removed (I) 0.1 0.5 0.7	= vol required for Water Level (m below MP) 7.54 7.67	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) @25°C 2793 2962 2972	+/- 0.05 pH pH 6.16 6.15	+/- 10% Temp. (°C) 12.50 13.09	+/- 10mV Redox ORP (mV) 40.0 39.2	DO (mg/L) 4.98 4.66 4.62	Little bit turbid, Little bit turbid,	no odour. no odour. no odour. no odour.		
11:11 11:14 11:17 11:20	Cumulative Volume Removed (I) 0.1 0.5 0.7	= vol required for Water Level (m below MP) 7.54 7.67 7.67	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging OK to sample	+/- 3% Specific Conductance EC (uS/cm) #25°C 2793 2962 2972 2963	+/- 0.05 pH pH 6.16 6.15 6.17	+/- 10% Temp. (°C) 12.50 13.09 13.22 13.04	+/- 10mV Redox ORP (mV) 40.0 39.2 39.5	DO (mg/L) 4.98 4.66 4.62 4.65	Little bit turbid, Little bit turbid, Little bit turbid,	no odour. no odour. no odour. no odour.		
11:11 11:14 11:17 11:20	Cumulative Volume Removed (I) 0.1 0.5 0.7	= vol required for Water Level (m below MP) 7.54 7.67 7.67	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging OK to sample	+/- 3% Specific Conductance EC (uS/cm) #25°C 2793 2962 2972 2963	+/- 0.05 pH pH 6.16 6.15 6.17	+/- 10% Temp. (°C) 12.50 13.09 13.22 13.04	+/- 10mV Redox ORP (mV) 40.0 39.2 39.5	DO (mg/L) 4.98 4.66 4.62 4.65	Little bit turbid, Little bit turbid, Little bit turbid,	no odour. no odour. no odour. no odour.		
11:11 11:14 11:17 11:20	Cumulative Volume Removed (I) 0.1 0.5 0.7	= vol required for Water Level (m below MP) 7.54 7.67 7.67	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging OK to sample	+/- 3% Specific Conductance EC (uS/cm) #25°C 2793 2962 2972 2963	+/- 0.05 pH pH 6.16 6.15 6.17	+/- 10% Temp. (°C) 12.50 13.09 13.22 13.04	+/- 10mV Redox ORP (mV) 40.0 39.2 39.5	DO (mg/L) 4.98 4.66 4.62 4.65	Little bit turbid, Little bit turbid, Little bit turbid,	no odour. no odour. no odour. no odour.		
11:11 11:14 11:17 11:20	Cumulative Volume Removed (I) 0.1 0.5 0.7	= vol required for Water Level (m below MP) 7.54 7.67 7.67	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging OK to sample	+/- 3% Specific Conductance EC (uS/cm) #25°C 2793 2962 2972 2963	+/- 0.05 pH pH 6.16 6.15 6.17	+/- 10% Temp. (°C) 12.50 13.09 13.22 13.04	+/- 10mV Redox ORP (mV) 40.0 39.2 39.5	DO (mg/L) 4.98 4.66 4.62 4.65	Little bit turbid, Little bit turbid, Little bit turbid,	no odour. no odour. no odour. no odour.		
11:11 11:14 11:17 11:20	Cumulative Volume Removed (I) 0.1 0.5 0.7	= vol required for Water Level (m below MP) 7.54 7.67 7.67	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging OK to sample	+/- 3% Specific Conductance EC (uS/cm) #25°C 2793 2962 2972 2963	+/- 0.05 pH pH 6.16 6.15 6.17	+/- 10% Temp. (°C) 12.50 13.09 13.22 13.04	+/- 10mV Redox ORP (mV) 40.0 39.2 39.5	DO (mg/L) 4.98 4.66 4.62 4.65	Little bit turbid, Little bit turbid, Little bit turbid,	no odour. no odour. no odour. no odour.		
11:11 11:14 11:17 11:20	Cumulative Volume Removed (I) 0.1 0.5 0.7	= vol required for Water Level (m below MP) 7.54 7.67 7.67	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging OK to sample	+/- 3% Specific Conductance EC (uS/cm) #25°C 2793 2962 2972 2963	+/- 0.05 pH pH 6.16 6.15 6.17	+/- 10% Temp. (°C) 12.50 13.09 13.22 13.04	+/- 10mV Redox ORP (mV) 40.0 39.2 39.5	DO (mg/L) 4.98 4.66 4.62 4.65	Little bit turbid, Little bit turbid, Little bit turbid,	no odour. no odour. no odour. no odour.		
11:11 11:14 11:17 11:20	Cumulative Volume Removed (I) 0.1 0.5 0.7	= vol required for Water Level (m below MP) 7.54 7.67 7.67	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging OK to sample	+/- 3% Specific Conductance EC (uS/cm) #25°C 2793 2962 2972 2963	+/- 0.05 pH pH 6.16 6.15 6.17	+/- 10% Temp. (°C) 12.50 13.09 13.22 13.04	+/- 10mV Redox ORP (mV) 40.0 39.2 39.5	DO (mg/L) 4.98 4.66 4.62 4.65	Little bit turbid, Little bit turbid, Little bit turbid,	no odour. no odour. no odour. no odour.		
11:11 11:14 11:17 11:20	Cumulative Volume Removed (I) 0.1 0.5 0.7	= vol required for Water Level (m below MP) 7.54 7.67 7.67	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging OK to sample	+/- 3% Specific Conductance EC (uS/cm) #25°C 2793 2962 2972 2963	+/- 0.05 pH pH 6.16 6.15 6.17	+/- 10% Temp. (°C) 12.50 13.09 13.22 13.04	+/- 10mV Redox ORP (mV) 40.0 39.2 39.5	DO (mg/L) 4.98 4.66 4.62 4.65	Little bit turbid, Little bit turbid, Little bit turbid,	no odour. no odour. no odour. no odour.		
11:11 11:14 11:17 11:20	Cumulative Volume Removed (I) 0.1 0.5 0.7	= vol required for Water Level (m below MP) 7.54 7.67 7.67	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging OK to sample	+/- 3% Specific Conductance EC (uS/cm) #25°C 2793 2962 2972 2963	+/- 0.05 pH pH 6.16 6.15 6.17	+/- 10% Temp. (°C) 12.50 13.09 13.22 13.04	+/- 10mV Redox ORP (mV) 40.0 39.2 39.5	DO (mg/L) 4.98 4.66 4.62 4.65	Little bit turbid, Little bit turbid, Little bit turbid,	no odour. no odour. no odour. no odour.		
11:11 11:14 11:17 11:20	Cumulative Volume Removed (I) 0.1 0.5 0.7	= vol required for Water Level (m below MP) 7.54 7.67 7.67	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging OK to sample	+/- 3% Specific Conductance EC (uS/cm) #25°C 2793 2962 2972 2963	+/- 0.05 pH pH 6.16 6.15 6.17	+/- 10% Temp. (°C) 12.50 13.09 13.22 13.04	+/- 10mV Redox ORP (mV) 40.0 39.2 39.5	DO (mg/L) 4.98 4.66 4.62 4.65	Little bit turbid, Little bit turbid, Little bit turbid,	no odour. no odour. no odour. no odour.		
11:11 11:14 11:17 11:20	Cumulative Volume Removed (I) 0.1 0.5 0.7	= vol required for Water Level (m below MP) 7.54 7.67 7.67	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging OK to sample	+/- 3% Specific Conductance EC (uS/cm) #25°C 2793 2962 2972 2963	+/- 0.05 pH pH 6.16 6.15 6.17	+/- 10% Temp. (°C) 12.50 13.09 13.22 13.04	+/- 10mV Redox ORP (mV) 40.0 39.2 39.5	DO (mg/L) 4.98 4.66 4.62 4.65	Little bit turbid, Little bit turbid, Little bit turbid,	no odour. no odour. no odour. no odour.		
11:11 11:14 11:17 11:20	Cumulative Volume Removed (I) 0.1 0.5 0.7	= vol required for Water Level (m below MP) 7.54 7.67 7.67	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging OK to sample	+/- 3% Specific Conductance EC (uS/cm) #25°C 2793 2962 2972 2963	+/- 0.05 pH pH 6.16 6.15 6.17	+/- 10% Temp. (°C) 12.50 13.09 13.22 13.04	+/- 10mV Redox ORP (mV) 40.0 39.2 39.5	DO (mg/L) 4.98 4.66 4.62 4.65	Little bit turbid, Little bit turbid, Little bit turbid,	no odour. no odour. no odour. no odour.		
11:11 11:14 11:17 11:20	Cumulative Volume Removed (I) 0.1 0.5 0.7	= vol required for Water Level (m below MP) 7.54 7.67 7.67	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging OK to sample	+/- 3% Specific Conductance EC (uS/cm) #25°C 2793 2962 2972 2963	+/- 0.05 pH pH 6.16 6.15 6.17	+/- 10% Temp. (°C) 12.50 13.09 13.22 13.04	+/- 10mV Redox ORP (mV) 40.0 39.2 39.5	DO (mg/L) 4.98 4.66 4.62 4.65	Little bit turbid, Little bit turbid, Little bit turbid,	no odour. no odour. no odour. no odour.		
11:11 11:14 11:17 11:20	Cumulative Volume Removed (I) 0.1 0.5 0.7	= vol required for Water Level (m below MP) 7.54 7.67 7.67	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging OK to sample	+/- 3% Specific Conductance EC (uS/cm) #25°C 2793 2962 2972 2963	+/- 0.05 pH pH 6.16 6.15 6.17	+/- 10% Temp. (°C) 12.50 13.09 13.22 13.04	+/- 10mV Redox ORP (mV) 40.0 39.2 39.5	DO (mg/L) 4.98 4.66 4.62 4.65	Little bit turbid, Little bit turbid, Little bit turbid,	no odour. no odour. no odour. no odour.		
11:11 11:14 11:17 11:20	Cumulative Volume Removed (I) 0.1 0.5 0.7	= vol required for Water Level (m below MP) 7.54 7.67 7.67	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging OK to sample	+/- 3% Specific Conductance EC (uS/cm) #25°C 2793 2962 2972 2963	+/- 0.05 pH pH 6.16 6.15 6.17	+/- 10% Temp. (°C) 12.50 13.09 13.22 13.04	+/- 10mV Redox ORP (mV) 40.0 39.2 39.5	DO (mg/L) 4.98 4.66 4.62 4.65	Little bit turbid, Little bit turbid, Little bit turbid,	no odour. no odour. no odour. no odour.		
11:11 11:14 11:17 11:20	Cumulative Volume Removed (I) 0.1 0.5 0.7	= vol required for Water Level (m below MP) 7.54 7.67 7.67	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging OK to sample	+/- 3% Specific Conductance EC (uS/cm) #25°C 2793 2962 2972 2963	+/- 0.05 pH pH 6.16 6.15 6.17	+/- 10% Temp. (°C) 12.50 13.09 13.22 13.04	+/- 10mV Redox ORP (mV) 40.0 39.2 39.5	DO (mg/L) 4.98 4.66 4.62 4.65	Little bit turbid, Little bit turbid, Little bit turbid,	no odour. no odour. no odour. no odour.		
11:11 11:14 11:17 11:20	Cumulative Volume Removed (I) 0.1 0.5 0.7	= vol required for Water Level (m below MP) 7.54 7.67 7.67	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging OK to sample	+/- 3% Specific Conductance EC (uS/cm) #25°C 2793 2962 2972 2963	+/- 0.05 pH pH 6.16 6.15 6.17	+/- 10% Temp. (°C) 12.50 13.09 13.22 13.04	+/- 10mV Redox ORP (mV) 40.0 39.2 39.5	DO (mg/L) 4.98 4.66 4.62 4.65	Little bit turbid, Little bit turbid, Little bit turbid,	no odour. no odour. no odour. no odour.		

Notes: All bore measuremen	nts are referen	ced to the mark								,	ventia	
			TS Grou	ndwate	r sampli	ng field	sheet -	- Env I	Monitorin	g	VCIICIO	•
Bore ID No	B	BH3	=	Project Name	He	epburn Land	fills		Sam	pling Staff	PR & A	M
Project Area:				Client					WQ. Me	ter Model	Hann	а
Date	1/08	3/2024		Project No					WQ. Met	er Serial #	7490039	101
Expe	cted Bore D	Details										
Internal Dia	ameter (mm)		_	Easting		_	Total [Depth (m)		Screen	Depth From (m)
Drop Tube already in	bore? (Y/N)	n/A		Northina			Water	Level (m)		Scre	en Depth To (m)
						='						
Drop Tube	e Length (m)	n/a		Zone		-	Set Pump in	ilet at (m)		_	Set Pump at (m)
Additional	l Information											
	ield Measur											
Time of SWL			otal Depth (m)			accessible?	-	ar			15.00	
Static Water Level (m)		-	re Diam (mm)	50		en Length(m)	0.00		Depth of pum			E!
	I Purging De		MD	Comer	Sampling D						les Required Bottle Type	Quantit
Purge Method Time Pump in					oling Method		WL m (start)	2 02	Bottle Type	Quantity	Bottle Type	Quantity
Time Started							WL m (start)					1
Time Stopped		• ' '			sample ID?		-	3.03				
Volume Removed (I)				·	sample ID?		=					
Discharge Rate (I/m)		_			sample ID?		_					
	ump Remov	/al					-					
Time of removal	13:03	WLn	n(post-removal)	3.85	Bore De	oth at end (m)	18.30					
Р	ump Setting	gs										
Fill / Discharge used	9/11	СРМ	3	Air/Gas	Pressure (kPa)	35 Psi						
Comments					Sa	ample taken						
					little bi	t turbid, no o	dour.					
					para	ameters stab	le.					
		Field Parameters	are considered sta	able when within t	•				1			
	85 Cumulativo	= vol required for	3V method (L)	tble when within the state of t	he EPA limits for 3	consecutive me	easurements +/- 10mV	+/- 10%		0	As (as less	
Time	Cumulative Volume			+/- 3% Specific Conductance EC (uS/cm)	he EPA limits for 3	+/- 10% Temp.	+/- 10mV Redox	DO			ts (colour,	
	Cumulative Volume Removed (I)	= vol required for Water Level (m below MP)	3V method (L) Stability of Field Params	+/- 3% Specific Conductance EC (uS/cm) @25°C	+/- 0.05 pH	+/- 10% Temp. (°C)	+/- 10mV Redox ORP (mV)	DO (mg/L)	little bit turbid.	turbidity, oc		
12:41	Cumulative Volume Removed (I)	= vol required for Water Level (m below MP)	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) @25°C 3173	+/- 0.05 pH pH 6.05	+/- 10% Temp. (*C)	+/- 10mV Redox ORP (mV) 45.5	DO (mg/L) 4.99	little bit turbid, r	turbidity, od		
12:41 12:44	Cumulative Volume Removed (I) 0.1	= vol required for Water Level (m below MP) 3.82 3.82	3V method (L) Stability of Field Params Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) @25°C 3173 3193	+/- 0.05 pH pH 6.05	+/- 10% Temp. (°C) 12.13	+/- 10mV Redox ORP (mV) 45.5 42.3	DO (mg/L) 4.99 4.83	little bit turbid, r	turbidity, od no odour. no odour.		
12:41 12:44 12:47	Cumulative Volume Removed (I) 0.1 0.5	= vol required for Water Level (m below MP) 3.82 3.82 3.83	3V method (L) Stability of Field Params Keep purging Keep purging OK to sample	+/- 3% Specific Conductance EC (uS/cm) @25*C 3173 3193 3198	+/- 0.05 pH pH 6.05 6.03	+/- 10% Temp. (°C) 12.13 12.32	+/- 10mV Redox ORP (mV) 45.5 42.3	DO (mg/L) 4.99 4.83 4.76	little bit turbid, r	turbidity, oc no odour. no odour. no odour.		
12:41 12:44	Cumulative Volume Removed (I) 0.1	= vol required for Water Level (m below MP) 3.82 3.82	3V method (L) Stability of Field Params Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) @25°C 3173 3193	+/- 0.05 pH pH 6.05	+/- 10% Temp. (°C) 12.13	+/- 10mV Redox ORP (mV) 45.5 42.3	DO (mg/L) 4.99 4.83	little bit turbid, r	turbidity, oc no odour. no odour. no odour.		
12:41 12:44 12:47	Cumulative Volume Removed (I) 0.1 0.5	= vol required for Water Level (m below MP) 3.82 3.82 3.83	3V method (L) Stability of Field Params Keep purging Keep purging OK to sample	+/- 3% Specific Conductance EC (uS/cm) @25*C 3173 3193 3198	+/- 0.05 pH pH 6.05 6.03	+/- 10% Temp. (°C) 12.13 12.32	+/- 10mV Redox ORP (mV) 45.5 42.3	DO (mg/L) 4.99 4.83 4.76	little bit turbid, r	turbidity, oc no odour. no odour. no odour.		
12:41 12:44 12:47	Cumulative Volume Removed (I) 0.1 0.5	= vol required for Water Level (m below MP) 3.82 3.82 3.83	3V method (L) Stability of Field Params Keep purging Keep purging OK to sample	+/- 3% Specific Conductance EC (uS/cm) @25*C 3173 3193 3198	+/- 0.05 pH pH 6.05 6.03	+/- 10% Temp. (°C) 12.13 12.32	+/- 10mV Redox ORP (mV) 45.5 42.3	DO (mg/L) 4.99 4.83 4.76	little bit turbid, r	turbidity, oc no odour. no odour. no odour.		
12:41 12:44 12:47	Cumulative Volume Removed (I) 0.1 0.5	= vol required for Water Level (m below MP) 3.82 3.82 3.83	3V method (L) Stability of Field Params Keep purging Keep purging OK to sample	+/- 3% Specific Conductance EC (uS/cm) @25*C 3173 3193 3198	+/- 0.05 pH pH 6.05 6.03	+/- 10% Temp. (°C) 12.13 12.32	+/- 10mV Redox ORP (mV) 45.5 42.3	DO (mg/L) 4.99 4.83 4.76	little bit turbid, r	turbidity, oc no odour. no odour. no odour.		
12:41 12:44 12:47	Cumulative Volume Removed (I) 0.1 0.5	= vol required for Water Level (m below MP) 3.82 3.82 3.83	3V method (L) Stability of Field Params Keep purging Keep purging OK to sample	+/- 3% Specific Conductance EC (uS/cm) @25*C 3173 3193 3198	+/- 0.05 pH pH 6.05 6.03	+/- 10% Temp. (°C) 12.13 12.32	+/- 10mV Redox ORP (mV) 45.5 42.3	DO (mg/L) 4.99 4.83 4.76	little bit turbid, r	turbidity, oc no odour. no odour. no odour.		
12:41 12:44 12:47	Cumulative Volume Removed (I) 0.1 0.5	= vol required for Water Level (m below MP) 3.82 3.82 3.83	3V method (L) Stability of Field Params Keep purging Keep purging OK to sample	+/- 3% Specific Conductance EC (uS/cm) @25*C 3173 3193 3198	+/- 0.05 pH pH 6.05 6.03	+/- 10% Temp. (°C) 12.13 12.32	+/- 10mV Redox ORP (mV) 45.5 42.3	DO (mg/L) 4.99 4.83 4.76	little bit turbid, r	turbidity, oc no odour. no odour. no odour.		
12:41 12:44 12:47	Cumulative Volume Removed (I) 0.1 0.5	= vol required for Water Level (m below MP) 3.82 3.82 3.83	3V method (L) Stability of Field Params Keep purging Keep purging OK to sample	+/- 3% Specific Conductance EC (uS/cm) @25*C 3173 3193 3198	+/- 0.05 pH pH 6.05 6.03	+/- 10% Temp. (°C) 12.13 12.32	+/- 10mV Redox ORP (mV) 45.5 42.3	DO (mg/L) 4.99 4.83 4.76	little bit turbid, r	turbidity, oc no odour. no odour. no odour.		
12:41 12:44 12:47	Cumulative Volume Removed (I) 0.1 0.5	= vol required for Water Level (m below MP) 3.82 3.82 3.83	3V method (L) Stability of Field Params Keep purging Keep purging OK to sample	+/- 3% Specific Conductance EC (uS/cm) @25*C 3173 3193 3198	+/- 0.05 pH pH 6.05 6.03	+/- 10% Temp. (°C) 12.13 12.32	+/- 10mV Redox ORP (mV) 45.5 42.3	DO (mg/L) 4.99 4.83 4.76	little bit turbid, r	turbidity, oc no odour. no odour. no odour.		
12:41 12:44 12:47	Cumulative Volume Removed (I) 0.1 0.5	= vol required for Water Level (m below MP) 3.82 3.82 3.83	3V method (L) Stability of Field Params Keep purging Keep purging OK to sample	+/- 3% Specific Conductance EC (uS/cm) @25*C 3173 3193 3198	+/- 0.05 pH pH 6.05 6.03	+/- 10% Temp. (°C) 12.13 12.32	+/- 10mV Redox ORP (mV) 45.5 42.3	DO (mg/L) 4.99 4.83 4.76	little bit turbid, r	turbidity, oc no odour. no odour. no odour.		
12:41 12:44 12:47	Cumulative Volume Removed (I) 0.1 0.5	= vol required for Water Level (m below MP) 3.82 3.82 3.83	3V method (L) Stability of Field Params Keep purging Keep purging OK to sample	+/- 3% Specific Conductance EC (uS/cm) @25*C 3173 3193 3198	+/- 0.05 pH pH 6.05 6.03	+/- 10% Temp. (°C) 12.13 12.32	+/- 10mV Redox ORP (mV) 45.5 42.3	DO (mg/L) 4.99 4.83 4.76	little bit turbid, r	turbidity, oc no odour. no odour. no odour.		
12:41 12:44 12:47	Cumulative Volume Removed (I) 0.1 0.5	= vol required for Water Level (m below MP) 3.82 3.82 3.83	3V method (L) Stability of Field Params Keep purging Keep purging OK to sample	+/- 3% Specific Conductance EC (uS/cm) @25*C 3173 3193 3198	+/- 0.05 pH pH 6.05 6.03	+/- 10% Temp. (°C) 12.13 12.32	+/- 10mV Redox ORP (mV) 45.5 42.3	DO (mg/L) 4.99 4.83 4.76	little bit turbid, r	turbidity, oc no odour. no odour. no odour.		
12:41 12:44 12:47	Cumulative Volume Removed (I) 0.1 0.5	= vol required for Water Level (m below MP) 3.82 3.82 3.83	3V method (L) Stability of Field Params Keep purging Keep purging OK to sample	+/- 3% Specific Conductance EC (uS/cm) @25*C 3173 3193 3198	+/- 0.05 pH pH 6.05 6.03	+/- 10% Temp. (°C) 12.13 12.32	+/- 10mV Redox ORP (mV) 45.5 42.3	DO (mg/L) 4.99 4.83 4.76	little bit turbid, r	turbidity, oc no odour. no odour. no odour.		
12:41 12:44 12:47	Cumulative Volume Removed (I) 0.1 0.5	= vol required for Water Level (m below MP) 3.82 3.82 3.83	3V method (L) Stability of Field Params Keep purging Keep purging OK to sample	+/- 3% Specific Conductance EC (uS/cm) @25*C 3173 3193 3198	+/- 0.05 pH pH 6.05 6.03	+/- 10% Temp. (°C) 12.13 12.32	+/- 10mV Redox ORP (mV) 45.5 42.3	DO (mg/L) 4.99 4.83 4.76	little bit turbid, r	turbidity, oc no odour. no odour. no odour.		
12:41 12:44 12:47	Cumulative Volume Removed (I) 0.1 0.5	= vol required for Water Level (m below MP) 3.82 3.82 3.83	3V method (L) Stability of Field Params Keep purging Keep purging OK to sample	+/- 3% Specific Conductance EC (uS/cm) @25*C 3173 3193 3198	+/- 0.05 pH pH 6.05 6.03	+/- 10% Temp. (°C) 12.13 12.32	+/- 10mV Redox ORP (mV) 45.5 42.3	DO (mg/L) 4.99 4.83 4.76	little bit turbid, r	turbidity, oc no odour. no odour. no odour.		
12:41 12:44 12:47	Cumulative Volume Removed (I) 0.1 0.5	= vol required for Water Level (m below MP) 3.82 3.82 3.83	3V method (L) Stability of Field Params Keep purging Keep purging OK to sample	+/- 3% Specific Conductance EC (uS/cm) @25*C 3173 3193 3198	+/- 0.05 pH pH 6.05 6.03	+/- 10% Temp. (°C) 12.13 12.32	+/- 10mV Redox ORP (mV) 45.5 42.3	DO (mg/L) 4.99 4.83 4.76	little bit turbid, r	turbidity, oc no odour. no odour. no odour.		
12:41 12:44 12:47	Cumulative Volume Removed (I) 0.1 0.5	= vol required for Water Level (m below MP) 3.82 3.82 3.83	3V method (L) Stability of Field Params Keep purging Keep purging OK to sample	+/- 3% Specific Conductance EC (uS/cm) @25*C 3173 3193 3198	+/- 0.05 pH pH 6.05 6.03	+/- 10% Temp. (°C) 12.13 12.32	+/- 10mV Redox ORP (mV) 45.5 42.3	DO (mg/L) 4.99 4.83 4.76	little bit turbid, r	turbidity, oc no odour. no odour. no odour.		
12:41 12:44 12:47	Cumulative Volume Removed (I) 0.1 0.5	= vol required for Water Level (m below MP) 3.82 3.82 3.83	3V method (L) Stability of Field Params Keep purging Keep purging OK to sample	+/- 3% Specific Conductance EC (uS/cm) @25*C 3173 3193 3198	+/- 0.05 pH pH 6.05 6.03	+/- 10% Temp. (°C) 12.13 12.32	+/- 10mV Redox ORP (mV) 45.5 42.3	DO (mg/L) 4.99 4.83 4.76	little bit turbid, r	turbidity, oc no odour. no odour. no odour.		
12:41 12:44 12:47	Cumulative Volume Removed (I) 0.1 0.5	= vol required for Water Level (m below MP) 3.82 3.82 3.83	3V method (L) Stability of Field Params Keep purging Keep purging OK to sample	+/- 3% Specific Conductance EC (uS/cm) @25*C 3173 3193 3198	+/- 0.05 pH pH 6.05 6.03	+/- 10% Temp. (°C) 12.13 12.32	+/- 10mV Redox ORP (mV) 45.5 42.3	DO (mg/L) 4.99 4.83 4.76	little bit turbid, r	turbidity, oc no odour. no odour. no odour.		
12:41 12:44 12:47	Cumulative Volume Removed (I) 0.1 0.5	= vol required for Water Level (m below MP) 3.82 3.82 3.83	3V method (L) Stability of Field Params Keep purging Keep purging OK to sample	+/- 3% Specific Conductance EC (uS/cm) @25*C 3173 3193 3198	+/- 0.05 pH pH 6.05 6.03	+/- 10% Temp. (°C) 12.13 12.32	+/- 10mV Redox ORP (mV) 45.5 42.3	DO (mg/L) 4.99 4.83 4.76	little bit turbid, r	turbidity, oc no odour. no odour. no odour.		

Notes: All bore measuremen	its are referenc	ced to the marke		•						,	ventia	
			IS Grou	ndwater	sampli	ng field	I sheet -	- Env ľ	Monitorino	9		
Bore ID No	В	H4	ı	Project Name	Нє	epburn Land	fills	-	Samp	oling Staff	PR	
Project Area:				Client				-	WQ. Met	er Model	YSI	
Date	1/08	3/2024		Project No				-	WQ. Mete	er Serial #	23G103	156
Expe	cted Bore D	etails										
Internal Dia	imeter (mm)			Easting		:	Total I	Depth (m)		Screen	Depth From (m	
Drop Tube already in	bore? (Y/N)			Northing			Water	Level (m)		Scre	en Depth To (m	I
Drop Tube	e Length (m)			Zone			Set Pump ir	nlet at (m)			Set Pump at (m)	ı
	Information									-		
	eld Measure											_
Time of SWL			tal Depth (m)	37.00	Mid-screen	accessible?	Cle	ar	Depth pump	set at (m)	36.00	
Static Water Level (m)			re Diam (mm)		Open Scree				Depth of pump			
Wel	l Purging De	etails			Sampling D	etails			Sar	nple Bott	les Required	
Purge Method	LF	Pump Type	MP	Samp	ling Method	LF	-		Bottle Type	Quantity	Bottle Type	Quantity
Time Pump in	13:30	Pump in' WL	25.75		Time Started	14:30	WL m (start)	25.83				
Time Started	13:36	WL m (start)	25.75	Tir	me Stopped	14:40	WL m (end)	25.83				
Time Stopped		WL m (end)	25.87	·	sample ID?		-					
Volume Removed (I)		-			sample ID?		-					
Discharge Rate (I/m)				Rinsate	sample ID?							
Time of removal	ump Remov		(post-removal)		Bore Der	oth at end (m)						
	ump Setting											
Fill / Discharge used		СРМ		Air/Gas	Pressure (kPa)	65						
Comments					Į.	All times EST						
					cloudy n	no odour, ligh	nt grey					
1		Field Parameters	are considered sta	ble when within th	ne EPA limits for 3	consecutive me	easurements	T	ì			
	0	= vol required for	3V method (L)	+/- 3% Specific	+/- 0.05 pH	+/- 10%	+/- 10mV	+/- 10%				
Time	Cumulative Volume Removed (I)	Water Level (m below MP)	Stability of Field Params	Conductance EC (uS/cm)	рН	Temp.	Redox ORP (mV)	DO (mg/L)			ts (colour, dours, other)	
13:36				@25°C		(0)	ORP (IIIV)	(Hg/L)	start at 45 psi 10		douis, other)	
13:39		25.78							start at 10 psi 10	, ,		
13:42		25.78										
13:45		25.80										
13:48		25.80										
13:51		25.80										
13:54		25.81										
13:57		25.79							increased psi to	65		
14:00		25.79										
14:03		25.79										
14:06		25.79							water level stab	le		
14:09		25.790										
14:12		25.790										
14:15	0.1	25.80	#DIV/0!	4011	5.46	13.70	25.6	4.40	cloudy,no odou	r		
14:18	0.3	25.81	#DIV/0!	4276	5.40	14.50	11.9	2.04				
14:21	0.7	25.83	Keep purging	4278	5.40	15.00	2.0	0.54				
14:24	1.2	25.84	Keep purging	4330	5.42	14.60	-3.5	0.44				
14:27	1.8	25.84	Keep purging	4332	5.42	14.50	-4.2	0.45				
14:30	2.5	25.87	OK to sample	4339	5.42	14.40	-5.5	0.43	sample taken			
			ii									

INSTRUMENTATION INTERMEDIATE VERIFICATION AND CALIBRATION

Orial	ID CALIDRATION	
Model no .	Centre: Lellong	
Parameter:		Ya
(EC, DO, TU, pH, Temperature, Podox)	A 120 - 1 1 1000	

Date of verification			Res	ults			Comments	Staff
/calibration	Expected	Observed	Adjusted	Batch no.	Slope mV	Asy mV		initials
30/7/24	1413	1393	Yes	424461		- 1900 A	Ec	PR
30/7/24	4.01	3.97	Yes	013749			pH4	i
3017/24	7	7.01	yes	013949			pt 7	
1017124	10	9.99	Yes	420557		-diff	PHIC	
017/24	228	252	yes	426086			fedix	
017 124	100	98.3	NO	01			Po	PR
31/7/24	1423	1421	Yes	424461			Ec	PR
3/7/24	4.01	4.13	Yes	013749			PHY	414
317/24	7	7.10	yes	013749			pH7	
31/7/24	228	254	yes	42686	Algeria		Redor	
31/7/24	100	99.8	NO	DE			Do	FR
1/8/24	1413	1406	Yes	424461			EC	PR
1/8/24	4.01	4.02	Yes	013749		110	१ 44	10,000
1/8/24	7	7.10	Yes	013749			рнт	
1/8/24	228	250	yes	42087/82			Redox	- 64.00
1/8/24	100	98.9	NO				Do	PR
111			- Fig.				4	
11.								
1 .1							1 1	1
1 1					The spine	1000	Maria Cara	8
1 1			De la				*	
/ /								
/ /				1				

*If standards are not used to calibrate instrument - explanation required under comments

Water quality measurements where Q = 10 shall meet the following calibration limits

	mater quartey measure	There will be to shake thee	t the following calibration	on times
EC	pH	Turbidity	DO	Temperature
Standard +/- 5%	Standard +/- 0.1	Standard +/- 3%	<+/-2% FS	10.216
+/- 10 µS/cm < 1,000	4 3.9 - 4.1	0 - 10 = 0.10 NTU	(0-20mg/l)	+/-0.2°C (When a temperature
+/- 100 μS/cm > 1,000	7 6.9 - 7.1	0 - 100 = 1.00 NTU	<+/- 0.4 mg/l	stabilised environment
	10 9.9 - 10.1	0 - 1000 = 10.00 NTU	(0-20mg/l)	can be created)

WQ Instruments that require continual calibration from initial values outside the above tolerance ranges using the specified solutions will need to be returned to the manufacturer for assessment or repair.

APPENDIX C - LABORATORY RESULTS

					Field ID	BH1	BH2	BH3	BH4	LP1
					Location Code	BH1	BH2	BH3	BH4	LP1
					Date	01 Aug 2024				
				Lal	Report Number	1124550	1124550	1124550	1124550	1124550
			ANZECC 2000	ANZECC 2000	ANZECC 2000					
	Unit	EQL	FW 95%	Irrigation	Livestock					
EC										
Electrical conductivity *(lab)	uS/cm	10				2,200	3,000	3,300	5,000	670
NA										
Acetic Acid	μg/L	5,000				<5,000	<5,000	<5,000	<5,000	<5,000
Heptanoic Acid	μg/L	5,000				<5,000	<5,000	<5,000	<5,000	<5,000
Isobutyric Acid	μg/L	5,000				<5,000	<5,000	<5,000	<5,000	<5,000
Isocaproic Acid	μg/L	5,000				<5,000	<5,000	<5,000	<5,000	<5,000
Isovaleric Acid	μg/L	5,000				<5,000	<5,000	<5,000	<5,000	<5,000
Valeric Acid	μg/L	5,000				<5,000	<5,000	<5,000	<5,000	<5,000
Volatile Fatty Acids (as Acetic Acid)	ug/L	5,000				<5,000	<5,000	<5,000	<5,000	<5,000
Н										
pH (Lab)	-	0.1				6.3	6.7	6.7	5.9	8.7
Solids										
TDS	mg/L	10			2,000	1,200	1,700	1,900	2,800	890
Alkalinity					, , , , , , , , , , , , , , , , , , , ,				7	
Alkalinity (Carbonate as CaCO3)	mg/L	10				<10	<10	<10	<10	23
/ intaminity (car zeriate de casco)	9, =	10				110	110	110	110	20
Alkalinity (Bicarbonate as CaCO3)	mg/L	20				82	320	230	94	250
Alkalinity (Hydroxide) as CaCO3	mg/L	20				<20	<20	<20	<20	<20
Alkalinity (total) as CaCO3	mg/L	20				82	320	230	94	280
Major lons	<u> </u>						5			
Calcium	mg/L	0.5			1,000	25	83	130	28	33
Chloride	mg/L	1		175	1,000	490	570	630	940	46
Magnesium	mg/L	0.5		170		120	190	180	290	29
Potassium	mg/L	0.5				1.7	1.4	2.1	1.9	26
Sodium	mg/L	0.5		115		150	270	290	360	38
Nitrogen Forms	<u>J.</u>	0.0				.00	2.70		333	- 55
Ammonia as N	mg/L	0.01				0.04	0.02	0.28	0.67	2.9
Nitrate (as N)	mg/L	0.02	7.2			<0.02	<0.02	0.03	<0.02	0.73
Kjeldahl Nitrogen Total	mg/L	0.2	7.2			<0.2	0.5	0.4	0.8	5.5
Nitrogen (Organic)	mg/L	0.2				<0.2	0.48	<0.2	<0.2	2.6
Inorganics	<u>J.</u>	0.2				-012	0.10	-0.12	1012	2.10
COD	mg/L	25				<25	<25	28	52	71
Sulphate	mg/L	5				240	580	690	1,100	30
TOC	mg/L	5				<5	<5	<5	<5	27
Metals	J	 								
Chromium (III+VI)	mg/L	0.001		0.1	1	<0.001	<0.001	<0.001	0.002	<0.001
Iron	mg/L	0.05		0.1	'	68	8.8	37	220	0.37
Manganese	mg/L	0.005	1.9	0.2		6.2	1.4	2.0	5.8	0.053
Herbicides	9, -	0.000	1.7	0.2		0.2	1.7	2.0	J.0	0.000
2,4,5-Trichlorophenoxy-propanoic		 								
acid	ug/L	5,000				<5,000	<5,000	<5,000	<5,000	<5,000
	uy/ L	3,000				\J,UUU	\3,000	\J,000	\3,000	\3,000
Other Putyric Acid	ug/l	E 000				∠E 000				
Butyric Acid Hexanoic Acid	ug/L ug/L	5,000 5,000				<5,000 <5,000	<5,000 <5,000	<5,000 <5,000	<5,000 <5,000	<5,000 <5,000
FICAGIOIC ACIU	uy/L	3,000				<0,000	<0,000	<0,000	<5,000	<0,000

_		
Field ID	BH1	BH2
Location Code	BH1	BH2
Date	01 Aug 2024	01 Aug 2024
n Renort Number	1124550	1124550

				Lat	o Report Number	1124550	1124550
			ANZECC 2000	ANZECC 2000	ANZECC 2000		
	Unit	EQL	FW 95%	Irrigation	Livestock		
EC							
Electrical conductivity *(lab)	uS/cm	10				2,200	3,000
NA							
Acetic Acid	μg/L	5,000				<5,000	<5,000
Heptanoic Acid	μg/L	5,000				<5,000	<5,000
Isobutyric Acid	μg/L	5,000				<5,000	<5,000
Isocaproic Acid	μg/L	5,000				<5,000	<5,000
Isovaleric Acid	µg/L	5,000				<5,000	<5,000
Valeric Acid	μg/L	5,000				<5,000	<5,000
	F-3-						10,000
Volatile Fatty Acids (as Acetic Acid)	ug/L	5,000				<5,000	<5,000
oH		0,000				.0,000	10,000
pH (Lab)	-	0.1				6.3	6.7
Solids		U.1				0.0	0.7
TDS	mg/L	10			2,000	1,200	1,700
·	IIIg/L	10			2,000	1,200	1,700
Alkalinity							
Alkalinity (Carbonate as CaCO3)	mg/L	10				<10	<10
Alkalinity (Bicarbonate as CaCO3)	mg/L	20				82	320
Alkalinity (Hydroxide) as CaCO3	mg/L	20				<20	<20
Alkalinity (total) as CaCO3	mg/L	20				82	320
Major Ions							
Calcium	mg/L	0.5			1,000	25	83
Chloride	mg/L	1		175		490	570
Magnesium	mg/L	0.5				120	190
Potassium	mg/L	0.5				1.7	1.4
Sodium	mg/L	0.5		115		150	270
Nitrogen Forms							
Ammonia as N	mg/L	0.01				0.04	0.02
Nitrate (as N)	mg/L	0.02	7.2			<0.02	<0.02
Kjeldahl Nitrogen Total	mg/L	0.2				<0.2	0.5
Nitrogen (Organic)	mg/L	0.2				<0.2	0.48
norganics							
COD	mg/L	25				<25	<25
Sulphate	mg/L	5				240	580
TOC	mg/L	5				<5	<5
Metals	<i>y</i> -	- 					1
Chromium (III+VI)	mg/L	0.001		0.1	1	<0.001	<0.001
Iron	mg/L	0.05		0.1	'	68	8.8
Manganese	mg/L	0.005	1.9	0.2		6.2	1.4
	mg/L	0.003	1.7	0.2		U.Z	1.4
Herbicides 2,4,5-Trichlorophenoxy-propanoic							
	/1	F 000				F 000	F 000
acid	ug/L	5,000				<5,000	<5,000
Other							
Butyric Acid	ug/L	5,000				<5,000	<5,000
Hexanoic Acid	ug/L	5,000				<5,000	<5,000

Environmental Standards

Australian and New Zealand Environment and Conservation Council, October 2000, ANZECC 2000 FW 95% Australian and New Zealand Environment and Conservation Council, October 2000, ANZECC 2000 Irrigation Australian and New Zealand Environment and Conservation Council, October 2000, ANZECC 2000 Livestock

APPENDIX D - QA QC RESULTS

		Field ID	BH2	DAYLESFORD SPLIT		BH1	BLIND	
		Matrix Type	Water	Water		Water	Water	1
		Date	01 Aug 2024	01 Aug 2024		01 Aug 2024	01 Aug 2024	1
		Lab Report Number	1124550	EM2413118	RPD	1124550	1124550	RPD
			1124000	EIVIZHTOTTO	I I	1124000	1124000	III D
EC	Unit	EQL	1		<u> </u>		T	T
Electrical conductivity *(lab)	uS/cm	1	3,000	2,750	9	2,200	2,200	0
NA								
Acetic Acid	μg/L	5,000	<5,000			<5,000	<5,000	0
Heptanoic Acid	μg/L	5,000	<5,000			<5,000	<5,000	0
Isobutyric Acid	μg/L	5,000	<5,000			<5,000	<5,000	0
Isocaproic Acid	μg/L	5,000	<5,000			<5,000	<5,000	0
Isovaleric Acid	μg/L	5,000	<5,000			<5,000	<5,000	0
Valeric Acid	μg/L	5,000	<5,000			<5,000	<5,000	0
Volatile Fatty Acids (as Acetic Acid)	ug/L	5,000	<5,000	52,000	165	<5,000	<5,000	0
pH	9	0,000	10/000	02,000		40,000	10,000	
pH (Lab)	-	0.01	6.7	6.59	2	6.3	6.1	3
Solids								
TDS	mg/L	10	1,700	2,060	19	1,200	1,100	9
Alkalinity								
Alkalinity (Carbonate as CaCO3)	mg/L	1	<10	<1	0	<10	<10	0
Alkalinity (Bicarbonate as CaCO3)	mg/L	1	320	327	2	82	87	6
Alkalinity (Hydroxide) as CaCO3	mg/L	1	<20	<1	0	<20	<20	0
Alkalinity (total) as CaCO3	mg/L	1	320	327	2	82	87	6
Major Ions	Trig/ L	'	320	327	2	02	07	
Calcium	mg/L	0.5	83	87	5	25	25	0
Chloride	mg/L	1	570	588	3	490	500	2
Magnesium	mg/L	0.5	190	206	8	120	120	0
Potassium	mg/L	0.5	1.4	2	35	1.7	1.7	0
Sodium	mg/L	0.5	270	276	2	150	150	0
Cations Total	meg/L	0.01	270	33.4		130	130	0
Anions Total	meq/L	0.01		34.9				
Ionic Balance	%	0.01		2.21				
Nitrogen Forms	70	0.01		2.21				
Ammonia as N	ma/I	0.01	0.02	0.02	0	0.04	0.04	0
	mg/L				0			
Nitrate (as N)	mg/L	0.01	<0.02	0.01	U	<0.02	<0.02	0
Nitrite (as N)	mg/L	0.01		<0.01				
Nitrite + Nitrate as N	mg/L	0.01	0.5	0.01	100	0.0	0.0	0
Kjeldahl Nitrogen Total	mg/L	0.1	0.5	<0.1	133	<0.2	<0.2	0
Nitrogen (Organic)	mg/L	0.2	0.48			<0.2	<0.2	0
Inorganics		10	25	10		0.5	0.5	
COD	mg/L	10	<25	<10	0	<25	<25	0
Sulphate	mg/L	5	580	564	3	240	250	4
TOC	mg/L	1	<5	38	153	<5	15	100
Metals								
Chromium (III+VI)	mg/L	0.001	<0.001	<0.001	0	<0.001	<0.001	0
Iron	mg/L	0.05	8.8	2.88	101	68	70	3
Manganese	mg/L	0.005	1.4			6.2	6.4	3
Zinc (filtered)	mg/L	0.005		0.072				
Herbicides								
2,4,5-Trichlorophenoxy-propanoic								
acid	ug/L	5,000	<5,000			<5,000	<5,000	0
Other								
Butyric Acid	ug/L	5,000	<5,000			<5,000	<5,000	0
Hexanoic Acid	ug/L	5,000	<5,000			<5,000	<5,000	0

^{*}RPDs have only been considered where a concentration is greater than 1 times the EQL.

**Elevated RPDs are highlighted as per QAQC Profile settings (Acceptable RPDs for each EQL multiplier range are: 81 (1 - 10 x EQL); 50 (10 - 30 x EQL); 30 (> 30 x EQL))

***Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the row header relate to those used in the primary laboratory

		Matrix Type	Water
		Date	01 Aug 2024
		Lab Report Number	1124550
	Unit	EQL	
EC			
Electrical conductivity *(lab)	uS/cm	10	<10
NA			
Acetic Acid	μg/L	5,000	<5,000
Heptanoic Acid	μg/L	5,000	<5,000
Isobutyric Acid	μg/L	5,000	<5,000
Isocaproic Acid	μg/L	5,000	<5,000
Isovaleric Acid	μg/L	5,000	<5,000
Valeric Acid	μg/L	5,000	<5,000
	, -		
Volatile Fatty Acids (as Acetic Acid)	ug/L	5,000	<5,000
рН			
pH (Lab)	-	0.1	5.3
Solids			
TDS	mg/L	10	<10
Alkalinity	<u> </u>		
Alkalinity (Carbonate as CaCO3)	mg/L	10	<10
	<u>J.</u>		
Alkalinity (Bicarbonate as CaCO3)	mg/L	20	<20
Alkalinity (Hydroxide) as CaCO3	mg/L	20	<20
Alkalinity (total) as CaCO3	mg/L	20	<20
Major Ions	g/ =		120
Calcium	mg/L	0.5	<0.5
Chloride	mg/L	1	<1
Magnesium	mg/L	0.5	<0.5
Potassium	mg/L	0.5	<0.5
Sodium	mg/L	0.5	<0.5
Nitrogen Forms	mg/ L	0.0	10.0
Ammonia as N	mg/L	0.01	<0.01
Nitrate (as N)	mg/L	0.02	<0.02
Kjeldahl Nitrogen Total	mg/L	0.2	<0.2
Nitrogen (Organic)	mg/L	0.2	<0.2
Inorganics	Hig/ L	U.Z	\0.Z
COD	mg/L	25	30
Sulphate	mg/L	5	<5
TOC	mg/L	5	<5 <5
Metals	HIG/ L	<u> </u>	<u> </u>
Chromium (III+VI)	mg/L	0.001	<0.001
Iron	mg/L	0.001	0.58
		0.005	0.053
Manganese Harbisidas	mg/L	0.005	0.003
Herbicides 2.4.5. Trichlerenhanewy prepancie		 	
2,4,5-Trichlorophenoxy-propanoic	/1	F 000	-F 000
acid	ug/L	5,000	<5,000
Other Put wie Asid	11	F 000	F 000
Butyric Acid	ug/L	5,000	<5,000
Hexanoic Acid	ug/L	5,000	<5,000

APPENDIX E - LABORATORY REPORTS

CHAIN OF CUSTODY

6 Monterey Road, Dandenong South, Vic 3175

Client:			Ventia			Job	Ref:				sford La			
Contact Ve		Tarin (Cummings 04	28091782		TES	TS RE	QUIR	ED AS	S PEF	QUO	TE#	230926VE	ENVP
Contact Eur			Suduweli 03 3											
Email Resul		Ping.Yao@ve	igs@ventia.co entia.com s@vventia.co											
		Pandula.R@v Robert.callan	<u>ventia.com</u> der@ventia.c	om					_					
Sample		chase Order Nur	No of Containers	'9689 Date Sampled	Time sampled	표	S	00	TEMP	ORP	SWL			
ID BH1		water bore	Containers	1/8/24	177	5.60	2041	4.51	14.21	52.7	17.43			
BH2	-	water bore	4	1/8/24	1123	1772			12.72	43.8	7,72			
BH3		water bore	4	1/8/24	1251	+	3198	4.69	12.46	40.3	3.83			
BH4	-	water bore	4	1/8/24	1430	5.42	4339	0.43	14.4	-5.5	25.87			_
LP1	Leacha	te Pond	4	118/24	15:03	6.68	706	7136	12.98	61.1	M -			
RINSATE	Rinsate	Blank	120 4	1/8/24	1200									
Blind		lind	4	118124	-									
l .	Special actions:	Please email Inv	voices to <u>Tani</u>	a.Dahlin@vei	ntia.com, <u>l</u>	ucy.Ed	wards@	ventia.	com					T ion 6
Relinquis		Company: Ventia	1/8/		Time:			eived By		Ewof	mpany:		2/8/24	Time:
				elyet regarding sam	nling procedu	ne and doe		LAB USE		- 1	ple condition	ns:	Samples receive	ed undamaged [Yes/No

This form is for recording of sample data after prior consultation with an analyst regarding sampling procedures and does not over-ride pricing agreements, OHS requirements and our terms and conditions.

As an Occupational Health and Safety consideration, it is a requirement of Ecowise Environmental (Victoria), that all samples réceived be undamaged and prior advice given in writing of any potential health risks.

Samples transported at appropriate temperatures [Yes/No]

Samples received within recommended holding times: [Yes/No]

1ce 4.2°C

1124550 . H.C 2/08/24.

CHAIN OF CUSTODY

2-4 Westall Rd, Springvale VIC 3171

Client:	nt: Ventia Job Ref: Daylesford Landfill CoC 1 of 1													
Contact Ventia:	Tarin (Cummings 0	42809178	2				Plea	se for	ward to	o ALS	for ana	ysis	
Contact ALS:	Graeme	Jablonskas	03 8549 9	609										
Email:	Tarin.cummings@ve	ntia.com												
	Ping.Yao@ventia.com												1	
	Lucy.edwards@vven												1	
	Pandula.R@ventia.co													
	Robert.callander@ve		240			-								
	Lab Quote #: EM2					-								
	Purchase Order Nun	nber: 47009	79690						<u>a</u>		1			
Sample ID	Sample Description	No of Containers	Date Sampled	Time sampled	Matrix	표	<u>ы</u>	00	TEMP	ORP	SWL			
Daylesford SPLIT	Groundwater	4	1/8/24	1/23		6.18	2962	4.67	12,42	43.8	7.72			
	*												-	
									-					
					-									
						-						_		
Spec Instruction		ices to <u>Tani</u>	a.Dahlin@	ventia.co	m, Lucy	.Edwar	ds@ver	ntia.com					-	
Relinquished E	By: Company:	D	ate:		Time:		Rece	eived By	:	Co	mpany:		Date:	Time:
	Ventia						a							
Relinquished E	By: Company:	D	ate:		Time:		Rece	eived By		Co	mpany:		Date:	Time:
		Alan ariah an ariah	and we could be a		duna a d	dese not	1 (40	USE ON!		Onemala		Onwell-		damaged (Vector)
over-ride pricing agreement As an Occupational Health	f sample data after prior consulta is, OHS requirements and our ter and Safety consideration, it is a ro d prior advice given in writing of a	ms and conditions equirement of Eco	s. owise Environn				LAB	USE ONL		Sample cor	Samples	Samples within recomn	adequately pended hold	damaged [Yes/No] preserved [Yes/No] ng times: [Yes/No] nperature [Yes/No]

ABN: 47 009 120 549

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Geelong Melbourne 6 Monterey Road 19/8 Lewalan Street 179 Magowar Road Unit 1,2 Dacre Street Dandenong South Grovedale VIC 3175 VIC 3216 +61 3 8564 5000 +61 3 8564 5000 NATA# 1261 NATA# 1261 Site# 1254 Site# 25403

Girraween NSW 2145 +61 2 9900 8400 NATA# 1261 Site# 18217

Mitchell ACT 2911 +61 2 6113 8091 NATA# 1261 Site# 25466

1/21 Smallwood Place 1/2 Frost Drive Mayfield West Murarrie QLD 4172 NSW 2304 T: +61 7 3902 4600 +61 2 4968 8448 NATA# 1261 NATA# 1261 Site# 20794 & 2780 Site# 25079

Newcastle

ABN: 91 05 0159 898 Perth 46-48 Ranksia Road Welshpool WA 6106

+61 8 6253 4444

NATA# 2377

Site# 2370

Perth ProMicro 46-48 Banksia Road Welshpool WA 6106 +61 8 6253 4444 NATA# 2561 Site# 2554

Penrose, Auckland 1061 +64 9 526 4551 IANZ# 1327

NZBN: 9429046024954

35 O'Rorke Road Unit C1/4 Pacific Rise 43 Detroit Drive Mount Wellington, Auckland 1061 +64 9 525 0568 IANZ# 1308

Tauranga 1277 Cameron Road Rolleston, Gate Pa, Christchurch 7675 Tauranga 3112 +64 3 343 5201 +64 9 525 0568 IANZ# 1290 IANZ# 1402

Sample Receipt Advice

Company name: Contact name:

Ventia Utility Services P/L (Grovedale)

Tarin Cummings
DAYLESFORD LANDFILL Project name: DAYLESFORD LANDFILL Project ID: 5 Day Aug 2, 2024 11:00 AM 1124550 Turnaround time: Date/Time received **Eurofins reference**

Sample Information

A detailed list of analytes logged into our LIMS, is included in the attached summary table.

All samples have been received as described on the above COC.

COC has been completed correctly.

Attempt to chill was evident.

Appropriately preserved sample containers have been used.

All samples were received in good condition.

Samples have been provided with adequate time to commence analysis in accordance with the relevant

Appropriate sample containers have been used.

Sample containers for volatile analysis received with zero headspace.

Split sample sent to requested external lab.

Some samples have been subcontracted.

N/A Custody Seals intact (if used).

Notes

Contact

If you have any questions with respect to these samples, please contact your Analytical Services Manager:

Savini Suduweli on phone: +61 3 8564 5051 or by email: SaviniSuduweli@eurofins.com

Results will be delivered electronically via email to Tarin Cummings - Tarin.Cummings@ventia.com.au.

Note: A copy of these results will also be delivered to the general Ventia Utility Services P/L (Grovedale) email address.

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne Geelong Sydney Canberra 6 Monterey Road 19/8 Lewalan Street 179 Magowar Road Unit 1,2 Dacre Street 1/21 Smallwood Place 1/2 Frost Drive Dandenong South Grovedale Girraween Mitchell VIC 3175 VIC 3216 NSW 2145 ACT 2911 +61 3 8564 5000 +61 2 9900 8400 +61 3 8564 5000 +61 2 6113 8091 NATA# 1261 NATA# 1261 NATA# 1261 NATA# 1261 Site# 25403 Site# 1254 Site# 18217 Site# 25466

Brisbane Newcastle Murarrie Mayfield West QLD 4172 NSW 2304 T: +61 7 3902 4600 +61 2 4968 8448 NATA# 1261 NATA# 1261 Site# 20794 & 2780 Site# 25079

Perth 46-48 Banksia Road Welshpool WA 6106 +61 8 6253 4444 NATA# 2377 Site# 2370

ABN: 47 009 120 549

Perth ProMicro

+61 8 6253 4444

Welshpool

WA 6106

NATA# 2561

Site# 2554

46-48 Banksia Road

Auckland 35 O'Rorke Road Penrose, Auckland 1061 +64 9 526 4551 IANZ# 1327

NZBN: 9429046024954

Auckland (Focus) Unit C1/4 Pacific Rise. Mount Wellington, Auckland 1061 +64 9 525 0568 IANZ# 1308

Christchurch Tauranga 43 Detroit Drive Rolleston, Christchurch 7675 Tauranga 3112 +64 3 343 5201 IANZ# 1290

1277 Cameron Road. Gate Pa, +64 9 525 0568 IANZ# 1402

Address

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Company Name: Ventia Utility Services P/L (Grovedale)

27 Essington St Grovedale

VIC 3216

Project Name: Project ID:

DAYLESFORD LANDFILL DAYLESFORD LANDFILL

Order No.: 4700979689 Report #: Phone:

ABN: 91 05 0159 898

1124550 03 5247 3710

Fax:

Aug 2, 2024 11:00 AM Received: Aug 9, 2024 Due: **Priority:**

5 Day Contact Name: Tarin Cummings

Eurofins Analytical Services Manager: Savini Suduweli

	Sample Detail Melbourne Laboratory - NATA # 1261 Site # 1254					Chemical Oxygen Demand (COD)	Chromium	Conductivity (at 25 °C)	Iron	Manganese	Nitrate (as N)	pH (at 25 °C)	Total Organic Carbon	Organic Nitrogen Set (as N)	Eurofins Suite B11E: Cl/SO4/Alkalinity	Eurofins Suite B11C: Na/K/Ca/Mg	Total Dissolved Solids Dried at 180 °C ± 2 °C	Volatile Fatty Acids (VFA) by GC-MS
Melb	ourne Laborato	ory - NATA # 12	.61 Site # 12	54		Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х	Х	Х	Х
Exte	rnal Laboratory	1			1													
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID													
1	BH1	Aug 01, 2024	2:05PM	Water	M24-Au0006634	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
2	BH2	Aug 01, 2024	11:23AM	Water	M24-Au0006635	Х	Х	Х	Х	Х	Χ	Х	Х	Х	Х	Х	Χ	Х
3	внз	Aug 01, 2024	12:51PM	Water	M24-Au0006636	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
4	BH4	Aug 01, 2024	2:30PM	Water	M24-Au0006637	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
5					M24-Au0006638	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х	Х	Х	Х
6	RINSATE Aug 01, 2024 12:00PM Water M24-Au000663				M24-Au0006639	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х	Х	Х	Х
7	BLIND Aug 01, 2024 Water M24-Au000664				M24-Au0006640	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Test	Counts					7	7	7	7	7	7	7	7	7	7	7	7	7

Ventia Utility Services P/L (Grovedale) 27 Essington St Grovedale VIC 3216

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention: Tarin Cummings

Report 1124550-W

Project name DAYLESFORD LANDFILL
Project ID DAYLESFORD LANDFILL

Received Date Aug 02, 2024

Client Sample ID			BH1	BH2	ВН3	BH4
Sample Matrix			Water	Water	Water	Water
Eurofins Sample No.			M24- Au0006634	M24- Au0006635	M24- Au0006636	M24- Au0006637
Date Sampled			Aug 01, 2024	Aug 01, 2024	Aug 01, 2024	Aug 01, 2024
Test/Reference	LOR	Unit	Aug 01, 2024	Aug 01, 2024	Aug 01, 2024	Aug 01, 2024
	LOR	Unit				
Volatile Fatty Acids (VFA) by GC-MS			-			+ -
Acetic Acid	5	mg/L	< 5	< 5	< 5	< 5
Propionic acid	5	mg/L	< 5	< 5	< 5	< 5
Isobutyric acid	5	mg/L	< 5	< 5	< 5	< 5
Butyric acid	5	mg/L	< 5	< 5	< 5	< 5
Isovaleric acid	5	mg/L	< 5	< 5	< 5	< 5
Valeric acid	5	mg/L	< 5	< 5	< 5	< 5
4-Methylvaleric acid	5	mg/L	< 5	< 5	< 5	< 5
Hexanoic acid	5	mg/L	< 5	< 5	< 5	< 5
Heptanoic acid	5	mg/L	< 5	< 5	< 5	< 5
Total VFA as Acetic Acid Equivalents	5	mg/L	< 5	< 5	< 5	< 5
Ammonia (as N)	0.01	mg/L	0.04	0.02	0.28	0.67
Chemical Oxygen Demand (COD)	25	mg/L	< 25	< 25	28	52
Chloride	1	mg/L	490	570	630	940
Conductivity (at 25 °C)	10	uS/cm	2200	3000	3300	5000
Nitrate (as N)	0.02	mg/L	< 0.02	< 0.02	0.03	< 0.02
Organic Nitrogen (as N)*	0.2	mg/L	< 0.2	0.48	< 0.2	< 0.2
pH (at 25 °C)	0.1	pH Units	6.3	6.7	6.7	5.9
Sulphate (as SO4)	5	mg/L	240	580	690	1100
Total Dissolved Solids Dried at 180 °C ± 2 °C	10	mg/L	1200	1700	1900	2800
Total Kjeldahl Nitrogen (as N)	0.2	mg/L	< 0.2	0.5	0.4	0.8
Total Organic Carbon	5	mg/L	< 5	< 5	< 5	< 5
Alkalinity (speciated)						
Bicarbonate Alkalinity (as CaCO3)	20	mg/L	82	320	230	94
Carbonate Alkalinity (as CaCO3)	10	mg/L	< 10	< 10	< 10	< 10
Hydroxide Alkalinity (as CaCO3)	20	mg/L	< 20	< 20	< 20	< 20
Total Alkalinity (as CaCO3)	20	mg/L	82	320	230	94
Heavy Metals						
Chromium	0.001	mg/L	< 0.001	< 0.001	< 0.001	0.002
Iron	0.05	mg/L	68	8.8	37	220
Manganese	0.005	mg/L	6.2	1.4	2.0	5.8

Client Sample ID			BH1	BH2	внз	BH4
Sample Matrix			Water	Water	Water	Water
Eurofins Sample No.			M24- Au0006634	M24- Au0006635	M24- Au0006636	M24- Au0006637
Date Sampled			Aug 01, 2024	Aug 01, 2024	Aug 01, 2024	Aug 01, 2024
Test/Reference	LOR	Unit				
Alkali Metals	·					
Calcium	0.5	mg/L	25	83	130	28
Magnesium	0.5	mg/L	120	190	180	290
Potassium	0.5	mg/L	1.7	1.4	2.1	1.9
Sodium	0.5	mg/L	150	270	290	360

Client Sample ID			LP1	RINSATE	BLIND
Sample Matrix			Water	Water	Water
Eurofins Sample No.			M24- Au0006638	M24- Au0006639	M24- Au0006640
Date Sampled			Aug 01, 2024	Aug 01, 2024	Aug 01, 2024
Test/Reference	LOR	Unit	71.09 01, 2021	71.09 01, 2021	7.009 01, 2021
Volatile Fatty Acids (VFA) by GC-MS	LOIN	Onit			
Acetic Acid	5	mg/L	< 5	< 5	< 5
Propionic acid	5	mg/L	< 5	< 5	< 5
Isobutyric acid	5	mg/L	< 5	< 5	< 5
Butyric acid	5	mg/L	< 5	< 5	< 5
Isovaleric acid	5	mg/L	< 5	< 5	< 5
Valeric acid	5	mg/L	< 5	< 5	< 5
4-Methylvaleric acid	5	mg/L	< 5	< 5	< 5
Hexanoic acid	5	mg/L	< 5	< 5	< 5
Heptanoic acid	5	mg/L	< 5	< 5	< 5
Total VFA as Acetic Acid Equivalents	5	mg/L	< 5	< 5	< 5
Total VIVI de Nocile Noia Equivalente		IIIg/L		10	
Ammonia (as N)	0.01	mg/L	2.9	< 0.01	0.04
Chemical Oxygen Demand (COD)	25	mg/L	71	30	< 25
Chloride	1	mg/L	46	< 1	500
Conductivity (at 25 °C)	10	uS/cm	670	< 10	2200
Nitrate (as N)	0.02	mg/L	0.73	< 0.02	< 0.02
Organic Nitrogen (as N)*	0.2	mg/L	2.6	< 0.2	< 0.2
pH (at 25 °C)	0.1	pH Units	8.7	5.3	6.1
Sulphate (as SO4)	5	mg/L	30	< 5	250
Total Dissolved Solids Dried at 180 °C ± 2 °C	10	mg/L	890	< 10	1100
Total Kjeldahl Nitrogen (as N)	0.2	mg/L	5.5	< 0.2	< 0.2
Total Organic Carbon	5	mg/L	27	< 5	15
Alkalinity (speciated)					
Bicarbonate Alkalinity (as CaCO3)	20	mg/L	250	< 20	87
Carbonate Alkalinity (as CaCO3)	10	mg/L	23	< 10	< 10
Hydroxide Alkalinity (as CaCO3)	20	mg/L	< 20	< 20	< 20
Total Alkalinity (as CaCO3)	20	mg/L	280	< 20	87
Heavy Metals					
Chromium	0.001	mg/L	< 0.001	< 0.001	< 0.001
Iron	0.05	mg/L	0.37	0.58	70
Manganese	0.005	mg/L	0.053	0.053	6.4
Alkali Metals					
Calcium	0.5	mg/L	33	< 0.5	25
Magnesium	0.5	mg/L	29	< 0.5	120
Potassium	0.5	mg/L	26	< 0.5	1.7
Sodium	0.5	mg/L	38	< 0.5	150

Report Number: 1124550-W

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Volatile Fatty Acids (VFA) by GC-MS	Melbourne	Aug 05, 2024	28 Day
- Method: LTM-ORG-2360 Determination of Volatile Fatty Acids in Water by GC-MS			
Chemical Oxygen Demand (COD)	Melbourne	Aug 05, 2024	28 Days
- Method: LTM-INO-4220 Determination of COD in Water			
Conductivity (at 25 °C)	Melbourne	Aug 05, 2024	28 Days
- Method: LTM-INO-4030 Conductivity			
Nitrate (as N)	Melbourne	Aug 05, 2024	28 Days
- Method: LTM-INO-4450 Determination of Nitrogen Species by Discrete Analyser			
pH (at 25 °C)	Melbourne	Aug 05, 2024	6 Hours
- Method: LTM-GEN-7090 pH in water by ISE			
Total Organic Carbon	Melbourne	Aug 05, 2024	28 Days
- Method: LTM-INO-4060 Total Organic Carbon in water and soil			
Heavy Metals	Melbourne	Aug 05, 2024	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Eurofins Suite B11C: Na/K/Ca/Mg	Melbourne	Aug 05, 2024	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Ammonia (as N)	Melbourne	Aug 05, 2024	28 Days
- Method: LTM-INO-4450 Determination of Nitrogen Species by Discrete Analyser			
Organic Nitrogen (as N)*	Melbourne	Aug 02, 2024	7 Days
- Method: APHA 4500 Organic Nitrogen (N)			
Total Kjeldahl Nitrogen (as N)	Melbourne	Aug 05, 2024	28 Days
- Method: APHA 4500-Norg B,D Total Kjeldahl Nitrogen by FIA			
Eurofins Suite B11E: CI/SO4/Alkalinity			
Chloride	Melbourne	Aug 05, 2024	28 Days
- Method: LTM-INO-4090 Chloride by Discrete Analyser			
Sulphate (as SO4)	Melbourne	Aug 05, 2024	28 Days
- Method: LTM-INO-4110 Sulfate by Discrete Analyser			
Alkalinity (speciated)	Melbourne	Aug 05, 2024	14 Days
- Method: LTM-INO-4250 Alkalinity by Electrometric Titration			
Total Dissolved Solids Dried at 180 °C ± 2 °C	Melbourne	Aug 05, 2024	28 Days
- Method: LTM-INO-4170 Total Dissolved Solids in Water			

Eurofins Environment Testing Australia Pty Ltd

Site# 25403

ABN: 50 005 085 521

Melbourne Geelong Sydney Canberra 6 Monterey Road 19/8 Lewalan Street 179 Magowar Road Unit 1.2 Dacre Street 1/21 Smallwood Place 1/2 Frost Drive Dandenong South Grovedale Girraween Mitchell VIC 3175 VIC 3216 NSW 2145 ACT 2911 +61 3 8564 5000 +61 2 9900 8400 +61 3 8564 5000 +61 2 6113 8091 NATA# 1261 NATA# 1261 NATA# 1261 NATA# 1261

Site# 18217

Site# 25466

Brisbane Murarrie Mayfield West QLD 4172 NSW 2304 T: +61 7 3902 4600 +61 2 4968 8448 NATA# 1261 NATA# 1261 Site# 20794 & 2780 Site# 25079

Perth Newcastle 46-48 Banksia Road Welshpool WA 6106 +61 8 6253 4444 NATA# 2377 Site# 2370

ABN: 91 05 0159 898

ABN: 47 009 120 549 Perth ProMicro 46-48 Banksia Road Welshpool WA 6106 +61 8 6253 4444

NATA# 2561

Site# 2554

Auckland 35 O'Rorke Road Penrose, Auckland 1061 +64 9 526 4551 IANZ# 1327

NZBN: 9429046024954

Auckland (Focus) Unit C1/4 Pacific Rise. Mount Wellington, Auckland 1061 +64 9 525 0568 IANZ# 1308

Christchurch Tauranga 43 Detroit Drive Rolleston, Christchurch 7675 Tauranga 3112 +64 3 343 5201 IANZ# 1290

1277 Cameron Road. Gate Pa, +64 9 525 0568 IANZ# 1402

Address

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Company Name: Ventia Utility Services P/L (Grovedale)

27 Essington St Grovedale

Site# 1254

VIC 3216

Project Name: Project ID:

DAYLESFORD LANDFILL DAYLESFORD LANDFILL

Order No.: 4700979689 Report #: 1124550

Phone: Fax:

03 5247 3710

Received: Aug 2, 2024 11:00 AM Aug 9, 2024 Due: **Priority:** 5 Day

Contact Name: Tarin Cummings

Eurofins Analytical Services Manager: Savini Suduweli

	Sample Detail Melbourne Laboratory - NATA # 1261 Site # 1254 External Laboratory					Chemical Oxygen Demand (COD)	Chromium	Conductivity (at 25 °C)	Iron	Manganese	Nitrate (as N)	pH (at 25 °C)	Total Organic Carbon	Organic Nitrogen Set (as N)	Eurofins Suite B11E: CI/SO4/Alkalinity	Eurofins Suite B11C: Na/K/Ca/Mg	Total Dissolved Solids Dried at 180 °C ± 2 °C	Volatile Fatty Acids (VFA) by GC-MS
Melb	ourne Laborato	ory - NATA # 12	261 Site # 12	54		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Exte	rnal Laboratory		1	T	1													
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID													
1	BH1	Aug 01, 2024	2:05PM	Water	M24-Au0006634	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
2	BH2	Aug 01, 2024	11:23AM	Water	M24-Au0006635	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х	Х	Х	Х
3	BH3	Aug 01, 2024	12:51PM	Water	M24-Au0006636	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Χ	Х	Х	Х
4	BH4	Aug 01, 2024	2:30PM	Water	M24-Au0006637	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Χ	Х	Χ	Х
5	LP1	Aug 01, 2024	3:03PM	Water	M24-Au0006638	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Χ	Х	Х	X
6	RINSATE	Aug 01, 2024	12:00PM	Water	M24-Au0006639	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Χ	Х	Х	Х
7	BLIND	Aug 01, 2024		Water	M24-Au0006640	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Test	Counts					7	7	7	7	7	7	7	7	7	7	7	7	7

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follow guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013. They are included in this QC report where applicable. Additional QC data may be available on request
- 2. Unless otherwise stated, all soil/sediment/solid results are reported on a dry weight basis.
- 3. Unless otherwise stated, all biota/food results are reported on a wet weight basis on the edible portion.
- 4. For CEC results where the sample's origin is unknown or environmentally contaminated, the results should be used advisedly.
- Actual LORs are matrix dependent. Quoted LORs may be raised where sample extracts are diluted due to interferences
- Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds where annotated.
- 7. SVOC analysis on waters is performed on homogenised, unfiltered samples unless noted otherwise.
- 8. Samples were analysed on an 'as received' basis.
- 9. Information identified in this report with blue colour indicates data provided by customers that may have an impact on the results.
- 10. This report replaces any interim results previously issued.

Holding Times

Please refer to the 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours before sample receipt deadlines as stated on the SRA

If the Laboratory did not receive the information in the required timeframe, and despite any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the sampling date: therefore, compliance with these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether, the holding time is seven days; however, for all other VOCs, such as BTEX or C6-10 TRH, the holding time is 14 days

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ppm: parts per million μg/L: micrograms per litre ppb: parts per billion %: Percentage

org/100 mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100 mL: Most Probable Number of organisms per 100 millilitres

Colour: Pt-Co Units (CU) CFU: Colony Forming Unit

Terms

APHA American Public Health Association CEC Cation Exchange Capacity COC Chain of Custody

CP Client Parent - QC was performed on samples pertaining to this report CRM Certified Reference Material (ISO17034) - reported as percent recovery.

Dry Where moisture has been determined on a solid sample, the result is expressed on a dry weight basis

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

LOR Limit of Reporting

LCS Laboratory Control Sample - reported as percent recovery.

Method Blank In the case of solid samples, these are performed on laboratory-certified clean sands and in the case of water samples, these are performed on de-ionised water NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC represents the sequence or batch that client samples were analysed within.

RPD Relative Percent Difference between two Duplicate pieces of analysis SPIKE Addition of the analyte to the sample and reported as percentage recovery

SRA Sample Receipt Advice

The addition of a similar compound to the analyte target is reported as percentage recovery. See below for acceptance criteria Surr - Surrogate

Tributyltin oxide (bis-tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment; however, free tributyltin was measured, and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits. TRTO

TCI P Toxicity Characteristic Leaching Procedure TEQ Toxic Equivalency Quotient or Total Equivalence

QSM US Department of Defense Quality Systems Manual Version 6.0

US EPA United States Environmental Protection Agency

WA DWER Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should only be used as a guide and may be different when site-specific Sampling Analysis and Quality Plan (SAQP) have been implemented.

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is ≤30%; however, the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50% Results >20 times the LOR: RPD must lie between 0-30%

NOTE: pH duplicates are reported as a range, not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS. SVOCs recoveries 20 - 150%, VOC recoveries 50 - 150%

PFAS field samples containing surrogate recoveries above the QC limit designated in QSM 6.0, where no positive PFAS results have been reported or reviewed, and no data was affected.

QC Data General Comments

- 1. Where a result is reported as less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown are not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery, the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results, a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data; thus, it is possible to have two sets of data

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Chloride	mg/L	< 1	1	Pass	
Conductivity (at 25 °C)	uS/cm	< 10	10	Pass	
Nitrate (as N)	mg/L	< 0.02	0.02	Pass	
Total Kjeldahl Nitrogen (as N)	mg/L	< 0.2	0.2	Pass	
Total Organic Carbon	mg/L	< 5	5	Pass	
Method Blank					
Alkalinity (speciated)					
Bicarbonate Alkalinity (as CaCO3)	mg/L	< 20	20	Pass	
Carbonate Alkalinity (as CaCO3)	mg/L	< 10	10	Pass	
Hydroxide Alkalinity (as CaCO3)	mg/L	< 20	20	Pass	
Total Alkalinity (as CaCO3)	mg/L	< 20	20	Pass	
Method Blank					
Heavy Metals					
Chromium	mg/L	< 0.001	0.001	Pass	
Method Blank					
Alkali Metals					
Calcium	mg/L	< 0.5	0.5	Pass	
Magnesium	mg/L	< 0.5	0.5	Pass	
Potassium	mg/L	< 0.5	0.5	Pass	
Sodium	mg/L	< 0.5	0.5	Pass	
Method Blank	1 3				
Total Dissolved Solids Dried at 180 °C ± 2 °C	mg/L	< 10	10	Pass	
Method Blank	1 3				
Volatile Fatty Acids (VFA) by GC-MS					
Acetic Acid	mg/L	< 5	5	Pass	
Propionic acid	mg/L	< 5	5	Pass	
Isobutyric acid	mg/L	< 5	5	Pass	
Butyric acid	mg/L	< 5	5	Pass	
Isovaleric acid	mg/L	< 5	5	Pass	
Valeric acid	mg/L	< 5	5	Pass	
4-Methylvaleric acid	mg/L	< 5	5	Pass	
Hexanoic acid	mg/L	< 5	5	Pass	
Heptanoic acid	mg/L	< 5	5	Pass	
Total VFA as Acetic Acid Equivalents	mg/L	< 5	5	Pass	
Method Blank	,g, <u>_</u>	10			
Ammonia (as N)	mg/L	< 0.01	0.01	Pass	
Sulphate (as SO4)	mg/L	< 5	5	Pass	
Method Blank	,g, <u>_</u>	10			
Chemical Oxygen Demand (COD)	mg/L	< 25	25	Pass	
Sulphate (as SO4)	mg/L	< 5	5	Pass	
Method Blank	ı mg/L			1 455	
Heavy Metals					
Iron	mg/L	< 0.05	0.05	Pass	
Manganese	mg/L	< 0.005	0.005	Pass	
Method Blank	IIIg/L		1 0.003	1 1 433	
Ammonia (as N)	mg/L	< 0.01	0.01	Pass	
LCS - % Recovery	IIIg/L	\ \ 0.01	1 0.01	1 033	
Chloride	%	73	70-130	Pass	
Conductivity (at 25 °C)	%	107	70-130	Pass	
	%	98	70-130	Pass	
Total Kjeldahl Nitrogen (as N) Total Organic Carbon		1			
Total Organic Carbon	%	106	70-130	Pass	

Test	t		Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
LCS - % Recovery								
Alkalinity (speciated)								
Carbonate Alkalinity (as CaCO3)			%	94		70-130	Pass	
Total Alkalinity (as CaCO3)			%	101		70-130	Pass	
LCS - % Recovery				<u>, </u>				
Heavy Metals								
Chromium			%	96		80-120	Pass	
Iron			%	100		80-120	Pass	
Manganese			%	97		80-120	Pass	
LCS - % Recovery								
Alkali Metals								
Calcium			%	94		80-120	Pass	
Magnesium			%	89		80-120	Pass	
Potassium			%	90		80-120	Pass	
Sodium			%	93		80-120	Pass	
LCS - % Recovery								
Total Dissolved Solids Dried at 18	80 °C ± 2 °C		%	94		70-130	Pass	
LCS - % Recovery								
Volatile Fatty Acids (VFA) by GC	-MS							
Acetic Acid			%	125		70-130	Pass	
Propionic acid			%	105		70-130	Pass	
Isobutyric acid			%	94		70-130	Pass	
Butyric acid			%	105		70-130	Pass	
Isovaleric acid			%	93		70-130	Pass	
Valeric acid			%	81		70-130	Pass	
4-Methylvaleric acid			%	100		70-130	Pass	
Hexanoic acid			%	99		70-130	Pass	
Heptanoic acid			%	113		70-130	Pass	
Total VFA as Acetic Acid Equivale	ents		%	100		70-130	Pass	
LCS - % Recovery								
Chemical Oxygen Demand (COD)		%	105		70-130	Pass	
Sulphate (as SO4)	1		%	101		70-130	Pass	
LCS - % Recovery								
Ammonia (as N)			%	92		70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery								
70 110001019				Result 1				
Chemical Oxygen Demand (COD) M24-Au0005934	NCP	%	88		70-130	Pass	
Sulphate (as SO4)	M24-Au0006876	NCP	%	81		70-130	Pass	
Total Kjeldahl Nitrogen (as N)	M24-Au0006699	NCP	%	89		70-130	Pass	
Total Organic Carbon	M24-Au0000033	NCP	%	111		70-130	Pass	
Spike - % Recovery	1112 7 /140000004	. 101	,,,			, , , , , , , ,	, uss	
Heavy Metals				Result 1				
Iron	M24-Au0011539	NCP	%	91		75-125	Pass	
11 VII		NCP	%	91		75-125	Pass	
Manganese	\/ \/\/\\\ \ \ \\\\\\\\\\\\\\\\\\\		/0	1 31		10-120	1 433	
Manganese Spike - % Recovery	M24-Au0011539	1101						
Spike - % Recovery	M24-AU0011539	1101		Result 1	T			
Spike - % Recovery Alkali Metals			%	Result 1		75-125	Pacc	
Spike - % Recovery Alkali Metals Calcium	M24-Au0013667	NCP	%	91		75-125 75-125	Pass	
Spike - % Recovery Alkali Metals Calcium Magnesium	M24-Au0013667 M24-Au0013667	NCP NCP	%	91 92		75-125	Pass	
Spike - % Recovery Alkali Metals Calcium Magnesium Potassium	M24-Au0013667 M24-Au0013667 M24-Au0013667	NCP NCP	% %	91 92 92		75-125 75-125	Pass Pass	
Spike - % Recovery Alkali Metals Calcium Magnesium Potassium Sodium	M24-Au0013667 M24-Au0013667	NCP NCP	%	91 92		75-125	Pass	
Spike - % Recovery Alkali Metals Calcium Magnesium Potassium	M24-Au0013667 M24-Au0013667 M24-Au0013667	NCP NCP	% %	91 92 92		75-125 75-125	Pass Pass	

Report Number: 1124550-W

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery									
	·			Result 1					
Chloride	M24-Au0006638	CP	%	100			70-130	Pass	
Spike - % Recovery									
Volatile Fatty Acids (VFA) by GC-N	<u>IS</u>			Result 1					
Isobutyric acid	M24-Au0006640	CP	%	116			70-130	Pass	
Isovaleric acid	M24-Au0006640	CP	%	91			70-130	Pass	
Valeric acid	M24-Au0006640	CP	%	100			70-130	Pass	
4-Methylvaleric acid	M24-Au0006640	CP	%	115			70-130	Pass	
Hexanoic acid	M24-Au0006640	CP	%	101			70-130	Pass	
Heptanoic acid	M24-Au0006640	CP	%	117			70-130	Pass	
Total VFA as Acetic Acid Equivalents	M24-Au0006640	СР	%	111			70-130	Pass	
Spike - % Recovery					, ,				
Heavy Metals		•		Result 1					
Chromium	M24-Au0006640	CP	%	103			75-125	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
				Result 1	Result 2	RPD			
Chemical Oxygen Demand (COD)	M24-Au0005933	NCP	mg/L	< 250	< 250	<1	30%	Pass	
Total Dissolved Solids Dried at 180		0.0	,	4000	4000	4.0	000/		
°C ± 2 °C	M24-Au0006634	CP	mg/L	1200	1000	18	30%	Pass	
Total Kjeldahl Nitrogen (as N)	M24-Au0005941	NCP	mg/L	140	160	13	30%	Pass	
Total Organic Carbon	M24-Au0002043	NCP	mg/L	< 5	< 5	<1	30%	Pass	
Duplicate							T	I	
Alkali Metals	1404 1 0000075	NOD	"	Result 1	Result 2	RPD	000/	_	
Calcium	M24-Au0006875	NCP	mg/L	7.6	7.7	1.2	30%	Pass	
Magnesium	M24-Au0006875	NCP	mg/L	5.1	5.2	1.2	30%	Pass	
Potassium	M24-Au0006875	NCP	mg/L	1.0	1.1	2.2	30%	Pass	
Sodium	M24-Au0006875	NCP	mg/L	16	16	<1	30%	Pass	
Duplicate									
Volatile Fatty Acids (VFA) by GC-N				Result 1	Result 2	RPD		_	
Acetic Acid	M24-Au0006637	CP	mg/L	< 5	< 5	<1	30%	Pass	
Propionic acid	M24-Au0006637	CP	mg/L	< 5	< 5	<1	30%	Pass	
Isobutyric acid	M24-Au0006637	CP	mg/L	< 5	< 5	<1	30%	Pass	
Butyric acid	M24-Au0006637	CP	mg/L	< 5	< 5	<1	30%	Pass	
Isovaleric acid	M24-Au0006637	CP	mg/L	< 5	< 5	<1	30%	Pass	
Valeric acid	M24-Au0006637	CP	mg/L	< 5	< 5	<1	30%	Pass	
4-Methylvaleric acid	M24-Au0006637	CP	mg/L	< 5	< 5	<1	30%	Pass	
Hexanoic acid	M24-Au0006637	CP	mg/L	< 5	< 5	<1	30%	Pass	
Heptanoic acid	M24-Au0006637	CP	mg/L	< 5	< 5	<1	30%	Pass	
Duplicate									
0 1 11 11 (1.65.50)	140.4 A 22222		0,	Result 1	Result 2	RPD	0637	_	
Conductivity (at 25 °C)	M24-Au0006638	CP	uS/cm	670	670	<1	30%	Pass	
pH (at 25 °C)	M24-Au0006638	CP	pH Units	8.7	8.7	pass	30%	Pass	
Duplicate									
Alkalinity (speciated)	I			Result 1	Result 2	RPD			
Bicarbonate Alkalinity (as CaCO3)	M24-Au0006638	CP	mg/L	250	220	15	30%	Pass	
Carbonate Alkalinity (as CaCO3)	M24-Au0006638	CP	mg/L	23	20	14	30%	Pass	
Hydroxide Alkalinity (as CaCO3)	M24-Au0006638	CP	mg/L	< 20	< 20	<1	30%	Pass	
Total Alkalinity (as CaCO3)	M24-Au0006638	CP	mg/L	280	240	15	30%	Pass	

Report Number: 1124550-W

Duplicate									
•				Result 1	Result 2	RPD			
Ammonia (as N)	M24-Au0006639	СР	mg/L	< 0.01	< 0.01	<1	30%	Pass	
Chloride	M24-Au0006639	CP	mg/L	< 1	< 1	<1	30%	Pass	
Sulphate (as SO4)	M24-Au0006639	CP	mg/L	< 5	< 5	<1	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
Conductivity (at 25 °C)	M24-Au0006640	CP	uS/cm	2200	2200	1.6	30%	Pass	
pH (at 25 °C)	M24-Au0006640	CP	pH Units	6.1	6.1	pass	30%	Pass	
Duplicate									
Alkalinity (speciated)				Result 1	Result 2	RPD			
Bicarbonate Alkalinity (as CaCO3)	M24-Au0006640	CP	mg/L	87	84	3.5	30%	Pass	
Carbonate Alkalinity (as CaCO3)	M24-Au0006640	CP	mg/L	< 10	< 10	<1	30%	Pass	
Hydroxide Alkalinity (as CaCO3)	M24-Au0006640	CP	mg/L	< 20	< 20	<1	30%	Pass	
Total Alkalinity (as CaCO3)	M24-Au0006640	CP	mg/L	87	84	3.5	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Chromium	M24-Au0006640	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Iron	M24-Au0006640	CP	mg/L	70	69	2.0	30%	Pass	
Manganese	M24-Au0006640	CP	mg/L	6.4	6.3	2.0	30%	Pass	

Comments

Sample Integrity

 Custody Seals Intact (if used)
 N/A

 Attempt to Chill was evident
 Yes

 Sample correctly preserved
 Yes

 Appropriate sample containers have been used
 Yes

 Sample containers for volatile analysis received with minimal headspace
 Yes

 Samples received within HoldingTime
 Yes

 Some samples have been subcontracted
 No

Authorised by:

Savini Suduweli Analytical Services Manager
Caitlin Breeze Senior Analyst-Inorganic
Caitlin Breeze Senior Analyst-Metal
Joseph Edouard Senior Analyst-Organic

Managing Director

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

CHAIN OF CUSTODY

2-4 Westall Rd, Springvale VIC 3171

Client:		Ventia			A SOLICE AND ADDRESS OF THE	loh	Ref:	- Secretarion of the last		Povloof	ord Lone	dfill CoC	1 of 1	The fact that will be a second
9		Ventia				300	nei.			Jaylesi	ord Lane	aiiii Coc	1 01 1	
Contact Ventia:	Tarin (Cummings 0	42809178	2			1 ;	Plea	se for	ward to	ALS	for ana	lysis	
Contact ALS:	Graeme	Jablonskas	03 8549 9	609										
Email:	Tarin.cummings@vei	ntia.com												
	Ping.Yao@ventia.cor													£
	Lucy.edwards@vven													
	Pandula.R@ventia.co													
	Robert.callander@ve													
	Lab Quote #: EM2	23THISER00	010											
	Purchase Order Number: 4700979690													
Sample ID	Sample Description	No of Containers	Date Sampled	Time sampled	Matrix	H	EC	00	TEMP	ORP	SWL			
Daylesford SPLIT	Groundwater	4	1/8/24	1/23		6.18	2962	4.67	12.12	43.8	7.72	En	Viron m	
										13.8	1.10	Environmental Division Melbourne		
									Work Order Reference EM2413118					
												-	EM241	3118
	7 E T T T T T T T T T T T T T T T T T T													le IIII
						1.7								
Spec Instruction		ices to <u>Tania</u>	a.Dahlin@	ventia.co	m, Lucy	.Edwar	ds@ver	ntia.com				Teleph	one : - 61-3-8549 960	00
Relinquished E	By: Company:	D	ate:		Time:		Rece	eived By		Co	mpany:		Date:	Time:
	Ventia													
Relinquished E	By: Company:	D	ate:		Time:		Received By: Com		mpany:		Date:	Time:		
Ryan		310	8124	3/0	8124		RIC	MRD BA	EZ		ALS		05/08/24	11:29
This form is for recording o	f sample data after prior consulta ts, OHS requirements and our ter	tion with an analy	st regarding sa	ampling proce	dures and	does not	LAB	USE ONL	<u> </u>	Sample co	nditions:		es received undar	
As an Occupational Health	and Safety consideration, it is a red d prior advice given in writing of a	equirement of Eco	wise Environn	nental (Victori	a), that all	samples	6.					within recom	s adequately pres mended holding ppropriate tempe	times: [Yes/No]

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order : EM2413118

Client : VENTIA UTILITY SERVICES PTY LTD Laboratory : Environmental Division Melbourne

Contact : MR TARIN CUMMINGS Contact : Graeme Jablonskas

Address : 27 ESSINGTON STREET Address : 4 Westall Rd Springvale VIC Australia

3171

GROVEDALE VICTORIA, AUSTRALIA

 Telephone
 : +61 03 5249 3610
 Telephone
 : +6138549 9609

 Facsimile
 : +61 03 5221 9711
 Facsimile
 : +61-3-8549 9626

Project : Daylesford Landfill COC 1 of 1 Page : 1 of 3

Order number : 4700979690 Quote number : EM2023THISER0010

(EM23THISER0010 - SECONDARY

SAMPLES ONLY)

C-O-C number : ---- QC Level : NEPM 2013 B3 & ALS QC Standard

Site : LANDFILL Sampler : PR + AM

Dates

Date Samples Received : 05-Aug-2024 11:29 Issue Date : 05-Aug-2024

Client Requested Due : 12-Aug-2024 Scheduled Reporting Date : **12-Aug-2024**Date

Delivery Details

Mode of Delivery : Carrier Security Seal : Not Available

No. of coolers/boxes : 2 Temperature : 7.0°C - Ice Bricks present

Receipt Detail : No. of samples received / analysed : 1 / 1

General Comments

This report contains the following information:

- Sample Container(s)/Preservation Non-Compliances
- Summary of Sample(s) and Requested Analysis
- Proactive Holding Time Report
- Requested Deliverables
- Please direct any queries related to sample condition / numbering / breakages to Client Services.
- Sample Disposal Aqueous (3 weeks), Solid (2 months) from receipt of samples.
- Unless otherwise stated, analytical work for this work order will be conducted at ALS Melbourne, NATA accreditation no. 825, site no. 13778.
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The laboratory will process these samples unless instructions are received from you indicating you do not wish to proceed. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical
 analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this
 temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS
 recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.

Issue Date : 05-Aug-2024

Page

2 of 3 EM2413118 Amendment 0 Work Order

Client : VENTIA UTILITY SERVICES PTY LTD

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

Method Sample ID	Sample Container Received	Preferred Sample Container for Analysis					
Dissolved Metals by ICP-MS - Suite A : EG020A-F							
DAYLESFORD SPLIT	- Clear Plastic Bottle - Natural	- Clear Plastic Bottle - Nitric Acid; Filtered					

Summary of Sample(s) and Requested Analysis

Matrix: WATER <i>Laboratory sample ID</i>	Sampling date / time		WATER - EA015H Total Dissolved Solids - Standard Level	WATER - EG020F Dissolved Metals by ICP/MS	WATER - EP026SP Chemical Oxygen Demand (COD)	WATER - NT-01 & 02 Ca, Mg, Na, K, Cl, SO4, Alkalinity	WATER - SAMP-02 Field Observations
EM2413118-001	01-Aug-2024 11:25	DAYLESFORD SPLIT	✓	✓	✓	✓	✓

Proactive Holding Time Report

The following table summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory.

Matrix: WATER

Evaluation: **x** = Holding time breach ; ✓ = Within holding time.

Evaluation. A Trouting time product, A Within Holding time.							
Method		Due for	Due for	Samples Received		Instructions Received	
Client Sample ID(s)	Container	extraction	analysis	Date	Evaluation	Date	Evaluation
EA005-P: pH by Aut	o Titrator						
DAYLESFORD SPLIT	Clear Plastic Bottle - Natural		01-Aug-2024	05-Aug-2024	×		
EK057G: Nitrite as N	l by Discrete Analyser						-
DAYLESFORD SPLIT	Clear Plastic Bottle - Natural		03-Aug-2024	05-Aug-2024	×		

Issue Date : 05-Aug-2024

Page

3 of 3 EM2413118 Amendment 0 Work Order

Client : VENTIA UTILITY SERVICES PTY LTD

Requested Deliverables

LUCY EDWA	R	D	S
-----------	---	---	---

- *AU Certificate of Analysis - NATA (COA)	Email	Lucy.Edwards@ventia.com
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	Lucy.Edwards@ventia.com
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	Lucy.Edwards@ventia.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	Lucy.Edwards@ventia.com
- Chain of Custody (CoC) (COC)	Email	Lucy.Edwards@ventia.com
- EDI Format - ESDAT (ESDAT)	Email	Lucy.Edwards@ventia.com

Pandula R

- *AU Certificate of Analysis - NATA (COA)	Email	pandula.r@ventia.com
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	pandula.r@ventia.com
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	pandula.r@ventia.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	pandula.r@ventia.com
- Chain of Custody (CoC) (COC)	Email	pandula.r@ventia.com
- EDI Format - ESDAT (ESDAT)	Email	pandula.r@ventia.com

Ping Yao

 *AU Certificate of Analysis - NATA (COA) 	Email	ping.yao@ventia.com
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	ping.yao@ventia.com
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	ping.yao@ventia.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	ping.yao@ventia.com
- Chain of Custody (CoC) (COC)	Email	ping.yao@ventia.com
- EDI Format - ESDAT (ESDAT)	Email	ping.yao@ventia.com

ROBERT CALLANDER

 *AU Certificate of Analysis - NATA (COA) 	Email	robert.callander@ventia.com
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	robert.callander@ventia.com
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	robert.callander@ventia.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	robert.callander@ventia.com
- Chain of Custody (CoC) (COC)	Email	robert.callander@ventia.com
- EDI Format - ESDAT (ESDAT)	Email	robert.callander@ventia.com

TARIN CUMMINGS

TARIN COMMINGS		
- *AU Certificate of Analysis - NATA (COA)	Email	tarin.cummings@ventia.com.au
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	tarin.cummings@ventia.com.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	tarin.cummings@ventia.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	tarin.cummings@ventia.com.au
- A4 - AU Tax Invoice (INV)	Email	tarin.cummings@ventia.com.au
- Chain of Custody (CoC) (COC)	Email	tarin.cummings@ventia.com.au
- EDI Format - ESDAT (ESDAT)	Email	tarin.cummings@ventia.com.au

CERTIFICATE OF ANALYSIS

Work Order : EM2413118

Client : VENTIA UTILITY SERVICES PTY LTD

Contact : MR TARIN CUMMINGS

Address : 27 ESSINGTON STREET

GROVEDALE VICTORIA, AUSTRALIA 3216

Telephone : +61 03 5249 3610

Project : Daylesford Landfill COC 1 of 1

Order number : 4700979690

C-O-C number : ----

Sampler : PR + AM Site : LANDFILL

Quote number : EM23THISER0010 - SECONDARY SAMPLES ONLY

No. of samples received : 1 No. of samples analysed : 1 Page : 1 of 4

> Laboratory : Environmental Division Melbourne

Contact : Graeme Jablonskas

Address : 4 Westall Rd Springvale VIC Australia 3171

Telephone : +6138549 9609

Date Samples Received : 05-Aug-2024 11:29

Date Analysis Commenced : 06-Aug-2024

Issue Date : 09-Aug-2024 17:11

ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with **Quality Review and Sample Receipt Notification.**

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Dilani Fernando	Laboratory Coordinator	Melbourne External Subcontracting, Springvale, VIC
Dilani Fernando	Laboratory Coordinator	Melbourne Inorganics, Springvale, VIC
Eric Chau	Metals Team Leader	Melbourne Inorganics, Springvale, VIC
Jarwis Nheu	Non-Metals Team Leader	Melbourne Inorganics, Springvale, VIC

Page : 2 of 4
Work Order : EM2413118

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Daylesford Landfill COC 1 of 1

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

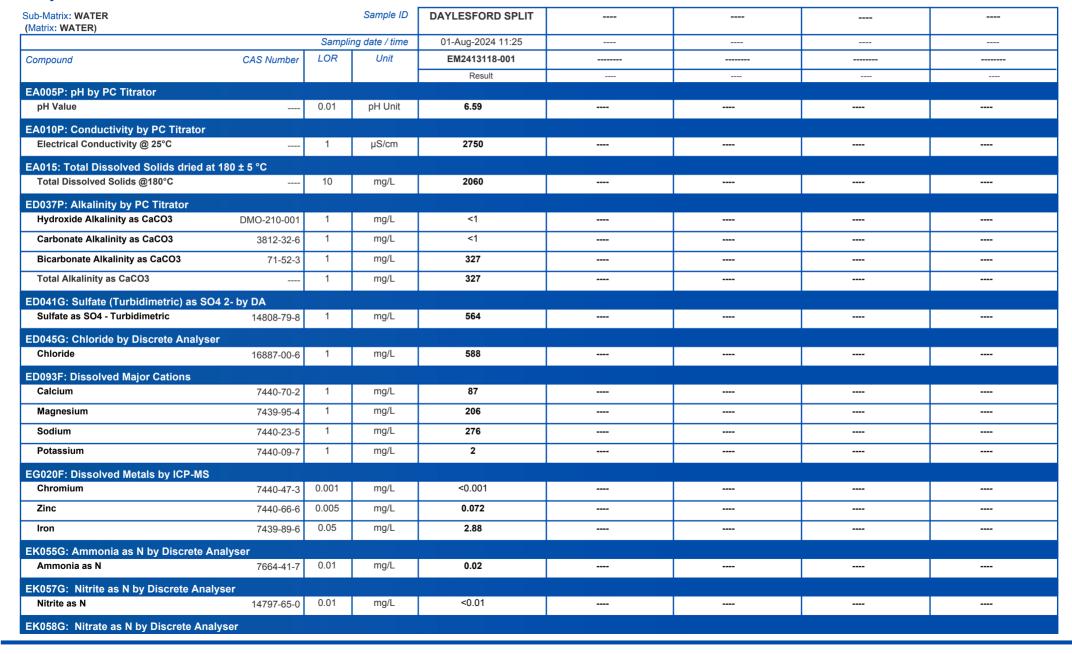
When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- As per QWI EN55-3 Data Interpreting Procedures, Ionic balances are typically calculated using Major Anions Chloride, Alkalinity and Sulfate; and Major Cations Calcium, Magnesium, Potassium and Sodium. Where applicable and dependent upon sample matrix, the Ionic Balance may also include the additional contribution of Ammonia, Dissolved Metals by ICPMS and H+ to the Cations and Nitrate, SiO2 and Fluoride to the Anions.
- Sampling conducted by Samplescience. Samplescience are not NATA accredited for conducting sampling and field tests.
- Unless otherwise stated, analytical work for this work order will be conducted at ALS Melbourne, NATA accreditation no. 825, site no. 13778.
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.
- ED045G: The presence of Thiocyanate, Thiosulfate and Sulfite can positively contribute to the chloride result, thereby may bias results higher than expected. Results should be scrutinised accordingly.

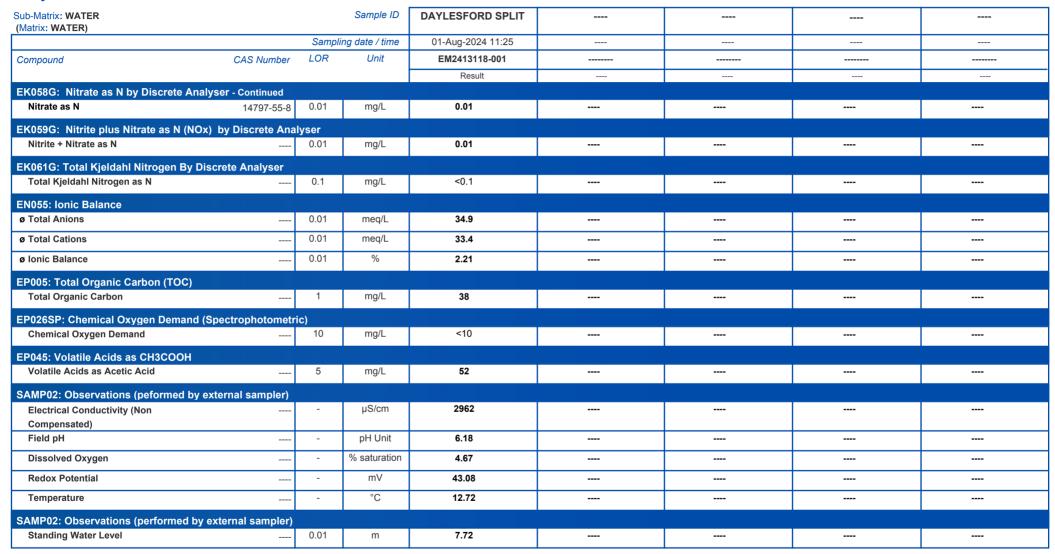


Page : 3 of 4 Work Order : EM2413118

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Daylesford Landfill COC 1 of 1

Analytical Results



Page : 4 of 4 Work Order : EM2413118

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Daylesford Landfill COC 1 of 1

Analytical Results

APPENDIX F - ALL HISTORICAL RECORDS

Daylesford Landfill Sampling

23/08/2024 1/6

Project	Daylesford Landfill	Client	Hepburn Shire
Site	BH1	Description	FIELD READINGS
Bore Depth to TOC (m)	26.90		
AHD of top of Casing	NΔ		

Date	Time (est)	Pre-Purged WL	Post- Purged WL	Pump Method	Volume Pumped	pН	Electrical Conductivity	Dissolved Oxygen	Temp (C)	Redox	Sample Taken	comments	Meter Serial No
	, ,	(m from TOC)	(m from TOC)	•	(litres)	·	(uS/cm)	(mg/L)	,	(mV)	(Y/N)		
29/10/2003	12:45	18.70		3 VOL	53	NA	NA	NA	NA	NA	Y		
25/02/2004	10:52	18.95		Low Flow		NA	NA	NA	NA	NA	Y		
23/06/2004	13:12	18.90		Low Flow		5.61	2650	NA	13.1	14	Y		
25/10/2004	12:54	18.61		Low Flow		5.79	1960		19.2		Y		
24/01/2005	14:00	18.56		BAILED		5.90	2220		19.6		Y		
15/04/2005	8:35	18.90		3 VOL	52	5.49	2230	3.90	15.1	18	Y		
1/08/2005	14:00	19.35		Low Flow		5.48	2280	4.50	15.1	-77	Y		
26/10/2005	12:10	19.99		3 VOL	44	5.60	2180	4.40	15.1	-180	Y		
30/01/2006	14:45	18.93		Low Flow		5.88	2190				Y		
27/04/2006	11:23	20.69		3 VOL	42	5.82	2280	0.19	15.4	-33	Y	5 1 5 1 1 1 1 1 1 1 1	
27/07/2006	12:25	20.02		3 VOL	44	5.80	2230	0.00	15.4	-28	Y	Ran dry/Recharged throughout pumping	
24/09/2006	11:01	20.61		3 VOL	43	5.72	2140	3.06	15.6	-50	Y		
23/01/2007	13:19	20.23		3 VOL	44	5.50	2430	0.00	15.8	-57	Y		
18/04/2007	13:17	20.80		3 VOL	39	6.10	2095	0.00	15.9	-339	Y		
23/07/2007	15:10	21.89		3 VOL	33	5.68	1821	0.00	10.5	-396	Y		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
23/10/2007	12:50	21.65		3 VOL	33	5.71	1890	0.00	15.5	-60	Y		W101047
23/01/2008	13:23	21.95		3 VOL	34	5.80	1880	0.00	17.9	-83	Y		W1674089 W101047
21/04/2008	13:38	22.38		3 VOL	32	5.90	1815	0.00	18.0	-348	Y		
21/07/2008	12:40	22.79		BAILED		6.02	1710	2.93	13.0	-37	Y		W101047
20/10/2008	14:00	22.59		BAILED		5.53	2050	0.55	17.4	-107	Y Y		W101047
29/01/2009	8:30	22.79		BAILED		6.30	1728	0.05	17.9	-177			W1674089
21/04/2009	12:50	22.98		BAILED		5.60	2005	2.30	15.6	-146	Y		W1674089
27/07/2009	14:20	23.48		BAILED		5.60	2033	1.10	10.2	-359	Y		W1674089
28/10/2009	12:00	22.94		BAILED		5.60	1614	2.90	16.7	-381	Y		W1674089
25/01/2010 1/04/2010											NOT SAMPLED	Tubing stuck down bore could not retrieve	
22/07/2010	44:00	00.70		BAILED		0.40	4040	0.00	44.4	-416	NOT SAMPLED	Tubic a catalogue d	10/4074000
3/11/2010	14:00	23.73		BAILED		6.10	1940	0.90 2.20	11.4	-416 NA	Y	Tubing retrieved	W1674089 W1674089
19/01/2011	11:15 10:30	18.59		BAILED		6.70	1960 1560	1.90	15.1	-216	Y		W1674089 W492
18/04/2011	12:15	18.55		BAILED		6.70	1650	1.80	16.2 16.5	-153	Y		W492 W492
											Y		
28/07/2011 17/10/2011	14:00 8:40	18.44 17.98		BAILED BAILED		5.90 6.10	2542 2555	3.90	14.2 14.8	114 198	Y		W492 W492
18/01/2012	10:15	18.10		BAILED		5.80	1870	3.10	15.9	197	Y		W492
23/04/2012	11:45	18.54		BAILED		6.00	1773	2.40	14.3	197	Y		W492 W492
9/08/2012	10:50	18.14		BAILED		5.90	2130	1.00	13.4	146	Y		W492 W492
29/11/2012	9:50	17.35		BAILED		6.00	2145	1.60	16.4	-20	Y		W492
26/02/2013	11:05	18.10		BAILED		5.70	1943	1.50	15.9	-65	Y		W492
15/05/2013	11:35	18.72		BAILED		5.80	1839	2.20	14.1	173	Y		W492
27/08/2013	11:30	18.20		BAILED		5.60	2055	2.60	15.0	55	Y		W492
25/11/2013	11:10	17.47		BAILED		5.80	1840	1.20	15.5	-295	Y	Sulphur smell	W492
26/02/2014	10:40	18.04		3 VOL	45	5.80	2001	0.10	16.1	19	Y	Culpital Sillon	W492
27/05/2014	10:40	18.54		BAILED	.0	5.80	1872	1.40	14.7	56	Y		W492
25/08/2014	12:25	17.91	17.68	Low Flow	10.4	6.03	1991	0.30	14.2	26	Y		W492
25/11/2014	11:05	17.89	17.91	Low Flow	5.7	6.10	1995	2.35	15.1	174	Y	Grey, moderate turbidity, no odour.	W492
24/02/2015	11:20	18.51	18.57	Low Flow	5.7	5.80	1829	1.40	15.6	189	Υ	Started grey and ran clear at 3rd measurment	W492
25/08/2015	10:51	19.72	19.99	Low Flow	5.3	5.80	2261	0.26	13.9	220	Y	Clear, no odour.	W395398
22/02/2016	10:40	20.37	20.51	Low Flow	4.5	5.50	2270	0.48	16.4	178	Y	Clear, no odour.	W492
17/01/2017	7:20	16.87	16.98	Low Flow	5.0	5.60	1828	1.20	16.3	223	Y	Clear, no odour.	06G1861
22/03/2017	8:40	17.43	18.24	Low Flow	10.0	5.70	1851	1.60	16.5	198	Y	Clear, no odour.	W10110383
30/08/2017	9:35	17.97	18.45	Low Flow	8.2	5.90	2000	0.60	13.6	246	Y	Clear, no odour.	06G1861 AM
22/02/2018	9:10	18.17	18.42	Low Flow	5.2	5.60	1772	0.30	16.6	77	Y	Clear, no odour.	06G1861 AM
31/07/2018	9:00	19.26	19.66	Low Flow	8.0	7.10	1979	0.70	11.3	-121	Υ	Clear, no odour.	06G1861 AM
27/02/2019	14:00	19.43	19.98	Low Flow	5.6	5.48	1991	0.30	20.1	28	Y	Slight grey turbidity nil odour	09L100298
21/08/2019	13:32	18.98	19.01	Low Flow	4.3	5.62	2159	0.30	14.0	70	Y	Turbid cloudy white grey	09L100298
13/02/2020	15:00	18.91	19.3	Low Flow	6.9	5.52	2026	0.44	16.6	62	Υ	Slight grey turbidity slight odour	09L100298
21/08/2020	10:30	19.42	19.48	Low Flow	5.3	5.62	2077	0.50	12.8	28	Υ	Slight grey turbid slight odour	09L100298
25/02/2021	11:35	18.38	18.57	Low Flow	8.6	5.48	1954	0.51	16.2	73	Y	Clear, no odour.	09L100298
16/09/2021	14:08	17.20	17.46	Low Flow	3.3	5.68	2127	0.21	15.1	64	Υ	Clear, nil odour.	09L100298
4/03/2022	8:25	17.20	17.53	Low Flow	3.6	5.50	2061	0.21	16.6	43	Υ	Clear, nil odour.	09L100298
30/08/2022	13:11	16.64	16.86	Low Flow	3.7	5.69	2016	0.31	12.4	49	Y	Slight light grey turbidity nil odour	09L100298
16/02/2023	9:02	14.15	14.34	Low Flow	3.3	5.72	2189	0.34	15.2	77	Υ	Slight light grey turbidity nil odour	050710
1/08/2024	14:05	17.19	17.43	Low Flow	2.0	5.60	2041	4.51	14.2	53	Y	Clear, no odour	7490039101

23/08/2024 2/6

Project	Daylesford Landfill	Client	Hepburn Shire
Site	BH2	Description	FIELD READINGS
Bore Depth to TOC (m)	20.75		
AHD of top of Casing	NΔ		

Date	Time (est)	Pre-Purged WL (m from TOC)	Post-Purged WL (m from TOC)	Pump Method	Volume Pumped (litres)	pН	Electrical Conductivity (uS/cm)	Dissolved Oxygen (mg/L)	Temp (C)	Redox (mV)	Sample Taken (Y/N)	comments	Meter Serial No
29/10/2003	11:10	8.83		3 VOL	72	NA	NA	NA	NA	NA	Υ		
25/02/2004	12:40	9.45		Low Flow		NA	NA	NA	NA	NA	Υ		
23/06/2004	15:00	10.00		3 VOL	68	6.12	3730	0.22	13.7	-20	Y		
25/10/2004	13:26	8.66		Low Flow		6.03	2940	0.39	14.6	6	Y		
24/01/2005	12:45	9.04		BAILED		6.00	3110		15.1		Y		
15/04/2005	10:22	9.27		3 VOL	71	6.03	3210	3.82	14.4	-217	Y		
1/08/2005	14:25	9.95		Low Flow	70	6.07	3300	4.00	14.5	-163	Y		
26/10/2005 30/01/2006	13:30 12:15	8.67 9.53		3 VOL Low Flow	79	6.00	3310 3480	5.20	14.6 15.0	-254	Y	Grey and cloudy water	
27/04/2006	12:15	10.14		3 VOL	70	6.17	3410	0.00	14.5	-188	Y	Grey and cloudy water	
27/07/2006	10:10	10.14		3 VOL	65	6.15	3110	0.00	14.5	-68	Y	Grey and cloudy water	
25/10/2006	9:35	11.22		3 VOL	57	6.15	3080	0.00	14.7	-101	Y	Grey and cloudy water	
23/01/2007	11:52	11.51		3 VOL	57	6.17	3590	0.00	14.9	-111	Y	Grey and cloudy water	
18/04/2007	11:37	12.12		3 VOL	54	6.55	2932	0.00	15.3	-98	Y	Grey and cloudy water	
23/07/2007	14:00	12.43		3 VOL	54	6.04	2631	0.00	14.3	-392	Y	Grey and cloudy water	
22/10/2007	11:45	11.97		3 VOL	55	6.12	3350	0.00	14.7	-76	Y	Grey and cloudy water	W101047
23/01/2008	13:55	12.40		3 VOL	51	6.19	4360	0.00	14.8	-84	Υ	Grey and cloudy water	W1674089
21/04/2008	12:21	12.89		3 VOL	50	6.15	2451	0.00	15.3	-440	Υ	Grey and cloudy water	W101047
21/07/2008	11:58	13.29		3 VOL	51	6.19	3200	1.45	14.6	-26	Υ	Grey and cloudy water	W101047
20/10/2008	12:20	12.56		3 VOL	55	6.13	3790	0.00	14.8	-94	Υ	Grey and cloudy water	W101047
29/01/2009	7:45	13.14		3 VOL	51	6.30	2999	0.00	14.9	-234	Υ	Grey and cloudy water	W1674089
21/04/2009	12:27	13.55		3 VOL	50	5.90	3254	0.50	15.2	-205	Y	Grey and cloudy water	W1674089
27/07/2009	13:25	13.95		3 VOL	48	5.80	2957	0.57	14.6	-421	Υ	Sulphur smell, cloudy water	W1674089
28/10/2009	11:30	13.81		3 VOL	60	5.90	2495	0.15	14.9	-487	Υ	Ants nest in bore, Large amount of ants, living and dead in water, very putrid smell coming from bore and water.	W1674089
25/01/2010	10:45	12.88		3 VOL	62	6.40	3353	0.20	15.7	1	Y	Putrid smell	W492
1/04/2010	10.10	12.00		0.102	- 02	0.10	0000	0.20	10.7		NOT SAMPLED	T date of their	11102
20/07/2010	13:15	13.18		3 VOL	59	6.50	3300	0.10	15.0	-401	Υ		W1674089
3/11/2010	10:30	9.98		3 VOL	75	6.40	3213	1.50	14.8	350	Y		W1674089
19/01/2011	11:15	8.62		3 VOL	88	7.30	2536	2.20	15.6	-240	Υ		W492
18/04/2011	13:25	8.65		3 VOL	92	6.80	2740	0.00	14.7	-156	Υ		W492
28/07/2011	13:00	8.39		3 VOL	78	6.10	3052	0.40	14.5	118	Υ	Grey and cloudy water	W492
17/10/2011	9:10	7.79		3 VOL	82	6.20	3140	0.50	14.6	201	Υ		W492
18/01/2012	10:35	8.21		3 VOL	87	6.20	3120	0.20	15.0	180	Y		W492
23/04/2012	12:15	8.58		3 VOL	83	6.30	2655	0.20	14.5	183	Υ		W492
9/08/2012	11:15	7.80		3 VOL	88	6.00	3110	0.30	13.1	189	Υ		W492
29/11/2012	11:15	7.25		3 VOL	91	6.30	3210	0.90	14.7	-47	Υ		W492
26/02/2013	9:40	8.44		3 VOL	88	6.20	3327	0.40	14.8	-189	Y		W492
15/05/2013	10:15	9.15		3 VOL	79	6.80	3149	4.30	13.4	157	Υ		W492
27/08/2013	10:20	8.33		BAILED		6.60	3118	3.10	14.5	-45	Y	Pump failed while sampling.	W492
25/11/2013	12:24	7.47		3 VOL	86	6.70	2812	0.82	14.8	-125	Y	Sulphur smell, cloudy water	W492
26/02/2014	9:25	9.28		3 VOL	77	6.20	3154	0.60	14.6	53	Y	Sulphur smell, clear water	W492
27/05/2014	12:05	9.37		3 VOL	80	6.30	3085	1.60	14.4	35	Y		W492
25/08/2014 25/11/2014	15:05	7.13	7.24	Low Flow	4.0	6.64	2199	0.60	14.0	-15	Y	Company and a set of the set of t	W492
	9:50	7.96	7.97	Low Flow	5.8	6.45	3020	1.04	13.9	125	Y	Grey, moderate turbidity, no odour Brown. Mod turb, no odour. Lab results of pH 7.4 show	W492
24/02/2015	9:50	8.65	8.69	Low Flow	5.8	7.10	2450	1.30	14.0	169	Y	rise in ph seen in field, lab results of EC also justify field readings.	Wassaga
25/08/2015 22/02/2016	12:40 12:40	9.79	9.93	Low Flow	5.0	6.30	3288 2700	0.20	13.5 15.1	159 112	Y	Clear, no odour Clear, no odour	W395398 W492
17/01/2017	8:05	7.23	8.05	Low Flow	8.0	6.40	3010	0.44	15.1	112 59	Y	Clear, no odour Milky colour, very rancid odour due to ants nest/dead ants in bore	W492 W10110383
22/03/2017	7:25	8.11	8.45	Low Flow	5.6	6.40	3010	1.00	14.7	95	Y	Grey, low turbidity. Dead ants in bore. Split dup taken	06G1861 AM
30/08/2017	10:40	7.82	7.99	Low Flow	3.5	6.70	2910	0.80	13.3	-19	Υ	Grey, low turbidity, no odour.	06G1861 AM
22/02/2018	10:30	8.40	8.61	Low Flow	4.2	6.70	1981	1.10	15.4	-299	Υ	Black, low turbidity, sulpher smell.	06G1861 AM
31/07/2018	10:30	9.15	9.35	Low Flow	6.0	6.40	2980	0.50	13.2	-238	Y	Black, low turbidity, sulpher smell.	06G1861 AM
27/02/2019	10:47	9.49	9.85	Low Flow	4.1	6.22	2997	0.25	16.3	-85	Y	Black colour reductive smell	09L100298
22/08/2019	13:40	8.95	9	Low Flow	9.0	6.13	2184	0.18	13.1	7	Y	Slight dark colour, no odour	09L100298
12/02/2020	11:05	8.93	9.39	Low Flow	7.4	6.12	2830	0.46	15.6	45	Υ	Grey colour very slight reductive smell	09L100298
20/08/2020	13:18	9.31	9.39	Low Flow	5.8	6.13	2883	0.33	12.9	24	Y	Grey colour very slight reductive smell	09L100298
24/02/2021	13:50	8.35	8.75	Low Flow	7.8	5.90	2856	0.33	15.3	39	Y	Dark grey turbidity	09L100298
16/09/2021	11:46	6.88	7.01	Low Flow	1.6	6.20	2898	0.37	14.9	37	Y	Grey slight odour	09L100298
2/03/2022	9:10	7.57	7.94	Low Flow	2.9	6.23	3072	0.19	15.5	-12	Y	Slight grey colour nil odour	09L100298
30/08/2022	10:51	6.37	6.79	Low Flow	2.4	6.30	2079	0.22	12.2	4	Y	Slight grey colour nil odour	09L100298
15/02/2023	10:46	4.89	5.21	Low Flow	7.8	6.30	3245	0.24	14.3	58	Y	Slight grey colour nil odour	050710
1/08/2024	11:23	7.49	7.72	Low Flow	7.7	6.18	2962	4.67	12.7	44	Υ	Little bit turbid, no odour.	7490039101

23/08/2024 3/6

Project	Daylesford Landfill	Client	Hepburn Shire
Site	BH3	Description	FIELD READINGS
Bore Depth to TOC (m)	18.33	•	
AHD of top of Casing	NΔ		

Date	Time (est)	Pre-Purged WL (m from TOC)	Post-Purged WL (m from TOC)	Pump Method	Volume Pumped (litres)	рН	Electrical Conductivity (uS/cm)	Dissolved Oxygen (mg/L)	Temp (C)	Redox (mV)	Sample Taken (Y/N)	comments	Meter Serial No
29/10/2003	11:30	4.53		3 VOL	88	NA	NA	NA	NA	NA	Υ		
25/02/2004	11:54	4.92		Low Flow		NA	NA	NA	NA	NA	Y		
23/06/2004	13:47	5.77 4.14		3 VOL Low Flow	80	5.94	3900 3220	0.00	13.4	-31 -11	Y		
24/01/2005	11:50	4.63		BAILED		6.30	3550	0.45	12.6	-111	Y		
15/04/2005	10:00	4.49		3 VOL	100	5.92	3710	3.99	13.4	-58	Y		
1/08/2005	15:10	4.86		Low Flow		5.84	3980		13.6	-57	Υ		
26/10/2005	12:42	4.25		3 VOL	100	5.90	3740	4.40	13.7	-199	Υ		
30/01/2006	13:40	4.38		Low Flow		6.23	3690		14.5		Υ	Black and oily looking	
27/04/2006	12:57	5.15		3 VOL	90	6.01	3970	0.00	13.6	-145	Υ	sulphur smell with oily appearance, described as white creamy lines	
27/07/2006	10:42	5.42		3 VOL	85	6.05	3670	0.00	13.7	-77	Y	Creamy appearance	
25/10/2006	10:10	5.62		3 VOL	87	6.04	3550	0.00	13.7	-90	Υ	Grey colour sulphur smell	
23/01/2007	12:36	6.27		3 VOL	80	5.92	4140	0.00	13.8	-134	Y		
18/04/2007	12:17			3 VOL	70	6.52	3141	0.00	14.2	-457	Y	Time value written in instead of water level. Water has sulphur smell, green/grey in colour and oily.	
23/07/2007	14:40	7.39		3 VOL	75	5.89	2778	0.00	13.0	-441	Υ	Water has sulphur smell, green/grey in colour and oily appearance.	
23/10/2007	12:11	7.01		3 VOL	82	6.09	3460	0.00	13.8	-109	Υ	Water has sulphur smell, green/grey in colour and oily appearance.	W101047
23/01/2008	12:24	7.40		3 VOL	70	6.15	3480	0.00	14.0	-164	Y	Water has sulphur smell, green/grey in colour and oily appearance.	W1674089
21/04/2008	11:22	7.96		3 VOL	70	5.84	2450	0.00	14.1	-451	Υ	sulphur smell	W101047
21/07/2008	11:08	8.40		3 VOL	75	6.14	3480	1.16	13.7	-127	Y	sulphur smell	W101047
20/10/2008	11:31 7:10	8.10 8.30		3 VOL	75 68	5.76 6.30	3820 3033	0.00	14.0	-127 -357	Y	sulphur smell sulphur smell	W101047 W1674089
21/04/2009	11:50	8.79		3 VOL	70	5.80	3430	2.00	13.7	-222	Y	sulphur smell	W1674089
28/07/2009	12:50	9.10		3 VOL	60	5.90	3307	0.00	13.7	-437	Y	very strong sulphur smell	W1674089
28/10/2009	12:50	8.51		3 VOL	70	5.80	2755	0.10	13.9	-440	Υ	Cloudy, slight sulphur smell	W1674089
25/01/2010	11:15	8.26		3 VOL	75	6.30	3071	0.10	14.1	110	Υ		W492
1/04/2010											NOT SAMPLED		
21/07/2010	12:15	8.41		3 VOL	65	6.30	3470	0.10	13.8	-359	Υ		W1674089
3/11/2010	9:35	5.85		3 VOL	85	6.00	3471	2.60	13.9	275	Υ		W1674089
19/01/2011	11:45	4.55		BAILED		7.80	2760	2.20	14.3	-267	Y	pH not following trend, possibly due to being bailed, lab results of 6.7 follow this trend better.	W492
18/04/2011	14:24	4.16		3 VOL	95	6.50	3015	0.0	13.8	-164	Υ		W492
28/07/2011	11:45	3.93		3 VOL	100	5.90	3340	0.2	13.5	158	Υ		W492
17/10/2011	9:35	3.66		3 VOL	105	6.10	3480	0.7	13.5	203	Υ		W492
18/01/2012	10:55	3.93		3 VOL	105	6.20	3480	0.4	13.9	181	Y		W492
23/04/2012	12:45	4.31		3 VOL	105	6.20	2945	0.4	13.7	167	Y		W492
9/08/2012	12:10 11:35	3.85		3 VOL	105 102	6.40	3510 3380	0.6	12.7	177 -54	Y		W492 W492
26/02/2013	10:34	4.22		3 VOL	102	6.20	3416	0.7	13.9	-223	Y		W492 W492
15/05/2013	10:41	4.93		3 VOL	105	6.80	3459	2.4	12.8	104	Y		W492
27/08/2013	10:45	4.41		3 VOL	110	6.50	3409	0.4	13.6	-33	Υ	sulphur smell	W492
25/11/2013	13:04	3.32		3 VOL	110	6.50	3041	1.9	15.5	-86	Υ	sulphur smell	W492
26/02/2014	9:55	3.62		3 VOL	112	6.10	3481	0.0	13.8	37	Υ	sulphur smell	W492
27/05/2014	11:00	4.57		3 VOL	115	6.10	3366	0.0	13.7	1	Υ	sulphur smell	W492
25/08/2014	13:50	3.73	2.89	Low Flow	7.7	6.63	3113	0.1	13.3	-95	Υ		W492
25/11/2014	9:00	3.66	3.67	Low Flow	6.3	6.30	3380	0.10	12.5	127	Y	Clear, no odour.	W492
24/02/2015 25/08/2015	9:00	4.56 5.48	4.67 5.52	Low Flow	6.3 4.0	6.20	3480 3654	0.30	14.3	138 165	Y	Clear, no odour. Clear, no odour.	W492 W395398
22/02/2016	14:30	6.49	6.59	Low Flow	4.0	6.20	3420	0.20	14.4	152	Y	Light brown colour, low turb, no odour	W492
17/01/2017	9:30	3.12	3.12	Low Flow	4.8	6.70	2851	0.70	16.7	247	Y	Light brown colour, low turb, no odour. SPLIT DUPLICATE TAKEN	06G1861
22/03/2017	8:50	4.11	4.26	Low Flow	5.3	6.00	3140	0.90	14.7	184	Υ	Clear	06G1861
30/08/2017	12:05	3.93	3.94	Low Flow	4.0	6.90	2870	1.10	11.3	155	Υ	Clear, no odour.	06G1861 AM
22/02/2018	11:35	4.59	4.66	Low Flow	3.3	6.00	3370	0.90	15.2	-43	Υ	Light brown, mod turb, no odour.	06G1861 AM
31/07/2018	11:40	5.26	5.3	Low Flow	7.0	7.00	3340	0.65	12.0	-121	Y	Light brown, mod turb, no odour.	06G1861 AM
27/02/2019	12:05 13:30	5.60 4.99	5.67	Low Flow	4.7	5.97 6.00	3325 3333	0.28	16.1	-25 7	Y	Slight grey turbidity slight septic odour Moderate turbidity, light gray, no odour	09L100298 09L100298
12/02/2020	13:30	5.16	5.01	Low Flow	5.2	5.95	3333	0.21	11.3	44	Y	Slight grey turbidty nil odour	09L100298 09L100298
20/08/2020	14:35	5.16	5.25	Low Flow	3.9	6.06	3339	0.35	12.1	-13	Y	grey turbidity nil odour	09L100298
25/02/2021	9:30	4.60	4.66	Low Flow	7.8	5.85	3335	0.30	13.2	48	Y	Slight grey turbidty nil odour	09L100298
16/09/2021	12:30	3.33	3.39	Low Flow	3.1	6.04	3498	0.26	12.1	47	Y	Slight grey turbidty nil odour	09L100298
2/03/2022	9:55	3.78	3.83	Low Flow	2.6	6.09	3535	0.17	15.1	-19		Clear, nil odour.	09L100298
30/08/2022	11:55	3.10	3.12	Low Flow	3.3	6.16	3350	0.38	11.1	0	Υ	Slight grey turbidity nil odour	09L100298
15/02/2023	11:55	1.41	3.12	Low Flow	3.3	6.16	3069	0.34	14.0	95	Υ	Slight grey turbidity nil odour	050710
1/08/2024	12:51	3.80	3.83	Low Flow	1.8	6.01	3198	4.69	12.5	40	Υ	Little bit turbid, no odour	7490039101

23/08/2024 4/6

Project	Daylesford Landfill	Client	Hepburn Shire
Site	BH4	Description	FIELD READINGS
Bore Depth to TOC (m)	39.10		
AHD of top of Casing	NA		

				1		_	1		1	_	1		
Date	Time (est)	Pre-Purged WL (m from TOC)	Post-Purged WL (m from TOC)	Pump Method	Volume Pumped (litres)	pН	Electrical Conductivity (uS/cm)	Dissolved Oxygen (mg/L)	Temp (C)	Redox (mV)	Sample Taken (Y/N)	comments	Meter Serial No
29/10/2003	12:10	27.30		Low Flow		NA	NA	NA	NA	NA	Y		
25/02/2004	9:50	27.70		Low Flow		NA	NA	NA	NA	NA	Υ		
23/06/2004	12:20	28.65		Low Flow		5.46	3250	1.26	13.6	16	Υ		
25/10/2004	11:15	27.68		Low Flow		6.36	2320	9.84	15.3	-46	Υ		
24/01/2005	9:30	27.24		BAILED		5.55	2750		13.3		Υ		
15/04/2005	12:10	27.45		Low Flow		5.51	2690	7.40	17.7	-14	Υ		
1/08/2005	13:05	28.10		Low Flow		5.36	2970	9.24	14.2	9	Υ		
26/10/2005	11:27	27.55		Low Flow		5.50	2810	6.80	12.7	6	Υ		
30/01/2006	10:50	27.53		Low Flow		5.56	2000		25.3		Υ	cloudy appearance	
27/04/2006	10:00	28.28		Low Flow		5.62	3080	0.23	13.2	44	Y	grey cloudy appearance	
27/07/2006	8:55	28.98		Low Flow		5.53	3080	0.00	12.4	30	Y	grey cloudy appearance	
25/10/2006	8:50	29.25		Low Flow		5.50	2910	2.10	14.0	28	Y		
23/01/2007	10:30	29.63		Low Flow		5.30	3340	3.01	22.2	23	Y	cloudy appearance	
18/04/2007	10:50	30.19		Low Flow		5.80	2470	0.20	17.8	84	Y		
23/07/2007	12:15	30.53		Low Flow		6.77	2343	0.00	12.6	165	Y		
23/10/2007	10:50	30.31		Low Flow		5.48	2690	1.39	14.8	6	Y		W101047
23/01/2008	11:27	30.61		Low Flow		5.58	3240	7.52	15.8	-21	Y	grey cloudy appearance	W1674089
21/04/2008	10:32	30.61		Low Flow		5.50	2702	0.00	14.6	-377	Υ	grey cloudy appearance	W101047
21/07/2008	10:28	31.53		Low Flow		6.60	2900	0.72	11.7	-90	Y		W101047
20/10/2008	11:45	31.16		Low Flow		5.20	3190	0.00	14.6	-5	Y		W101047
29/01/2009	8:45	31.55		Low Flow		5.60	2615	0.69	19.1	-12	Y		W1674089
21/04/2009	11:08	31.79		Low Flow		5.40	2968	0.95	16.4	-121	Υ		W1674089
28/07/2009	11:50	32.22		Low Flow		5.30	2980	3.60	12.0	-66	Y		W1674089
28/10/2009	9:00	31.66		BAILED		5.50	2515	1.50	16.1	-64	Υ		W1674089
25/01/2010	10:00	31.41		BAILED		5.60	2840	1.20	16.7	174	Y		W492
1/04/2010											NOT SAMPLED		
21/07/2010	11:00	31.54		Low Flow		6.50	1200	0.10	11.7	-90	Y	Unsure why EC so low, field results of 1000 and lab results show Ec of 1200. Approx 120mm rain fell in preceding month. Both low readings confirm a drop in EC for this sample round compared to the usual 2000-3500 range	W1674089
3/11/2010	9:00	28.86		BAILED		5.60	3007	2.60	13.2	681	Y		W1674089
19/01/2011	9:30	27.15		Low Flow		6.50	2550	1.10	15.4	-180	Υ		W492
18/04/2011	11:48	26.97		Low Flow		6.60	2990	0.4	15.4	-144	Υ		W492
28/07/2011	11:00	26.83		BAILED		5.70	3261	1.2	14.1	139	Υ		W492
17/10/2011	8:15	26.31		BAILED		5.70	3780	2.3	14.5	275	Υ		W492
18/01/2012	9:45	26.46		BAILED		5.70	3330	2.3	16.1	276	Y		W492
23/04/2012	11:15	27.03		BAILED		5.90	3106	2.1	14.1	295	Y		W492
9/08/2012	10:30	26.48		BAILED		5.40	3680	1.2	13.5	271	Y		W492
29/11/2012	9:30	25.60		BAILED		5.50	3560	1.7	16.6	42	Y		W492
26/02/2013	9:00	26.45		BAILED		5.60	3716	2.2	16.0	-49	Y		W492
15/05/2013	9:45	27.23		BAILED		5.70	3744	2.5	13.9	245	Υ		W492
27/08/2013	9:45	26.86		BAILED		5.50	3737	3.0	14.7	115	Y	Sulpher Smell	W492
25/11/2013	10:00	25.76		BAILED		5.40	3374	1.4	15.5	50	Y	Sulpher Smell	W492
26/02/2014	8:50	26.59		BAILED		5.70	3836	2.1	15.0	163	Υ	Sulpher Smell	W492
27/05/2014	10:10	27.02	05.55	BAILED		5.70	3828	1.1	14.6	37	Y	Sulpher Smell	W492
25/08/2014	10:15	26.70	25.90	Low Flow	7	6.60	4033	0.2	14.4	3	Y	Olava a	W492
25/11/2014	13:15	26.21	26.27	Low Flow	8.2	5.75	4380	0.61	15.2	192	Y	Clear, no odour.	W492
24/02/2015	12:25	26.92	26.96	Low Flow	6.7	6.10	4090	1.10	15.3	174	Y	Clear, no odour.	W492
25/08/2015	8:10	28.23	28.42	Low Flow	7.3	5.50	4322	0.38	13.6	130		Clear, no odour.	W395398
22/02/2016	8:40	29.01	29.15	Low Flow	5.5	5.50	4210	0.50	13.6	117	Y	Grey colour, low turbidity, no odour.	W492
17/01/2017	7:00	25.14	25.38	Low Flow	9.0	5.70	4060	0.70	17.3	139	Y	Grey milky colour, odourless.	W10110383 W10110383
22/03/2017	7:30	25.93	26.22	Low Flow	13.0	5.60	4180	2.00	15.2	178	Y	Grey colour, low turbidity, no odour, SPLIT DUR TAKEN	
30/08/2017 22/2/218	8:10 7:45	26.45	26.74	Low Flow	8.3	5.80	3380	1.00	12.2	214	Y	Grey colour, low turbidity, no odour. SPLIT DUP TAKEN Grey colour, low turbidity, no odour. SPLIT DUP TAKEN	06G1861 AM
		26.56	26.81	Low Flow	7.3	6.60	4770	0.10	15.7	-121			06G1861 AM 06G1861 AM
31/07/2018	7:55	27.76	28.1	Low Flow	8.0	6.80	4120	0.80	12.5	-125	Y	Grey, low turb, no odour. Split dup taken	
27/02/2019 21/09/2019	9:06	27.93	28.39		9.1	5.55	4033	0.33	15.3 14.7	15	Y	Grey, low turb, no odour. Split dup taken Slightly cloudy, no odour	09L100298
12/02/2020	11:52 9:30	27.51 27.42	27.54 27.67	Low Flow	9.6 7.8	5.62	3793 4017	0.17	16.3	34 62	Y	Slightly cloudy, no odour Slight grey turbidity	09L100298 09L100298
20/08/2020	9:30	27.42		Low Flow	7.8 5.2	5.44	4017 3889	0.48	16.3	62 44	Y	* * * * * * * * * * * * * * * * * * * *	09L100298 09L100298
24/02/2021	12:05	26.86	27.67	Low Flow	8.4	5.50		0.43	15.6	65	Y	slight grey turbidity	09L100298 09L100298
16/09/2021	9:16	25.69	27.06	Low Flow	8.4 5.5	5.34	4202 4161	0.41	15.6	23	Y	Grey, low turb, no odour.	09L100298 09L100298
2/03/2022	7:45	25.69	25.87 25.91	Low Flow	4.6	5.62	4161	0.19	17.7	-9	Υ	Grey turbidity, no odour Clear, no odour.	09L100298 09L100298
30/08/2022	7:45 8:40	25.69	25.91	Low Flow	5.1	5.62	4857	0.44	11.1	-9 7	Y		09L100298 09L100298
												Silver turbidity nil odour	
15/02/2023	8:55 14:30	22.37 25.75	22.43 25.87	Low Flow	5.1 2.5	5.59 5.42	4221 4339	0.35 0.43	15.3 14.4	80 -6	Y Y	Silver turbidity nil odour Cloudy no odour, light grey.	050710 23G103456
1/00/2024	17.30	20.10	20.01	LOW FIOW	۷.٠	J.42	7333	0.43	14.4	-0	<u>'</u>	Gloddy no ododi, light grey.	250 103400

23/08/2024 5/6

Site LEACHATE Description FIELD READINGS	Project	Daylesford Landfill	Client	Hepburn Shire
	Site	LEACHATE	Description	FIELD READINGS

		*Note AHD I	level of bore	casing -55	6 500				4		ventia	
		Note And I	level of bole	casing =55								
Date	Time (est)	Survey reading on bore casing	Survey Water level reading	Difference	Pool level M AHD (Casing AHD - Difference)	рН	EC	Do	Temp	Orp	Comments	Probe
29/10/2003	12:45				554.573						See lab results	
25/02/2004	12:20			2.350	554.150						See lab results	
22/06/2004	14:00			2.038	554.462						See lab results	
25/10/2004	14:00			1.465	555.035						See lab results	
24/01/2005	10:20			1.575	554.925						See lab results	
15/04/2005	9:10	0.795	2.369	1.574	554.926	8.82		10.50	15.5			
1/08/2005	15:30	0.075	1.840	1.765	554.735	8.33	783	11.33	10.1			
26/10/2005	13:00	0.84	1.856	1.116	555.384	8.70	664	5.90	17.3			
30/01/2006	13:15	0.28	1.410	1.130	555.370	8.95	599	6.70	26.1		Greenish tinge.	
27/04/2006	13:15	0.904	2.203	1.299	555.201	8.99	552	9.40	13.8		Greenish tinge.	
27/07/2006	12:00	0.54	1.535	0.995	555.505	8.28	451	8.25	8.6			
25//10/2006	10:30	0.896	1.940	1.044	555.456	8.94	438	6.10	17.8			
23/01/2007	9:00	0.674	3.271	2.597	553.903	9.51	481	4.58	25.8			
18/04/2007 23/07/2007	12:00	0.536	3.918	3.384	553.116	9.95	541	6.31 9.48	17.7			
23/07/2007	14:30 12:30	0.712	3.075	2.363	554.137	7.93	331 397	1.83	10.0			W101047
23/10/2007	12:30	0.712	3.013	2.303	554.137	7.93 8.45	530	1.83	19.3			W101047 W1674089
21/04/2008	12:45	0.228	3.818	3.590	552.910	8.63	558	9.04	15.3			W101047
21/07/2008	11:20	0.364	2.748	2.384	554.116	7.62	438	9.76	7.2			W101047
20/10/2008	11:40	0.367	3.289	2.922	553.578	7.33	388	10.60	19.0			W101047 W101047
29/01/2009	7:20				553.473	9.37	504	9.42	24.7			W1674089
21/04/2009	12:00	0.675	3.943	3.268	553.232	8.88	747	4.00	16.2			W1674089
28/07/2009	13:00	0.764	3.036	2.272	554.228	8.30	443	10.70	7.5			W1674089
28/10/2009	11:00	0.591	3.091	2.500	554.000	7.80	497	10.20	18.1			W1674089
25/01/2010	11:20					8.10	740	7.60	25.1			W492
1/04/2010	-										NOT SAMPLED	
21/07/2010	11:30	0.697	2.443	1.746	554.754	7.90	440	11.40	8.9			W1674089
3/11/2010	9:50	0.758	1.618	0.860	555.640	8.50	662	7.80	15.4			W1674089
19/01/2011	11:20	1.013	1.884	0.871	555.629	8.40	690	8.10	19.8			W492
18/04/2011	14:40	1.010	1.880	0.870	555.630	7.90	990	6.00	17.9			W492
28/07/2011	12:15	0.287	1.277	0.990	555.510	7.60	940	7.20	7.3			W492
17/10/2011	950	0.909	2.722	1.813	554.687	8.70	850	12.90	16.0			W492
18/01/2012	11:30	0.869	2.668	1.799	554.701	8.10	911	12.00	26.7			W492
23/04/2012	13:00	0.964	2.652	1.688	554.812	8.70	705	10.10	15.3			W492
9/08/2012	11:40	0.927	2.576	1.649	554.851	8.00	664	9.30	8.2			W492
29/11/2012	11:55	0.929	2.155	1.226	555.274	9.20	747	11.20	28.1			W492
26/02/2013	10:00	0.552	2.680	2.128	554.372	8.80	942	7.90	23.4			W492
15/05/2013	11:10	0.570	3.283	2.713	553.787	8.50	1092	9.30	10.5			W492
27/08/2013	11:00	0.676	2.741	2.065	554.435	8.50	536	13.10	10.8			W492
25/11/2013	13:40	0.641	1.363	0.722	555.778	8.60	755	9.60	26.3			W492
26/02/2014	10:05	0.782	3.253	2.471	554.029	8.60	1025	8.70	21.3			W492
27/05/2014	11:10	0.736	3.075	2.339	554.161	8.70	864	8.50	12.8			W492
25/08/2014	14:15	0.911	2.059	1.148	555.352	11.00	590	12.90	13.3			W492
25/11/2014	8:30	0.877	2.145	1.268	555.232	9.00	695	10.10	18.0			W492
24/02/2015	8:30	0.711	4.124	3.413	553.087	8.40	1086	8.10	18.3		Dam observed to be very low.	W492
25/08/2015	14:00					8.50	770	13.40	11.9		Level not observed due to laser level used to obtain height not working	W395398
22/02/2016	12:35				550.007	8.70	1470	8.90	21.9		Dam very low.	W492
17/01/2017	10:40					8.10	1259	8.60	22.0	188.0		06G1861
22/03/2017	10:00			-		8.30	1790	5.60	20.4	184.0		06G1861
30/08/2017	13:15			<u> </u>		7.80	860	9.30	9.4	24.0		06G1861 AM
22/02/2018	12:00					8.10	1132	5.50	21.1	-68.0	Water level very low	06G1861 AM
31/07/2018	8:10			-		7.90	757	11.50	7.9	36.0		06G1861 AM
27/02/2019	13:20					8.87	887	2.78	21.1	-35.1	Waste Land	09L100298
12/02/2020	13:02			ļ		7.68	816	17.56	28.0	37.7	Water level very low High oxygen levels.	09L100298
20/08/2020	15:09	 		-		7.75	497	10.43	10.8	-8.5	High oxygen conditions	09L100298
25/02/2021	11:05			-		7.86	538	9.26	19.8	9.9	High oxygen conditions	09L100298
16/09/2021	13:10					8.82	429	14.70	11.4	39.6	High oxygen conditions	09L100298
2/03/2022	10:45			-		7.39	765	0.03	20.5	-172.3	Low oxygen conditions	09L100298
15/02/2023	12:55 13:10			-		7.78 8.40	407.00 903	7.18		29.4	Low oxygen conditions	09L100298 050710
				-				7.18	24.0	61.1	Low oxygen conditions	
1/08/2024	15:03	l	l		l	6.68	706	7.36	12.9	1.10		23G103456

23/08/2024 6/6