2022/2023 ANNUAL MONITORING REPORT - CRESWICK LANDFILL

Hepburn Shire Council
17/01/2024
Author:
Lucy Edwards
Ping Yao

COMMERCIAL IN CONFIDENCE

Issue/Rev	Date	Revision Description	Ву	Checked	Approved
Rpt0627 – 0.1	17/01/2024	Draft	Lucy Edwards Ping Yao	Lucy Edwards Ping Yao	Bryan Woods
Rpt0627 – 0.2	9/02/2024	Final - Client to Review	Lucy Edwards Ping Yao	Lucy Edwards Ping Yao	Bryan Woods

2022/2023 ANNUAL MONITORING REPORT - CRESWICK LANDFILL

Table of Contents

5.1.

6.2.

5.1.1.5.1.2.

5.1.3.

2.1. Site Context 3 2.2. Sampling and Analysis Schedule...... 6 3.1. 3.2. Surface Water Sampling.......7 3.3. 3.4. 3.5. 4. Sampling Methodology 8 4.1. 4.2. Low Flow Sampling......8 4.3. Grab Sampling......8 4.4. 4.5. Reporting......9

Groundwater and Surface Water Quality Objectives......9

Water Monitoring Results......11
.1. Groundwater Monitoring Results......11

Surface Water and Leachate Monitoring Results24

2022/2023 ANNUAL MONITORING REPORT – CRESWICK LANDFILL

6.3.	Leachate Monitoring Results	35
	bsurface Gas Bore Monitoring Resultsrface Emission Monitoring Results	36
8.2.	Landfill Cap Walk Over	36
9. Qu 9.1.	ality Control / Quality Assurance Program	
9.2.	Results	38
10. Co 10.1.	nclusionsGroundwater	
10.2.	Surface Water	40
10.3.	Leachate	40
10.4.	Subsurface Landfill Gas	40
10.5.	Surface Emission Landfill Gas	40
10.6.	Data Uncertainty and Statement of Limitations	40
12. Re Appen	clarationferencesdicesdix A – Field Record Sheets	43 72
Appe	ndix B – Laboratory Results	106
Appe	ndix C – QA QC Results	122
Appe	ndix D – Laboratory Reports	123
Appe	ndix E – All Historical Records	220

The information contained in this document is solely for the use of the Hepburn Shire Council. The information may be provided to other third parties. However, Ventia Utility Services Pty Ltd does not guarantee to such third parties the accuracy of any documentation or information provided and makes no representation as to its completeness or accuracy. The use of or reliance on any such information is at the third parties' risk.

EXECUTIVE SUMMARY

Ventia Utility Services Pty Ltd has been engaged by the Hepburn Shire Council to undertake groundwater and landfill gas monitoring and reporting at the Creswick landfill site. This report summarises the major findings of the 2022/2023 monitoring program and provides further interpretation of results.

The monitoring program is required to satisfy specific Environmental Performance Conditions detailed in the Creswick Landfill, Aftercare Management Plan, Part 2: Environmental Risk Assessment and Monitoring Program, prepared by Mackenzie Environmental in 2015 for the Hepburn Shire Council.

The environmental monitoring program comprises of quarterly gas bore monitoring, groundwater and surface water monitoring and surface emissions and underground services monitoring, with an annual cap walk over. The monitoring network consists of ten groundwater monitoring locations, three leachate bores and five surface water sites (three creek sites, one wetland, one dredge hole and one leachate pond), four subsurface gas bore monitoring locations, as well as landfill cap surface emissions, building and underground services monitoring.

GROUNDWATER

All groundwater sites exceeded at least one of the adopted assessment criteria during each monitoring event (ANZECC 2000 guidelines for Fresh Water 95%, Irrigation and Livestock and the groundwater quality objectives as nominated by the Aftercare Management Plan). Results were in line with historic trends at the majority of monitoring bores.

ANZECC 2000 Fresh Water 95% guideline had zinc exceedances at all bores and all events in the 2022/2023 monitoring period. The ANZECC 2000 Irrigation guidelines had groundwater bore exceedances throughout the monitoring events for the following analytes: Chloride at all sites (except BH8), sodium at all sites (except B6 and B10) and chromium (III+VI) at BH8 in February 2023. The only TDS exceedance was detected at BH3 in May 2023, which breached the ANZECC 2000 Livestock guidelines.

SURFACE WATER

During the 2022/2023 monitoring program all surface water sites exceeded one or more of the surface water quality objectives adopted for assessment criteria (nominated by the Aftercare Management Plan). There were no exceedances for these quality objectives throughout the program for TDS, calcium, magnesium or sulphate.

All surface water locations had chloride exceedances above the ANZECC Irrigation 2000 Guidelines, and the Leachate Pond, Wetland and Dredge Hole also had exceedances in sodium. All sites also had exceedances against the ANZECC 2000 Freshwater guidelines for zinc during at least one sampling event (except the Dredge hole). Results throughout 2022/2023 were generally consistent with historical data. It is difficult to determine the impact of the landfill in isolation of surrounding land uses.

LEACHATE

LB2 and LB3 had leachate levels that exceeded the maximum allowable leachate levels during the 2022/2023 events. LB2 was 0.1 m above these levels in May 2023 while LB3 exceeded during all monitoring events. The average exceedance at LB3 was 0.71 m and the highest exceedance was 0.91 m in November 2022.

2022/2023 ANNUAL MONITORING REPORT – CRESWICK LANDFILL

SUBSURFACE LANDFILL GAS

Subsurface landfill gas monitoring was performed in September and November 2022 and February and May 2023. There are four dedicated gas bores gauged, however BH12 landfill gas concentration results are not compared against the adopted action levels given its location within the waste mass. Peak Methane concentrations at BH9, BH10 and BH11 did not exceed the assessment criteria levels during any of the monitoring events. Peak carbon dioxide concentrations exceeded the assessment criteria levels at BH9 and BH10 in November 2022. During the other three gauging events in 2022/2023 there were no further exceedances in BH9, BH10 or BH11. BH12, (located within the waste mass), displays expected high levels of methane and carbon dioxide.

SURFACE EMMISSON LANDFILL GAS

All methane surface emission readings recorded for the capped landfill surface, buildings, structures and underground services during the 2022/2023 monitoring events were below the prescribed Landfill BPEM action levels indicating very low surface emission methane levels onsite.

1. INTRODUCTION

Ventia Utility Services Pty Ltd (Ventia) was engaged by Hepburn Shire Council to undertake groundwater and landfill gas monitoring and reporting at the former Creswick Landfill located at 32 Anne Street, Creswick, Victoria (the site) and current Creswick Transfer Station located on the Ring Road in Creswick, approximately 1.4 km north-west of the city centre.

The landfill operated from the 1960s and is believed to have closed in 2001. When licensed, the landfill could accept a range of wastes including municipal solid waste. It was in the void of a former gold mine and gravel quarry and after it closed, the landfill was capped in 2001. The site is now the location of a transfer station.

2. MONITORING PROGRAM OVERVIEW

2.1. SITE CONTEXT

Landfill monitoring is undertaken at this site in response to EPA Pollution Abatement Notices (PANs ID 9003558 and 9003559) issued in relation to the rehabilitation of the site. The original PANs were to prepare a hydrogeological assessment and the preparation of a landfill cap assessment. The assessments (Mackenzie Environmental, 2015a; 2015b; 2015c, and Senversa, 2016) were satisfied by EPA in 2016 (PAN ID 90006899). The monitoring program is a response to the assessments. The monitoring program is required to satisfy specific Environmental Performance Conditions detailed in the Creswick Landfill Aftercare Management Plan Part 2: Environmental Risk Assessment and Monitoring Program, prepared by Mackenzie Environmental in 2015 for the Hepburn Shire Council.

The landfill is in a former gold mine and gravel quarry and operated from the 1960s and closed in 2001. The landfill was capped in 2001 and now operates as a waste transfer station. The site is located approximately one kilometre from the Creswick town centre and is bounded by unoccupied land to the west and north-west which includes a flooded mine. Creswick Creek is 70 meters north of the site. There is privately owned semi-rural land to the south.

2.2. Scope of Works

Ventia was engaged to undertake groundwater, surface water and landfill gas monitoring at the Creswick landfill comprising:

- Quarterly monitoring of the 10 groundwater bores;
- Quarterly monitoring of the 3 leachate bores and the leachate pond;
- Quarterly monitoring of the 3 creek sites, dredge hole and wetland;
- Quarterly monitoring of 4 landfill gas bores;
- Quarterly monitoring of the buildings and services; and
- Annual surface emissions monitoring of the landfill cap.

A map of the landfill gas bores, buildings and service locations, walk over grid, groundwater and surface Water sites is provided in Figure 1, Figure 2, Figure 3 and Figure 4.

Figure 1 Site location and Landfill Gas Bores

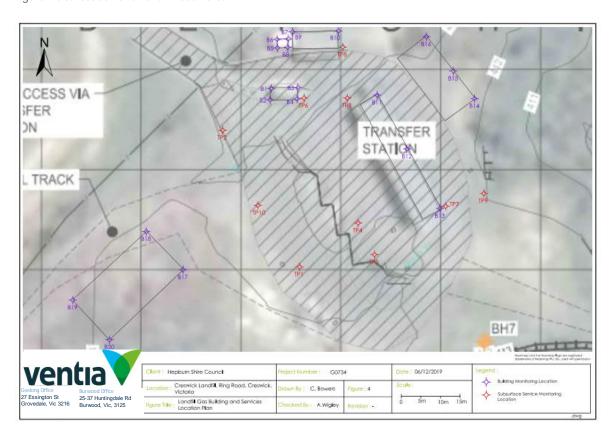


Figure 2 Buildings and Service Pits Gas Monitoring Locations

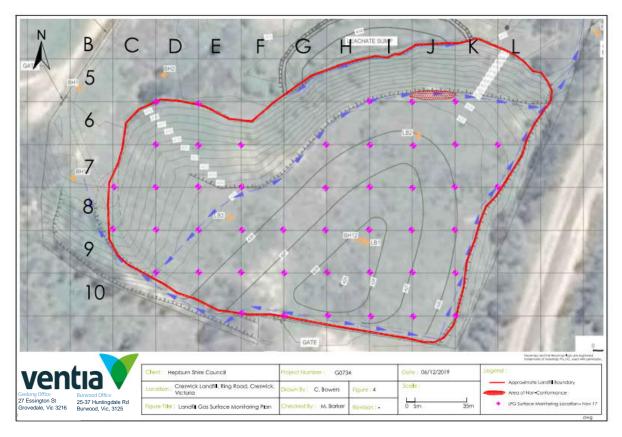


Figure 3 Landfill Gas Walkover grid

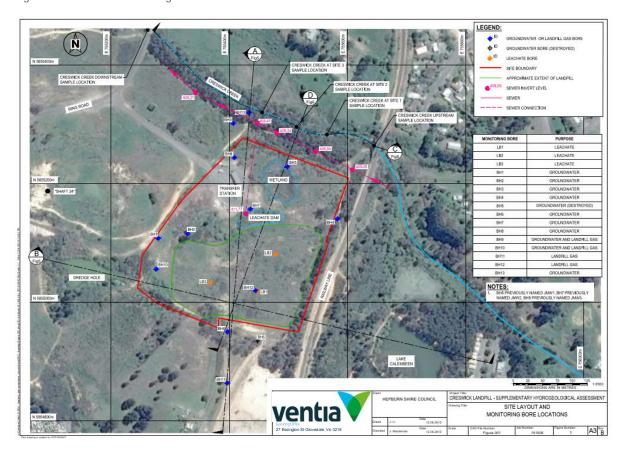


Figure 4 Groundwater and Surface Water sites

3. SAMPLING AND ANALYSIS SCHEDULE

3.1. GROUNDWATER

Ten groundwater bores were monitored in 2022/2023 monitoring program (Table 1). Quarterly groundwater monitoring was undertaken during August/September and November in 2022 and February and May in 2023.

All bores, except the ones with limitations, were sampled via low flow techniques. BH2 which is usually bailed as there is restricted access to this bore and there is a bend in the bore casing. BH9 is usually dry and is sampled only if water is present.

Table 1 Groundwater Bore Sites

NO	Bore	Installation Date	Northing (Zone 54)	Eastings (Zone 54)	Screen Depth (mBGL)	Installation Depth (mBGL)	Elevation, TOC (mAHD)	
1	BH1#	-	5855118.996	755287.058	-	15.9	414.68	
2	BH2	-	5855119.969	755327.845	-	5.0	415.62	
3	BH3	-	5855234.647	755500.589	0.8-3.8	3.8	410.96	
4	BH4	-	5855143.450	755576.651	-	4.1	417.35	
5	BH6	21/10/2014	5854950.561	755397.535	10.8-13.8	14.6	429.16	
6	BH7	21/10/2014	5855157.901	755436.982	2.8-5.8	7.0	412.97	
7	BH8	22/10/2014	5855244.875	755409.825	3.0-6.0	7.0	414.12	
8	BH10	19/03/2015	5855055.470	755276.630	1.0-6.0	6.0	416.80	
9	BH12	19/03/2015	5855019.340	755444.920	1.0-4.0	4.0	427.06	
10	BH14	25/10/2017	5855322.800	755416.600	1.5-5.5	5.5	412.47	
*	BH5		Destroyed					
*	BH9	19/03/2015	5855301.770	755407.130	1.0-6.4	6.4	414.80	
*	BH11	19/03/2015	5854863.420	755397.000	1.0-10.0	10.0	429.80	
*	BH13	25/03/2015	5855326.160	755433.950	1.0-2.25	2.25	409.26	

Notes:

3.2. LEACHATE SITES

Three leachate monitoring bores (LB1-LB3) were gauged during September and November in 2022 and February and May in 2023 (see Table 2).

LB1 and LB2 were not able to be sampled during the 2022/2023 monitoring period as they were blocked. LB3 was measured for standing water level only as per the Management Plan 2015. When possible, a sample is taken from the Leachate Pond when there is water present, during the 2022/2023 monitoring program the Leachate Pond was able to be sampled in all four events.

Table 2 Leachate Bore Sites

Bore	Easting	Northing	Bore Elevation*	Maximum Leachate Levels
bore	Lasting	Noi triirig		
			mAHD	mAHD
LB1	755448.3	5855018.1	427.10	414.9
LB2	755478.6	5855081.2	426.57	412.3
LB3	755368.4	5855032.8	426.10	414.8

^{*} Top of the PVC

[#] Bore location was lost since February 2021 due to road resurfacing;

^{*} Decommissioned bores.

3.3. SURFACE WATER SAMPLING

Surface water sampling is undertaken at Creswick at five locations including upstream of BH03, at BH03, downstream of BH03, the dredge hole and the wetlands. The sampling occurs on a quarterly basis. During the 2022/2023 monitoring program, surface water samples were able to be taken from the five dedicated points for all four events (August/September and November 2022 and February and May in 2023).

3.4. SUBSURFACE LANDFILL GAS

Dedicated subsurface landfill gas bores included within the monitoring program are detailed in Table 3. Landfill gas monitoring was undertaken during September and November in 2022 and February and May in 2023.

Table 3 Landfill Gas Bore Details

Bore	Location	Bore Depth (m BGL)	Screened Interval (m BGL)
BH09	Offsite, adjacent to northern corner boundary	6.5	1.0-6.5
BH10	Adjacent to the west of the landfill, within site boundary	6.0	1.0-6.0
BH11	Offsite, beyond the southern site boundary	10.0	1.0-10.0
BH12	Within the landfill waste mass, towards centre of cap	4.0	1.0-4.0

Notes: mBGL - metres Below Ground Level

3.5. SURFACE EMISSION LANDFILL GAS

Surface emission landfill gas monitoring includes quarterly monitoring of the buildings and structures and underground services on site in addition to an annual walkover of the capped surface. The quarterly surface emission gas monitoring events of buildings and structures were undertaken during September and November in 2022 and February and May in 2023, while the annual walkover of the capped surface was performed in September and November 2022.

Areas targeted during surface emission monitoring include:

- Surface cracking, fissures and / or depressions;
- Stressed vegetation;
- Landfill edges and side slopes;
- Gas wells and monitoring points; and
- Pathways where pipework may be buried in trenches.

4. SAMPLING METHODOLOGY

4.1. FIELD MEASUREMENTS

Groundwater quality parameters were recorded using a calibrated multi-parameter water quality instrument.

Field record sheets are included as Appendix A.

Groundwater quality measurements recorded include:

- Electrical Conductivity;
- pH;
- Temperature;
- Oxidation Reduction Potential (ORP, or Redox); and
- Dissolved Oxygen.

4.2. Low Flow Sampling

All bores, excluding BH2, were sampled using low flow methods during the August/September and November 2022 and February and May 2023 monitoring events as per the Ventia low flow groundwater sampling procedures which are based on the EPA's Groundwater Sampling Guidelines (Publication 669, April 2000). Sample tubing is left in the bore and replaced every year.

A flow through cell was utilised for field stabilisation measurements during the purging cycle. Measurements were taken at approximate five-minute intervals depending on the flow rate during the purging cycle and recorded on the Ventia Groundwater Sampling Field Sheet provided within the individual monitoring event reports.

Samples were considered stable after three successive measurements were recorded within a defined range as per Table 4.

Table 4 Stabilisation Parameters

Parameter	Range
EC	+/- 3%
pH	+/- 0.05
Redox	+/-10mV
Temperature	+/-10%
Dissolved Oxygen	+/-10%

Signed chain of custodies and laboratory sample receipt records are included within Appendix E.

4.3. GRAB SAMPLING

BH2 has been sampled via bailer as there is a kink in the well which negates the use of low flow techniques.

4.4. SUBSURFACE LANDFILL GAS MONITORING

All landfill gas bore monitoring was conducted in accordance with Ventia's Landfill Gas Bore Monitoring procedures which are based on EPA Landfill Gas Fugitive Emissions Monitoring Guidelines (Publication 1684,2018) and Landfill BPEM guidelines. Landfill Gas Monitoring was conducted with the use of a factory calibrated gas analyser (GeoTech, GA5000). The gas analyser was calibrated against a known calibration standard, certificates can be found in the individual event monitoring reports. Field observations that were noted throughout the monitoring program include:

- Concentrations, peak and stabilised;
- Pressure, atmospheric and differential;
- Pump time;
- Stabilised flow; and
- Weather conditions.

Parameters utilised for reporting on landfill gas concentrations include: Methane (CH_4), Carbon Dioxide (CO_2); Carbon Monoxide (CO_2); Oxygen (O_2) and Hydrogen Sulfide (H_2S).

4.5. SURFACE EMISSION LANDFILL GAS MONITORING

All surface emissions methane monitoring was conducted in accordance with the Ventia Landfill Gas Walkover standard operating procedure which are based on the EPA Landfill Gas Fugitive Emissions Monitoring Guidelines (Publication 1684,2018); and Landfill BPEM guidelines.

A calibrated Inspectra-Laser methane detector was used for the surface emissions walkover along a grid consisting of transects spaced at 25 m intervals, measurements were taken 50 mm above the surface. The active areas of the landfill were not sampled due to safety reasons.

Monitoring of buildings and enclosed structures focused on those areas where gas is likely to accumulate including, cupboards, water pipes, cracks in brickwork and gaps in flooring. The peak readings were recorded, please see Appendix A.

5. REPORTING

5.1. ASSESSMENT CRITERIA

5.1.1. Groundwater and Surface Water Quality Objectives

Beneficial uses for the site were assessed against the Environmental Reference Standard (ERS, DELWP 2021, previously SEPP, Waters). Protected beneficial uses applicable to the site along with the screening criteria that have been adopted in relation to each of the identified potential beneficial uses, is supplied in Table 5.

Table 5 Beneficial Uses and Adopted Assessment Criteria

Beneficial Use Classification	Adopted Assessment Criteria
Maintenance of ecosystems	ANZECC (2000) 95% protection for slightly to moderately modified
iviaintenance of ecosystems	freshwater aquatic ecosystems
Livestock	ANZECC (2000) Livestock
Irrigation	ANZECC (2000) Irrigation
Buildings and structures	Varied: No guideline applied
Primary contact recreation	Varied: No guideline applied

Requirements outlined in the Creswick Landfill, Aftercare Management Plan, Part 2: Environmental Risk Assessment and Monitoring Program (Mackenzie Environmental, June 2015), are tabulated below (Table 6).

Table 6 Water Quality Objectives from Aftercare Management Plan

Analytes	Detection Limit	Groundwater Quality Objectives	Surface Water Quality Objectives
рН	0.01 pH units	6.5 to 8.0	6.5 to 8.0
Electrical conductivity (EC)	1 μS/cm	-	-
Total dissolved solids (TDS)	10 mg/L	2,000 mg/L	2,000 mg/L
Calcium (CA)	1 mg/L	1,000 mg/L	1,000 mg/L
Magnesium (Mg)	1 mg/L	2,000 mg/L	2,000 mg/L
Sodium (Na)	1 mg/L	115 mg/L	-
Potassium (K)	1 mg/L	-	-
Chloride (CI)	1 mg/L	25-700 mg/L	-
Sulphate (SO4)	1 mg/L	250 mg/L	1,000 mg/L
Bicarbonate alkalinity (as CaCO3)	1 mg/L	-	-
Total organic carbon (TOC)	1 mg/L	-	-
Chemical oxygen demand (COD)	10 mg/L	-	-
Ammonia (NH3)	0.01 mg/L	0.9 mg/L (as NH3)	0.9 mg/L (as NH3)
Nitrate (NO3)	0.01 mg/L	0.16 mg/L (as N)	0.7 mg/L (as N)
Total Kjeldahl nitrogen (TKN)	0.1 mg/L	25 mg/L	-
Volatile fatty acids (VFA)	5 mg/L	-	-
Chromium (Cr)	0.001 mg/L	0.001 mg/L	0.001 mg/L
Iron (Fe)	0.05 mg/L	0.3 mg/L	-
Zinc (Zn)	0.005 mg/L	0.008 mg/L	0.008 mg/L

5.1.2. Landfill Gas Bore Action Levels

Action levels for methane have been adopted from the Landfill BPEM guidelines and are set at 1% v/v within the subsurface geology at the landfill boundary. For carbon dioxide, the action level is set at 10% v/v, taken from the Mackenzie 2016 Creswick Landfill Monitoring Program report.

5.1.3. Landfill Gas Surface Emission Action Levels

The Landfill BPEM guidelines outline surface emission action levels for methane concentrations according to their location. Relevant action levels are provided in Table 7.

Table 7 Surface Emission Action Levels

Location	Parameters	Action Level
Landfill surface final cap	Methane concentration in air ¹	100 ppm
Within 50 mm of penetrations through the final cap	Methane concentration in air ²	100 ppm
Landfill surface intermediate cover areas ³	Methane concentration in air ¹	200 ppm
Within 50 mm of penetrations through the intermediate cover	Methane concentration in air ²	1,000 ppm
Building/structures on and adjacent to the landfill site	Methane concentration in air	5,000 ppm

Notes:

- 1 Point of measurement is 50 mm above the landfill surface.
- 2 Point of measurement is 50 mm from the point of discharge.
- 3 Intermediate cover areas are those that do not have an engineered landfill cap and are not scheduled to receive waste during the next three months.

6. WATER MONITORING RESULTS

6.1. GROUNDWATER MONITORING RESULTS

6.1.1 Groundwater Gauging

Standing Water Levels (SWLs) were measured in all accessible groundwater monitoring bores during the August/September and November 2022 and February and May 2023 monitoring events. Groundwater gauging data is presented in Table 8.

Table 8 Groundwater Gauging Data

ID	Date	SWL (mBTOC)	SWL (mAHD)		
	31/08/2022	Bore location los	st due to road resurfacing		
DI I1	17/11/2022	Bore location lost due to road resurfacing			
BH1	17/02/2023	Bore location los	st due to road resurfacing		
	10/05/2023	Bore location los	st due to road resurfacing		
	31/08/2022	2.12	414.06		
BH2	17/11/2022	1.93	414.25		
BHZ	17/02/2023	2.98	413.20		
	10/05/2023	2.90	413.28		
	31/08/2022	0.45	410.92		
DUID	17/11/2022	0.59	410.78		
BH3	14/02/2023	0.87	410.50		
	10/05/2023	0.60	410.77		
	01/09/2022	4.52	413.40		
DIIA	16/11/2022	3.25	414.67		
BH4	13/02/2023	4.88	413.04		
	10/05/2023	5.33	412.59		
	02/09/2022	11.72	417.44		
DIII	17/11/2022	11.20	417.96		
BH6	14/02/2023	11.65	417.51		
	10/05/2023	11.96	417.20		
	31/08/2022	2.42	410.55		
BH7	17/11/2022	2.42	410.55		
ВП/	14/02/2023	2.69	410.28		
	10/05/2023	2.31	410.66		
	31/08/2022	2.25	411.87		
DLIO	17/11/2022	3.18	410.94		
BH8	14/02/2023	3.02	411.10		
	10/05/2023	3.00	411.12		
	01/09/2022	2.26	414.54		
DUITO	17/11/2022	2.06	414.74		
BH10	14/02/2023	2.44	414.36		
	09/05/2023	2.44	414.36		
	01/09/2022	2.23	410.24		
DUI14	16/11/2022	2.01	410.46		
BH14	13/02/2023	3.19	409.28		
	11/05/2023	2.84	409.63		

Notes:

SWL – Standing Water Level mBTOC – Metres Below Top of Casing mAHD – Metres Australian Height Datum

6.1.2 Groundwater Quality

Table 12, below, provides a summary of groundwater exceedances against the adopted ANZECC 2000 Freshwater 95% Species Protection, ANZECC 2000 Irrigation and ANZECC 2000 Livestock guidelines. A complete results table is provided in Appendix B, while copies of the laboratory analysis certificates are provided in Appendix D.

Table 9 Groundwater Exceedances

	Solids	Major Ions		Metals	
	SQT	Chloride	Sodium (filtered)	Chromium (III+VI)	Zinc
	mg/L	mg/L	mg/L	mg/L	mg/L
EQL	10	1	0.5	0.001	0.005
ANZECC 2000 FW 95%					0.008
ANZECC 2000 Irrigation		175	115	0.1	2
ANZECC 2000 Livestock	2,000			1	20

Field ID	Date	Lab Report Number	r				
BH2	31 Aug 2022	EM2216860	417	209	96	<0.001	0.04
BH2	17 Nov 2022	EM2222858	342	181	97	<0.001	0.044
BH2	17 Feb 2023	EM2302775	385	199	103	<0.001	0.053
BH2	10 May 2023	EM2308315	469	226	117	<0.001	0.057
BH3	31 Aug 2022	EM2216860	1,830	932	423	<0.001	0.061
BH3	17 Nov 2022	EM2222858	1,820	991	431	0.002	0.159
BH3	14 Feb 2023	EM2302525	1,380	669	304	0.01	0.09
BH3	10 May 2023	EM2308315	2,030	917	406	0.003	0.045
BH4	01 Sep 2022	EM2217005	1,380	570	253	0.019	0.061
BH4	16 Nov 2022	EM2222748	1,410	688	283	0.03	0.077
BH4	13 Feb 2023	EM2302400	1,060	550	239	0.012	0.035
BH4	10 May 2023	EM2308315	1,510	720	303	0.012	0.017
BH6	02 Sep 2022	EM2217005	439	215	94	0.001	0.059
BH6	17 Nov 2022	EM2222858	375	197	91	0.001	0.077
BH6	14 Feb 2023	EM2302525	395	182	91	0.003	0.043
BH6	10 May 2023	EM2308315	425	180	90	0.001	0.034
BH7	31 Aug 2022	EM2216860	588	263	119	0.002	0.037
BH7	17 Nov 2022	EM2222858	462	168	100	0.004	0.018
BH7	14 Feb 2023	EM2302525	573	205	111	0.035	0.07
BH7	10 May 2023	EM2308315	500	210	106	0.003	0.013
BH8	31 Aug 2022	EM2216860	521	139	116	0.013	0.072
BH8	16 Nov 2022	EM2222748	455	100	101	0.01	0.023
BH8	14 Feb 2023	EM2302525	656	96	114	0.102	0.098
BH8	10 May 2023	EM2308315	489	94	112	0.011	0.009
BH10	01 Sep 2022	EM2217005	764	150	85	0.021	0.108
BH10	18 Nov 2022	EM2222858	566	206	96	0.016	0.071
BH10	14 Feb 2023	EM2302525	563	215	103	0.005	0.062
BH10	09 May 2023	EM2308222	459	200	95	0.003	0.028
BH14	01 Sep 2022	EM2217005	1,240	517	187	0.014	0.046
BH14	16 Nov 2022	EM2222748	820	409	168	0.024	0.073
BH14	13 Feb 2023	EM2302400	978	363	163	0.048	0.059
BH14	11 May 2023	EM2308446	893	378	158	0.004	0.016

All groundwater sites exceeded at least one of the adopted assessment criteria including ANZECC 2000 Fresh Water 95% guideline, ANZECC 2000 Irrigation, ANZECC 2000 Livestock and groundwater quality objectives (as nominated by the Aftercare Management Plan), during each monitoring event. Zinc was the most consistent exceedance, though sodium and chloride also had multiple detects.

Zinc exceeded the ANZECC 2000 Fresh Water 95% guideline at all groundwater bores at all events in the 2022/2023 monitoring period. Chloride had at least one exceedance against the ANZECC 2000 Irrigation guideline at all sites except BH8, while sodium exceeded the ANZECC 2000 Irrigation guideline at all groundwater bores except B6 and B10. Chromium (III+VI) had one exceedance at BH8 in February 2023 against the ANZECC 2000 Irrigation guideline. The only TDS exceedance was detected at BH3 in May 2023, which breached the ANZECC 2000 Livestock guidelines. All laboratory results from the 2022/2023 program are located in Appendix B.

Results were in line with historic trends at the majority of monitoring bores. However, BH8 reached its highest iron concentration (162 mg/L) during the February 2023 monitoring event, and BH10 had its highest potassium and total alkalinity records (19 mg/L and 95 mg/L respectively) in August 2022. Chloride concentrations were lowest when compared with historic results at BH6 and BH7 (168 mg/L and 180 mg/L respectively) while BH2 had its lowest alkalinity concentrations (32 mg/L) in November 2022.

A summary of the yearly exceedances against the ANZECC 2000 guidelines for the bores is presented in Table 10.

Table 10 Summar	y of Exceedances	for Groundwater Quality	ty for the 2022/2023 Monitoring Period
-----------------	------------------	-------------------------	--

Exceedances	Groundwater Bores							
	BH2	BH3	BH4	BH6	BH7	BH8	BH10	BH14
TDS	✓	×	✓	✓	✓	✓	✓	✓
Chloride	×	×	×	×	×	✓	×	×
Sodium	×	×	×	✓	×	×	✓	×
Ammonia as N	✓	✓	✓	✓	✓	✓	✓	✓
Nitrate as N	✓	✓	✓	✓	✓	✓	✓	✓
Chromium (III+VI)	✓	✓	✓	✓	✓	×	✓	✓
Zinc	×	×	×	×	×	×	×	×

Notes:

^{*} indicates potential impact to the protected Beneficial Use

[✓] indicates no identified impact to protected Beneficial Use

A summary of exceedances of groundwater samples collected from the 2022/2023 monitoring period against the Water Quality Objectives nominated by the Aftercare Management Plan is given in Table 11.

Table 11 Water Quality Objective Exceedances

Analytes	Groundwater Quality Exceedances
pH	Bores with detects outside of 6.5-8
	09/2022 – BH6, BH10
	11/2022 – BH2, BH4, BH6, BH10
	02/2023 – BH2, BH4, BH6, BH10
	05/2023 – BH2, BH3, BH7, BH8, BH10
Total dissolved solids	09/2022 – BH3
(TDS)	No detects in other monitoring events
Calcium (CA)	No bores
Magnesium (Mg)	No bores
Sodium (Na)	09/2022 – BH3, BH4, BH7, BH8, BH14
	11/2022 – BH3, BH4, BH14
	02/2023 – BH3, BH4, BH14
	05/2023 – BH2, BH3, BH4, BH14
Chloride (CI)	Bores with detects outside of 25-700 mg/L
	09/2022 – BH3
	11/2022 – BH3
	02/2023 – No bores
0.1.1(00.1)	05/2023 – BH3, BH4
Sulphate (SO4)	No bores
Ammonia (NH3)	09/2022 – BH8, BH10
	11/2022 – BH8, BH10
	02/2023 – BH8, BH10
NULL (NICO)	05/2023 – BH7, BH8, BH10
Nitrate (NO3)	09/2022 – BH6, BH10
	11/2022 – BH6
	02/2023 – BH2, BH6
Total Kialdahl nitragan	05/2023 – BH2, BH6, BH10
Total Kjeldahl nitrogen (TKN)	No bores
Chromium (Cr)	All bores, every monitoring round except BH3 in August 2022 and BH2 in all
	monitoring events.
Iron (Fe)	All bores, every monitoring round except BH6 in the November 2022 and May
	2023 monitoring events.
Zinc (Zn)	All bores in every monitoring round.

6.1.3 Groundwater Trend Graphs

Groundwater historical trend graphs are provided below. The graphs indicate the groundwater results for the 2022/2023 monitoring program to be relatively consistent with historical data. The historical groundwater results table is provided in Appendix E.

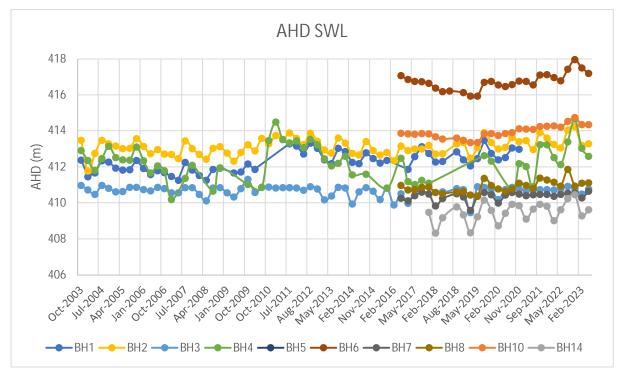


Figure 5 Groundwater historical trend graph – Standing Water Level (SWL)

Groundwater standing water levels (SWL) were mostly similar to historically recorded values, while a slight increasing trend was observed at BH6, BH8 and BH10 since August 2019. In November 2022 the majority of bores were at the highest SWL seen throughout historic and current sampling events.

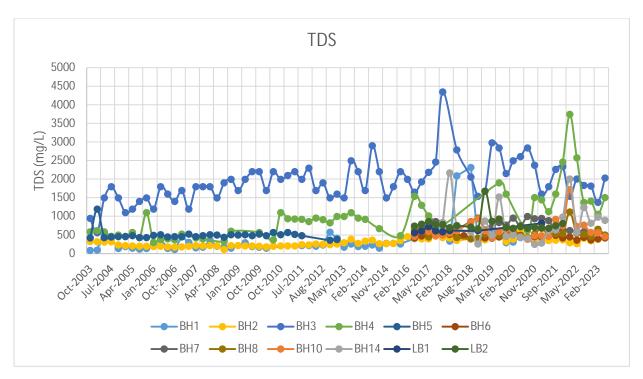


Figure 6 Groundwater historical trend graph – Total Dissolved Solids (TDS)

Groundwater total dissolved solids (TDS) corresponded to historic values at all bores during all sampling events in 2022/2023. TDS spikes were observed at BH4, BH8, BH10, and BH14 during the February 2022 monitoring event, with the highest value of 3740 mg/L detected at BH4.

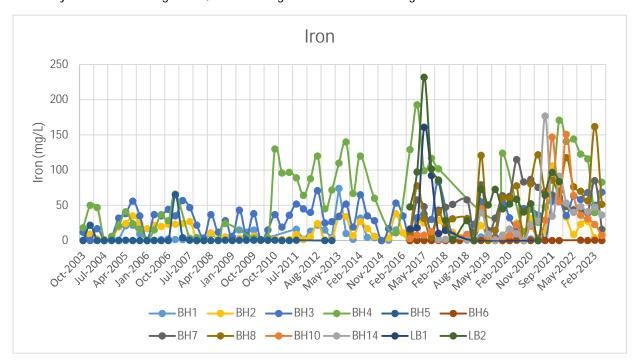


Figure 7 Groundwater historical trend graph – Iron

Iron at BH2 and BH10 returned to historic levels after the peak events in September 2021. BH8 reached its highest concentration of 162 mg/L during the February 2023 monitoring event. BH6 consistently has the lowest iron levels of all groundwater locations, while BH4 tends to have the highest. Concentrations at all other locations vary over most rounds with no noticeable trends.

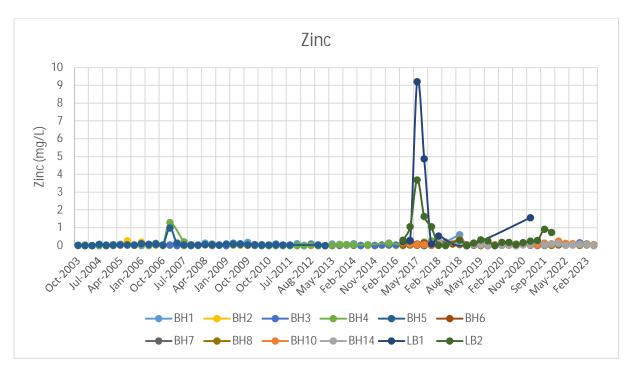


Figure 8 Groundwater historical trend graph – Zinc

Concentrations of zinc at groundwater sites were within historic ranges with no noticeable trends. Zinc concentrations in LB1 and LB2 peaked in May 2017 to maximum values seen at any sites (9.21 mg/L and 3.69 mg/L respectively), both locations became blocked (in May 2021 and February 2022 respectively) and no further results are available.

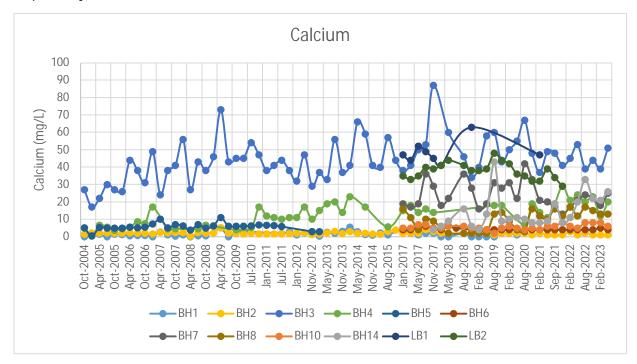


Figure 9 Groundwater historical trend graph – Calcium

Groundwater calcium concentrations were steady in relation to historic-values. BH14 had the second highest value of 33 mg/L in August 2022 compared with the historical high of 43 mg/L in August 2019. BH2, BH6 and BH10 have the lowest concentrations in calcium across the site and tend to have quite steady results, while BH3 has the highest concentrations.

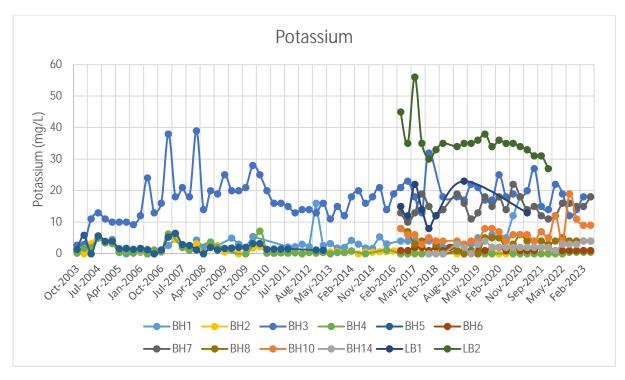


Figure 10 Groundwater historical trend graph - Potassium

Potassium concentrations remained steady at all bores throughout the 2022/2023 program and were within historic ranges at all bores, except BH10, which reached its highest value of 19 mg/L in August 2022.

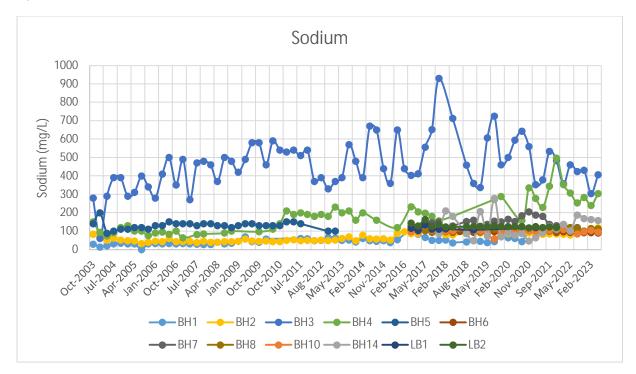


Figure 11 Groundwater historical trend graph – Sodium

A long-term increasing trend for sodium can be seen from January 2011 at BH4 with the peak reading of 497 mg/L in November 2021, this site consistently has the highest values. BH14 had its highest sodium concentrations in the 2022/2023 monitoring program since August 2019.

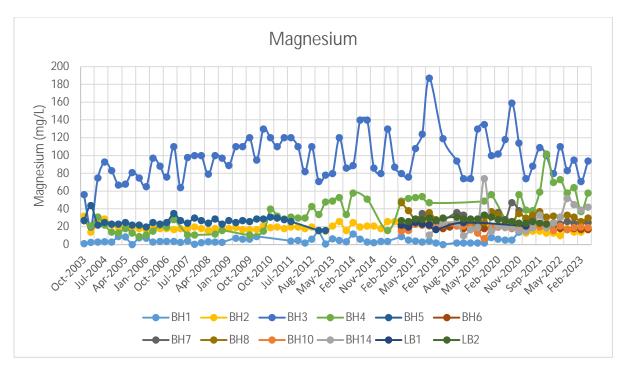


Figure 12 Groundwater historical trend graph – Magnesium

Magnesium in all bores was in line with historically recorded values. BH14 results were elevated in the 2022/2023 monitoring program, with the second highest value (52 mg/L) in August 2022 compared with the maximum record of 74 mg/L in August 2019. BH3 tends to show the highest concentrations.

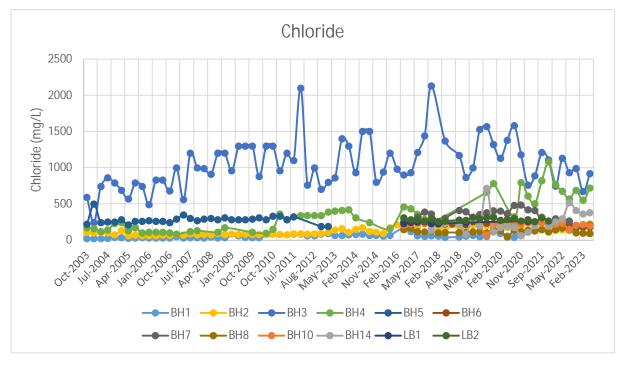


Figure 13 Groundwater historical trend graph - Chloride

Groundwater chloride readings were in line with historically recorded values. A long-term increasing trend can be seen from January 2011 at BH4 with a peak value of 1080 mg/L in November 2021. Chloride at BH7 has decreased since September 2021 and reached its lowest value of 168 mg/L in November 2022. This decreasing trend can was also observed at BH6, BH8 and BH10 during the 2022/2023 monitoring program.

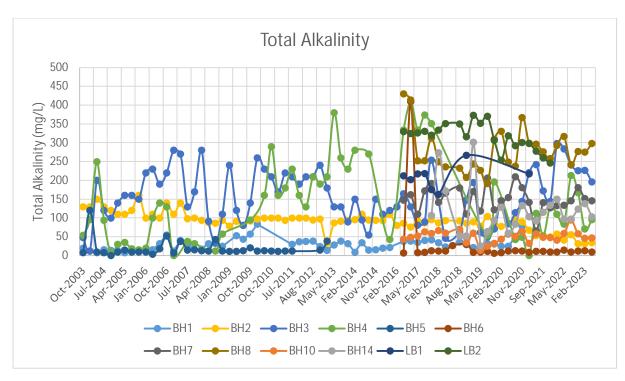


Figure 14 Groundwater historical trend graph - Total Alkalinity

Some noticeable historic spikes in total alkalinity can be seen at BH6 and BH14, while BH10 had its highest total alkalinity concentration of 95 mg/L in the August 2022 monitoring event. Concentrations of total alkalinity at BH2 have decreased since February 2021 and reached the lowest value at this location (32 mg/L) in November 2022 and February 2023.

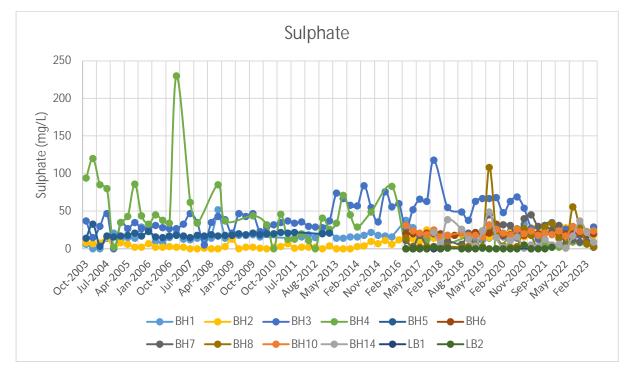


Figure 15 Groundwater historical trend graph – Sulphate

Sulphate concentrations conformed to historic values. BH2 has shown a long-term increase in sulphate concentrations since August 2014, while BH3 and BH4 are both showing decreased concentrations over time.

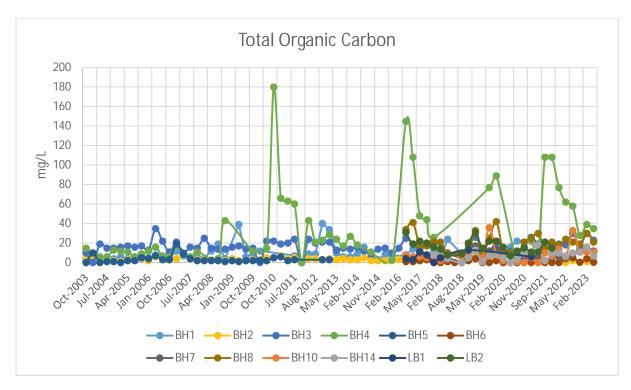


Figure 16 Groundwater historical trend graph – Total Organic Carbon (TOC)

Total organic carbon concentrations (TOC) were in line with historic results at most bores. BH10 saw some elevated concentrations of 33 mg/L in August 2022. BH2 reached 6 mg/L in May 2023, the highest result seen at this monitoring location since February 2019. Across the groundwater sites at Creswick BH2 and BH6 show the lowest concentrations, while BH4 consistently has the highest results. No irregular results were noted in the 2022/2023 program.

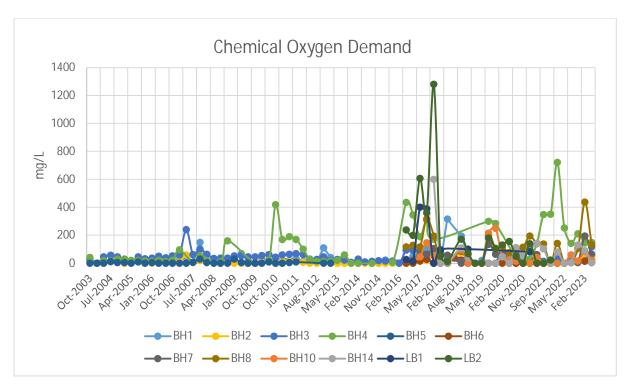


Figure 17 Groundwater historical trend graph – Chemical Oxygen Demand (COD)

Chemical oxygen demand (COD) peak values were seen at many bores in 2017. BH4 reached the highest level (721 mg/L) in February 2022, while BH2, BH3, BH6, BH7 and BH8 saw elevated concentrations in February 2023.

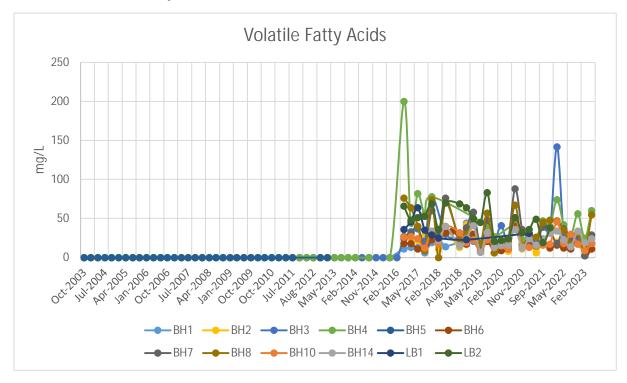


Figure 18 Groundwater historical trend graph – Volatile Fatty Acids

Two obvious spikes of volatile fatty acids (VFA) have occurred at the site (200 mg/L in BH4 and 142 mg/L in BH3). BH3, BH6 and BH7 all had concentrations of 2.5 mg/L in February 2023 which are generally the lowest results for any of the groundwater bores since 2016.

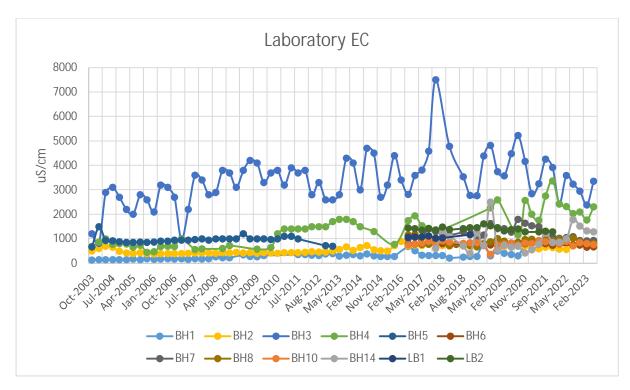


Figure 19 Groundwater historical trend graph – Laboratory EC

Groundwater EC corresponded to historic trends. BH3 has the highest level of EC among all the monitoring bores since sampling began, with a peak value of 7500 us/cm in November 2017, it consistently has the highest results.

6.2. Surface Water and Leachate Monitoring Results

6.2.1 Surface Water Quality

Table 12, below, provides a summary of surface water exceedances against the adopted ANZECC (2000) 95% Species Protection Freshwater Ecosystem Guideline, ANZECC (2000) Irrigation and ANZECC (2000) Livestock. Complete surface water results are provided in Appendix B while copies of the laboratory analysis certificates are provided in Appendix D.

Table 12 Surface Water Exceedances

					<u> </u>	
			Majo	Major Ions		
			Chloride	Sodium (filtered)	Zinc	
			mg/L	mg/L	mg/L	
EQL			1	0.5	0.005	
ANZECC 2000 FW	95%				0.008	
ANZECC 2000 Irrig	gation		175	115	2	
ANZECC 2000 Live	estock				20	
Field ID	Date	Lab Report Number			•	
U/S BH3	01 Sep 2022	EM2217005	34	24	<0.005	
U/S BH3	16 Nov 2022	EM2222748	30	19	0.012	
U/S BH3	13 Feb 2023	EM2302400	172	77	<0.005	
U/S BH3	11 May 2023	EM2308446	189	84	0.011	
@ BH3	01 Sep 2022	EM2217005	34	24	<0.005	
@ BH3	16 Nov 2022	EM2222748	31	19	0.012	
@ BH3	13 Feb 2023	EM2302400	205	84	<0.005	
@ BH3	11 May 2023	EM2308446	220	80	0.01	
D/S BH3	31 Aug 2022	EM2216860	39	25	<0.005	
D/S BH3	16 Nov 2022	EM2222748	31	19	0.013	
D/S BH3	13 Feb 2023	EM2302400	122	55	<0.005	
D/S BH3	11 May 2023	EM2308446	186	108	0.01	
Leachate	31 Aug 2022	EM2216860	132	72	0.033	
Leachate	17 Nov 2022	EM2222858	136	73	0.036	
Leachate	14 Feb 2023	EM2302525	264	130	<0.005	
Leachate	09 May 2023	EM2308222	210	100	<0.005	
Wetland	31 Aug 2022	EM2216860	123	67	< 0.005	
Wetland	17 Nov 2022	EM2222858	55	38	0.006	
Wetland	14 Feb 2023	EM2302525	404	207	0.01	
Wetland	09 May 2023	EM2308222	236	108	<0.005	
Dredge	31 Aug 2022	EM2216860	235	99	0.007	
Dredge	18 Nov 2022	EM2222858	248	118	0.005	
Dredge	16 Feb 2023	EM2302773	286	126	< 0.005	
Dredge	09 May 2023	EM2308222	246	113	<0.005	

There were exceedances for Zinc, Chloride and Sodium for the surface water sites in the 2022/2023 monitoring period.

Chloride had at least one exceedance at each site against the ANZECC 2000 Irrigation guideline during the 2022/2023 monitoring program, with the Dredge site exceeding during all four events. Sodium exceedances against the ANZECC 2000 Irrigation guideline occurred at the Leachate Pond, Wetland and Dredge Hole. Zinc exceeded the ANZECC 2000 Fresh Water 95% guideline at all surface water sites

at least once during the 2022/2023 monitoring period except at the Dredge Hole, where no exceedances were noted. No exceedances at any surface water sites were detected against the ANZECC 2000 Livestock guideline. A summary of the exceedances against the ANZECC 2000 guidelines is given in Table 13.

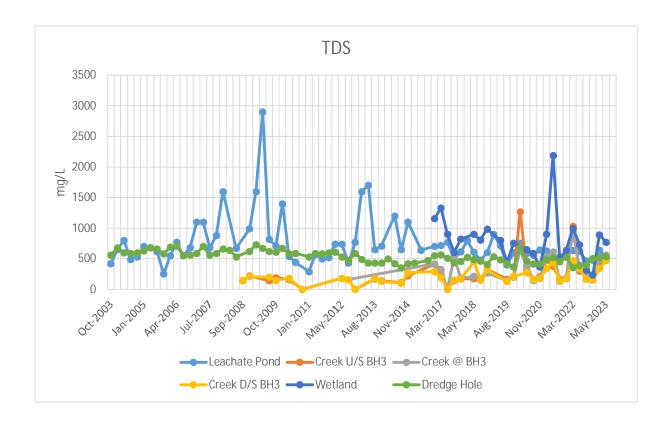
Table 13 Summary of Exceedances for Surface Water Quality for the 2022/2023 Monitoring Period

	Surface Water Sites					
Exceedances	Leachate Pond	Creek U/S BH3	Creek	Creek D/S BH3	Wetland	Dredge Hole
			@ BH3			
рН	✓	✓	✓	✓	✓	✓
TDS	✓	✓	✓	✓	✓	✓
Chloride	×	*	×	*	×	*
Sodium	×	✓	✓	✓	×	*
Ammonia as N	✓	✓	✓	✓	✓	✓
Nitrate (as N)	✓	✓	✓	✓	✓	✓
Chromium	./	./	./	./	./	./
(III+VI)	•	Y	•	_	Y	•
Zinc	×	*	×	*	×	✓

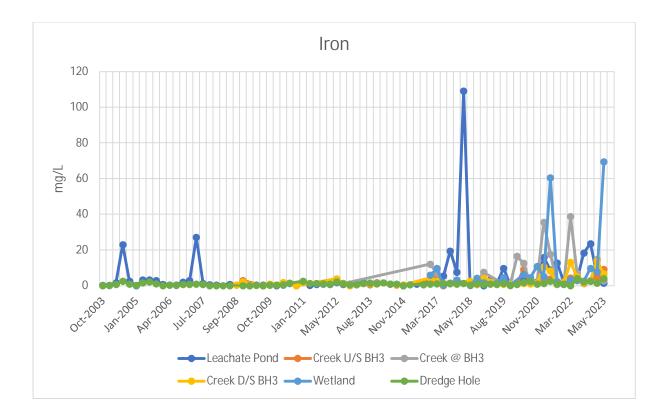
Notes:

A summary of exceedances of surface water samples collected from the 2022/2023 monitoring period against the Water Quality Objectives nominated by the Aftercare Management Plan is given in Table 14.

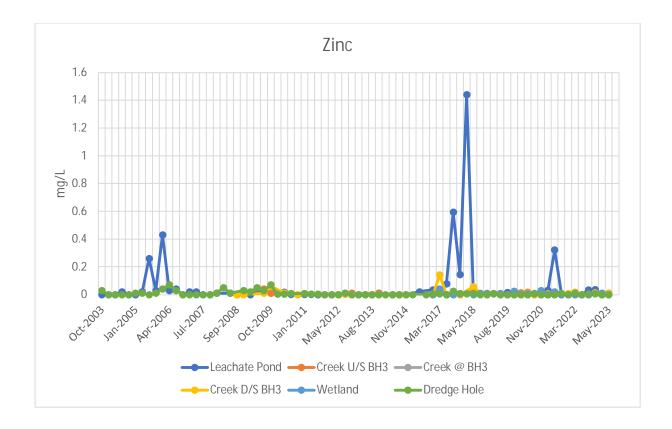
Table 14 Exceedances from nominated detect values

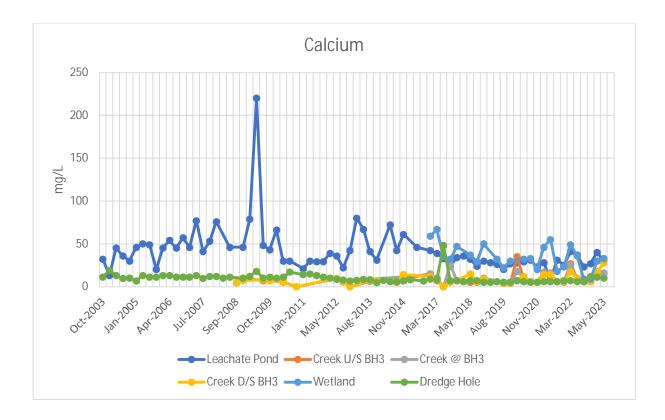

Analytes	Surface Water Quality Objectives
рН	Surface Water Location with detects outside of 6.5-8
	11/2022 – Dredge Hole
	02/2023 – Creek @ BH3
Total dissolved solids (TDS)	No detects in monitoring events
Calcium (CA)	No detects in monitoring events
Magnesium (Mg)	No detects in monitoring events
Sodium (Na)	No water quality objective
Chloride (CI)	No water quality objective
Sulphate (SO4)	No detects in monitoring events
Ammonia (NH3)	09/2022 – Leachate Pond
	11/2022 – Leachate Pond
	02/2023 – Leachate Pond
	05/2023 – Creek D/S BH3, Leachate Pond, Wetland
Nitrate (NO3)	09/2022 – Creek U/S BH3, Creek @ BH3, Creek D/S BH3
	11/2022 – Creek U/S BH3, Creek @ BH3, Creek D/S BH3
Total Kjeldahl nitrogen (TKN)	No water quality objective
Chromium (Cr)	09/2022 - Creek U/S BH3, Creek @ BH3, Creek D/S BH3, Leachate Pond,
	Wetland
	11/2022 – Creek U/S BH3, Creek @ BH3, Creek D/S BH3, Leachate Pond,
	Wetland
Iron (Fe)	No water quality objective
Zinc (Zn)	09/2022 – Leachate Pond
	11/2022 – Creek U/S BH3, Creek @ BH3, Creek D/S BH3, Leachate Pond
	02/2023 – Wetland
	05/2023 – Creek U/S BH3, Creek @ BH3, Creek D/S BH3

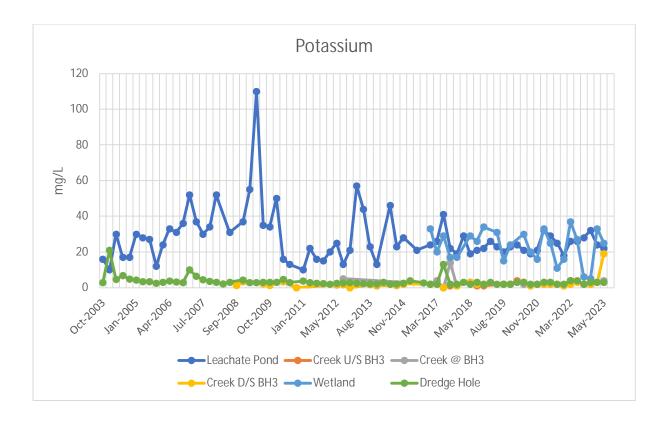
^{*} indicates potential impact to the protected Beneficial Use

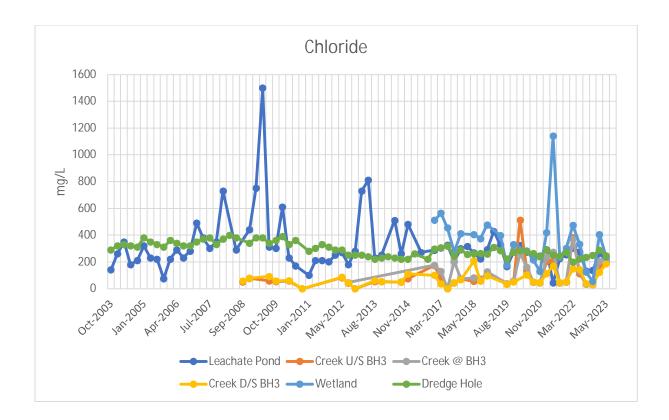

[✓] indicates no identified impact to protected Beneficial Use

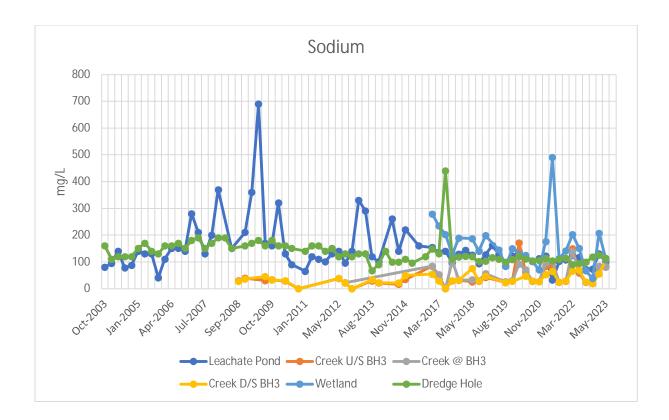
6.2.2 Surface Water Trend Graphs

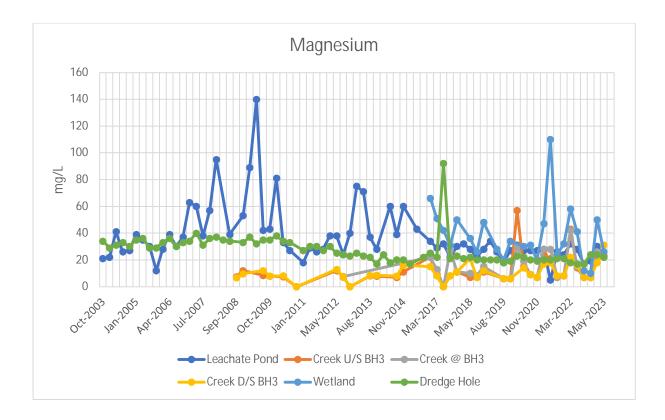

Surface historical trend graphs are provided below. The graphs indicate the surface water results for the 2022/2023 monitoring program to be relatively consistent with historical data. The historical groundwater results table is provided in Appendix E.

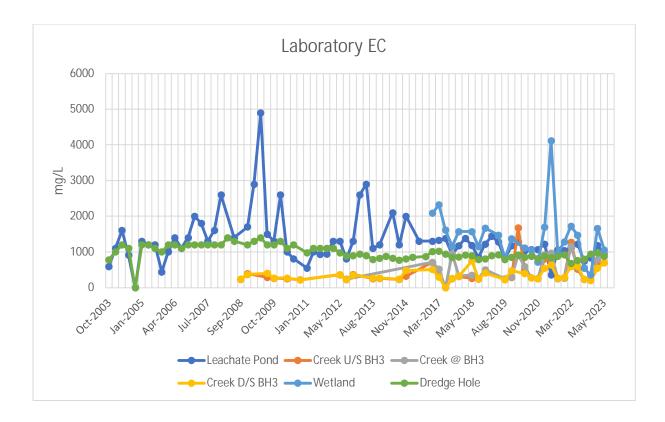

Surface water TDS corresponded to historic values. During this latest monitoring period sites tended to have lower levels in the second half of the year (September and November 2022 events) and higher levels at the beginning of the year (February and May 2023 events). Surface water site at the Creek D/S of BH3 showed the lowest TDS for three of the four events and the Wetland site displayed a noticeable increase during the February and May 2023 monitoring events (from 313 and 236 mg/L to 892 and 768 mg/L). Over the course of sampling the three creek sites (D/S BH3, @ BH3 and U/S BH3) tended to have much lower TDS levels than the other three sites. The Dredge Hole has the most stable levels.


As per TDS, the Dredge hole tends to show the lowest and most stable iron levels across the surface water sites. Iron at the other five sites were quite different throughout the four events with no single event showing similarities in ranges across the sites. During the May 2023 event the Wetland reached peak iron levels of 69.4 mg/L, the only other noticeable spike at this site was in May 2021 of 60.5 mg/L. In September and November 2022, the Leachate Pond experienced high levels of iron (18.3 and 23.5 mg/L respectively) before dropping back to more average values in March and May 2023 (5.48 and 1.42 mg/L). The Leachate Pond shows several spikes throughout sampling history, the most noticeable occurring in February 2018 (the highest results seen across all sites), with levels reaching 109 mg/L.


Zinc levels were relatively low across all surface water sites during the 2022/2023 sampling program. There were no noticeable spikes at any of the sampled sites. The Leachate Pond had the highest levels in the September and November events (0.033 and 0.036 mg/L respectively), which correlates with historic results. Zinc levels at this surface water site have shown several historic and noticeable spikes and the highest zinc values noted at any of the surface water locations. During the 2017/2018 sampling program zinc at the Leachate Pond was 0.594 mg/L in August and 1.44 mg/L in February.


Surface water calcium levels were within historic trends, with the Leachate Pond and the Wetland generally showing the highest levels across all sites. The Creek D/S of BH3 showed a spike in zinc levels during the May 2023 sampling event, reaching 28 mg/L (the highest levels noted at this location since monitoring began in September 2008). Since August 2019 most sites tend to show some minor seasonal variance with most sites having higher zinc levels at the beginning of the year, which aligns with TDS levels.


Historically the Leachate Pond and the Wetland have the highest potassium levels across the site (which is similar across several measured analytes) and this remained consistent during the 2022/2023 sampling program. However, in September and November 2022 the Wetland returned uncharacteristically low zinc results of 6 and 5 mg/L respectively, these are the lowest results seen at this location since monitoring began in January 2017. The Creek location D/S of BH3 experienced peak levels of potassium in May 2023 of 19 mg/L, all other rounds it remained relatively low and within historic values.


Surface water chloride levels were all within historic ranges except for one reading from the Wetland, which dropped to very low levels in November 2022 (55 mg/L), which is the lowest seen at this location. In the next two sampling events (March and May) chloride rose again and was similar to historic values. The three creek locations generally show the lowest chloride levels, and the Dredge Hole site remains the most static. The Leachate Pond has had the highest chloride levels across the site (1500 mg/L in April 2009) followed by the Wetland (1140 mg/L in May 2021).

Sodium concentrations at all six sites remained in line with historic results during the 2022/2023 sampling event. The lowest Sodium results were at Creek @ BH3 and Creek D/S of BH3 (both 19 mg/L in November 2022), while the highest result for the year was seen the Wetland (207 mg/L in March 2023). The Wetland had a marked increase in results between the end of 2022 and the beginning of 2023, going from 38 mg/L to 207 mg/L, with 38 mg/L being the lowest concentration of sodium at the Wetland. In May 2023 the Creek D/S from BH3 reached its peak value, since sampling began at the site in September 2008, of 108 mg/L.

All surface water sites had concentrations of magnesium that were within historic levels apart from the Creek location D/S of BH3 which had a magnesium concentration of 31 mg/L (its peak value since September 2008). As with several other analytes Magnesium is showing some seasonality over the last couple of years of the sampling program with results becoming higher at the beginning of the year (March and May) and lower towards the end of the year (September and November). Although the Dredge Hole site tends to remain relatively stable across sampling events there is one noticeable peak at this site in May 2017 of 92 mg/L. The Leachate Pond and the Wetland sites have historically had the highest values.

EC concentrations across the majority of surface water sites were within historic trends, with no noticeable results received during the 2022/2023 program, except for the Wetlands site. In November 2022 the Wetland EC was 361 mg/L, which is incredibly low for this particular site (and the lowest seen for this site since sampling started) and rose to 1660 mg/L in March 2023 (similar to historic). This increase of results at the Wetland between November 2022 and March 2023 is seen across several different analytes. The highest EC concentrations have generally been at the Leachate Pond, it reached 4900 mg/L in April 2009.

6.3. LEACHATE MONITORING RESULTS

Three Leachate bores LB1, LB2 and LB3 were visited quarterly during the 2022/2023 monitoring period. However, LB1 and LB2 were not sampled as the bores were blocked. Leachate results have been calculated from the gauging results of leachate bores for the 2022/23 monitoring program and are provided in Table 15.

Table 15 Leachate gauging results

ID	Date	SWL (mBTOC)	SWL (mAHD)	Maximum Leachate Levels (mAHD)	Exceedances (m)
	01/09/2022	13.22	413.88	414.90	-1.02
LB1	18/11/2022	12.99	414.11	414.90	-0.79
LDT	13/02/2023	13.52	413.58	414.90	-1.32
	10/05/2023	13.33	413.77	414.90	-1.13
	01/09/2022	14.48	412.09	412.30	-0.21
LB2	18/11/2022	14.37	412.20	412.30	-0.10
LDZ	13/02/2023	14.48	412.09	412.30	-0.21
	10/05/2023	14.17	412.40	412.30	0.10
	01/09/2022	10.59	415.51	414.80	0.71
LB3	18/11/2022	10.39	415.71	414.80	0.91
LDS	13/02/2023	10.69	415.41	414.80	0.61
	10/05/2023	10.70	415.40	414.80	0.60

In May 2023 the leachate level at LB2 was 0.1 m higher than the maximum allowable leachate level, while LB3 exceeded the maximum leachate levels during all 2022/2023 monitoring events. The average of leachate exceedances at LB3 was 0.71 m, and the highest exceedance noted was 0.91 m in November 2022.

7. SUBSURFACE GAS BORE MONITORING RESULTS

There are four landfill gas monitoring bores, BH10 and BH12 are onsite and BH09 and BH11 are offsite. Of the onsite bores, one is directly into the waste mass (BH12) and is not used to monitor fugitive gas emissions. It is an indicator of the landfill gas source concentration. Results of landfill gas monitoring events in 2022/2023 is presented in Table 16. Peak methane and carbon dioxide results that are highlighted red exceed the allowable % v/v for these gases.

Table 16 Landfill Gas Monitoring Bore Results

Site	Data	Peak Methane	Peak Carbon Dioxide
Site	Date	% v/v	% v/v
Asses	ssment Criteria	1	10
	1/09/2022	0	10.3
BH9	16/11/2022	0	0.2
рпу	13/02/2023	0	5.5
	18/05/2023	0.1	6.3
	1/09/2022	0.9	10.3
BH10	17/11/2022	0	3.2
ВПІО	13/02/2023	0	5.1
	18/05/2023	0	9.9
	1/09/2022	0	4
DI I11	18/11/2022	0	5.3
BH11	17/02/2023	0	2.2
	18/05/2023	1	3.5
	1/09/2022	37.5	16.3
BH12*	18/11/2022	37.3	17.4
DHIZ	17/02/2023	45	17.1
	18/05/2023	45.8	18.5

^{*} Bore is into the waste mass and is therefore not used to monitor fugitive emissions

8. SURFACE EMISSION MONITORING RESULTS

The buildings and services were monitored during September and November in 2022 and February and May in 2023. The landfill cap walkover was carried out in September and November 2022. Surface monitoring emission results are located within the field sheets in Appendix A of this report.

8.1. BUILDINGS AND SERVICES

According to the Landfill BPEM guidelines, for buildings and services on and adjacent to the landfill site, the acceptable methane concentration in the air is 5,000 ppm. No exceedances were recorded during the 2022-2023 monitoring program, the highest level recorded was 2.9 ppm at TP11 in August 2022 which is located in front of the green waste pile.

8.2. LANDFILL CAP WALK OVER

The landfill cap walk over was conducted in September and November 2022. According to the Landfill BPEM guidelines, assessment criteria is 100 ppm over a final cap, and 1000 ppm within 50mm of any penetrations through the final cap. All recorded values were below 4 ppm, indicating that the surface cap condition is acceptable as per the exceedance criteria. The highest methane concentration noted was 3.2 ppm in November 2022. Observation of the capped area of the landfill indicates minor cracking of the surface area.

9. QUALITY CONTROL / QUALITY ASSURANCE

9.1. PROGRAM

A summary of the QA/QC procedures adopted for the monitoring program are provided in Table 17.

Table 17 Quality Assurance and Quality Control program

Item	Description
Laboratory accreditation	Groundwater samples were submitted to laboratories that are accredited by NATA for the analytes tested. All primary samples were submitted to ALS Springvale and secondary samples to Eurofins.
Sample collection and transport	All samples were collected by suitably qualified Ventia personnel trained in the relevant procedures. Samples were sealed into laboratory prepared containers then transferred to the laboratory using the correct sample preservation and chain of custody protocols.
Field and inter-lab duplicates	Blind and split duplicate samples were collected at greater than the nominated rate of 1 in 20 primary samples. One duplicate set was taken for each groundwater monitoring event in the 2022/2023 period.
Relative percentage difference (RPD)	The relative percentage difference (RPD) is assessed to evaluate the sampling methodology and the analytical techniques used. The RPD is calculated using the following formula:
	$RPD = \frac{(Result 1 - Result 2)}{(Result 1 + Result 2)/2} X 100\%$
	RPD's have been assessed under the following criteria:
	1. RPDs have only been considered where a concentration is greater than 1 times the EQL
	2. Acceptable RPDs for each EQL multiplier range are: 81 (1-10 x EQL); 50 (10-30 x EQL); 20 (> 30 x EQL)
	3. The significance of RPD of results should be evaluated on the basis of sampling technique, sample variability, absolute concentration relative to criteria and laboratory performance
	4. This variation can be expected to be higher for organic analysis than for inorganics, and for low concentration of analytes.
Sample blanks	Sample blanks were submitted to verify that no cross contamination had occurred during sampling or in the transfer of samples to the laboratory (Table I2):
	• Equipment rinsate samples were collected at the nominated rate of 1 in 20 primary samples or one per sample type, which ever was greater.
	The frequency of sample blanks was considered suitable to satisfy the data quality objectives of the program. One rinsate was taken for each groundwater monitoring event in the 2022/2023 period.

Item	Description
Laboratory quality control procedures	All analytical laboratories used by Ventia are required to adhere to NATA endorsed methodologies and conduct regular control checks on their analyses. Ventia requires these laboratories to regularly provide results of control method blanks, repeat blind replicates and recoveries. The following summarises pertinent acceptance limits for internal laboratory analysis: • Surrogates: 75 - 125% recovery • Matrix spikes: 70% - 130% • Laboratory control samples: 75% - 125% • Laboratory Duplicate Samples: Acceptable RPDs for each EQL multiplier range are: Not Applicable (1-10 x EQL); 50 (10-30 x EQL)*; 20 (> 30 x EQL)*. • Method Blanks: 0 to <pql *unless="" established.<="" heterogeneity="" is="" sample="" td=""></pql>

9.2. RESULTS

The QA/QC program consisted of the collection of duplicate samples and rinsate samples. A summary of the QA/QC results is provided in Appendix C. All samples were collected by suitably qualified Ventia personnel and the sampling methods, including sample preservation, transport and decontamination, were consistent with Ventia procedures.

Across the sampling programs, 56 primary samples were collected during the 2022/2023 monitoring program. Four field and four inter-lab duplicate samples were collected (blinds and splits), in accordance with the data quality objective. This exceeds the National Environment Protection (Assessment of Site Contamination) Measure 1999 (NEPM) recommended minimum rate of one per 20 samples.

A review of exceedances indicates that where RPDs were above the adopted criteria, differences can generally be attributed to two different categories. Table 18 (below) displays all high RPD's, results that are coloured yellow are those that are less than 10 times the Estimated Quantitation Limit (EQL). Results coloured green are where the primary samples were higher than the secondary value which provides a more conservative observation of the analyte. In the November 2022 monitoring event, total organic carbon (TOC) in the inter-lab sample was higher than the primary sample, taken at BH8. There are no nominated exceedance values for the ANZECC guidelines or nominated water quality objectives, but for a more conservative observation the secondary sample results should be used.

The Relative Percentage Difference (RPD) for field duplicates and inter-lab duplicates were calculated for all results and are summarised in Appendix C.

Table 18 RPD Exceedances

Site	Secondary Sample	Date	Primary Lab Report	Secondary Lab Report	Analyte	Units	EQL	Primary Result	Secondary Result	RPD
BH8	Blind	31/08/2022	EM2216860	EM2216860	Chromium (III+VI)	mg/L	0.001	0.013	0.005	89
					COD	mg/L	10	<10	69	149
BH8	Split	31/08/2022	EM2216860	920032	Chromium (III+VI)	mg/L	0.001	0.013	0.006	74
БПО	Split	3170072022	LIVI2210000	920032	Volatile Fatty Acids (as Acetic Acid)	ug/L	5,000	17,000	<5,000	109
					Alkalinity (Carbonate as CaCO3)	mg/L	1	<1	25	185
BH8	Split	16/11/2022	EM2222748	942675	TOC	mg/L	1	19	35	59
					Volatile Fatty Acids (as Acetic Acid)	ug/L	5,000	31,000	<5,000	144
BH14	Blind	13/02/2023	EM2302400	EM2302400	Ammonia as N	mg/L	0.01	0.51	0.21	83
БП14	DIIIIU	13/02/2023	EIVI2302400	EIVI2302400	Kjeldahl Nitrogen Total	mg/L	0.1	0.9	0.5	57
					Alkalinity (Bicarbonate as CaCO3)	mg/L	1	138	<20	149
					Alkalinity (total) as CaCO3	mg/L	1	138	<20	149
					Chloride	mg/L	1	363	200	58
BH14	Split	13/02/2023	EM2302400	963891	Ammonia as N	mg/L	0.01	0.51	0.24	72
					Chromium (III+VI)	mg/L	0.001	0.048	0.004	169
					COD	mg/L	10	90	42	73
					Zinc	mg/L	0.005	0.059	0.020	99
					Volatile Fatty Acids (as Acetic Acid)	ug/L	5,000	19,000	<5,000	117
					TDS	mg/L	10	425	280	41
BH6	Split	10/05/2023	EM2308315	989018	Ammonia as N	mg/L	0.01	<0.01	0.03	100
БПО	Эрпі	10/03/2023	LIVI23003 13	707010	Volatile Fatty Acids (as Acetic Acid)	ug/L	5,000	11,000	<5,000	75

There were detects in the rinsate samples at all visits except the November 2022 monitoring round. The results are displayed in Appendix C. No rinsate exceedance is more than 10 times the Limit of reporting (LOR). The highest detect was for electrical conductivity (9 uS/cm in August 2022). Alkalinity and total anions were detected in three of the four rinsate samples, TOC and zinc were detected in August 2022, while Volatile Fatty Acids were detected in February 2023. The results indicate care needs to be taken when cleaning the equipment used, however, rinsate results have been compared against primary samples and results are in line with historic, showing this has not adversely impacted results.

Based on the QA/QC program, the analytical data is sufficient for the purposes of this monitoring program.

10. CONCLUSIONS

10.1. GROUNDWATER

All groundwater sites exceeded at least one of the adopted assessment criteria during each monitoring event (ANZECC 2000 guidelines for Fresh Water 95%, Irrigation and Livestock and the groundwater quality objectives as nominated by the Aftercare Management Plan). Results were in line with historic trends at the majority of monitoring bores.

ANZECC 2000 Fresh Water 95% guideline had zinc exceedances at all bores and all events in the 2022/2023 monitoring period. The ANZECC 2000 Irrigation guidelines had groundwater bore exceedances throughout the monitoring events for the following analytes: Chloride at all sites (except BH8), sodium at all sites (except B6 and B10) and chromium (III+VI) at BH8 in February 2023. The only TDS exceedance was detected at BH3 in May 2023, which breached the ANZECC 2000 Livestock guidelines. Results were in line with historic trends at the majority monitoring groundwater bores.

10.2. SURFACE WATER

There were exceedances at all surface water locations throughout the monitoring event that related to surface water quality objectives (as nominated by the Aftercare Management Plan) as well as against the ANZECC 2000 Irrigation guidelines. All sites but the Dredge Hole also had exceedances against the ANZECC 2000 Freshwater 95% guidelines for zinc during at least one sampling event.

The results from the 2022/2023 monitoring program were consistent with historical monitoring data. It is difficult to determine the impact of the landfill in isolation of surrounding land uses.

10.3. LEACHATE

Leachate levels at LB1, LB2 and LB3 were monitored quarterly. Leachate levels at LB2 was 0.1 m above than the maximum leachate level in May 2023, while LB3 in all 2022-2023 monitoring events exceeded the maximum allowable leachate levels. Average the exceedance at LB3 was 0.71 m with the highest exceedance (0.91 m) occurring in November 2022.

10.4. SUBSURFACE LANDFILL GAS

Subsurface landfill gas monitoring performed in September and November 2022 and February and May 2023 indicate that there were no peak methane concentrations exceeding the assessment criteria levels at BH9, BH10 and BH11. Peak Carbon Dioxide levels exceeded in November 2022 for BH9 and BH10, there were no other exceedances throughout the rest of the monitoring events for these bores or for BH11. BH12 displays expected high levels of methane and carbon showing that the site is still producing these gases, however results are not compared against adopted action levels due to its location in the waste mass.

10.5. SURFACE EMISSION LANDFILL GAS

The landfill cap walk over was completed in September and November 2022. All observed values were below 4 ppm, which is below the assessment criteria of 100 ppm.

All methane surface emission readings recorded for the landfill cap surface, buildings, structures and underground services during the 2022/2023 monitoring program were below the prescribed Landfill BPEM action levels indicating very low surface emission methane levels onsite.

10.6. DATA UNCERTAINTY AND STATEMENT OF LIMITATIONS

Ventia has used a degree of skill and care ordinarily exercised by reputable members of our profession practising in the same or similar locality. The conclusions presented in this report are relevant to the

condition of the site and the state of legislation currently enacted as at the date of this report. Ventia does not make any representation or warranty that the conclusions in this report will be applicable in the future as there may be changes in the condition of the site, applicable legislation or other factors that would affect the conclusions contained in this report.

11. DECLARATION

This declaration acknowledges that Ventia has been requested by Hepburn Shire Council to undertake an Environmental Monitoring Program in accordance with Creswick Landfill Aftercare Management Plan, Part 2: Environmental Risk Assessment and Monitoring Program (2015).

Ventia sampling procedures were adopted for all environmental monitoring undertaken. All groundwater and surface water monitoring was conducted in accordance with EPA Victoria's Groundwater Sampling Guidelines (Publication 669; April 2000) and Sampling and Analysis of Waters, Wastewaters, Soils and Wastes (IWRG701; EPA, 2009). All landfill gas bore and surface emissions monitoring were conducted in accordance with the EPA Landfill Gas Fugitive Emissions Monitoring Guidelines (Publication 1684,2018).

This report provides a summary of the analysis conducted under the monitoring program, an assessment of the likely offsite water quality and air quality impacts associated with the landfill as well as recommendations for improvements to the monitoring program.

Ventia is of the opinion that this report prepared on behalf of Hepburn Shire Council and titled '2021/2022 Annual Monitoring Report – Creswick Landfill' contains adequate information of suitable quality to enable the Hepburn Shire Council to fulfill its monitoring requirements.

12. REFERENCES

DELWP 2021. Environment Reference Standard 2021. Department of Environment, Land, Water and Planning, State Government of Victoria.

EPA 2000. A Guide to the Sampling and Analysis of Waters, Wastewaters, Soils and Wastes. Publication 441.7, Environmental Protection Authority, State Government of Victoria.

EPA 2000. Groundwater Sampling Guidelines. Publication 669. Environmental Protection Authority, State Government of Victoria.

EPA 2009. Industrial Waste Resource Guidelines: Sampling & Analysis of Waters, Wastewaters, Soils & Wastes. Publication IWRG701 – June 2009. Environmental Protection.

EPA 2016. Post-Closure Pollution Abatement Notice. Notice ID: 90006899

EPA 2018. Landfill Gas Fugitive Emissions Monitoring Guidelines. Publication 1684, February 2018. Authorised and published by EPA Victoria.

EPA 2015. Siting, Design, Operation and Rehabilitation of Landfills Publication 788.3, August 2015. Authorised and published by EPA Victoria.

Mackenzie Environmental 2015a, Creswick Landfill Aftercare Management Plan Part 1: Inspection and Maintenance Plan

Mackenzie Environmental 2015b, Creswick Landfill Aftercare Management Plan Part 2: Environmental Risk Assessment and Monitoring Program

Mackenzie Environmental 2015c, Creswick Landfill Supplementary Hydrogeological Assessment.

National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended in 2013)

Senversa 2016. Auditor Verification Report – Former Creswick Landfill, 32 Anne Street, Creswick, VIC.

SEPP 2018. State Environment Protection Policy (Waters). Victorian Government Gazette S 493. Environment Protection Act 1970, Act No. 8056/1970.

2022/2023 ANNUAL MONITORING REPORT – CRESWICK LANDFILL

<u>APPENDICES</u>

APPENDIX A - FIELD RECORD SHEETS

SAMPLING RESULTS SUBMISSION SHEET (SAMPLING UNDERTAKEN BY VENTIA)

Client: Hepburn Shire Council

Site: Creswick Landfill

Program: Groundwater/Surface Water Sampling

Sampling Period: AUG 22 Sampler: A Callander Phone: 427529051

Bore/Sample Point	Date	Time (EST)	Depth (mbmp)	SWL m (mbtoc)	Electrical Conductivity (us/cm @ 25°C)	рН	Temp. (°C)	Redox (mV)	DO (mg/L)	Comments
LB1	1/09/2022	14:25	17.28	13.22	N/A	N/A	N/A	N/A	N/A	Bore blocked no sample possible
LB2	1/09/2022	14:05	15.41	14.48	N/A	N/A	N/A	N/A	N/A	Bore blocked no sample possible
LB3	1/09/2022	13:45		10.59						SWL only
Creek U/S BH3	1/09/2022	10:55			219	7.52	8.9	26.4	10.65	High flow conditions
Creek @ BH3	31/08/2022	10:15			216	7.55	8.7	-36.0	10.42	Outflow from wetland flowing into creek
Creek D/S BH3	31/08/2022	10:30			214	7.24	10.3	93.8	10.26	High flow conditions
Leachate Pond	31/08/2022	16:05			708	7.15	14.4	-61.2	3.94	Thick orange turbidity
Wetland	31/08/2022	13:30			482	7.21	11.5	-44.2	10.91	Sampled near wetland outflow
Dredge hole	31/08/2022	9:03			746	6.68	9.9	82.3	9.54	Increase in shoreline vegetation
вн1	31/08/2022									Bore location lost due to road resurfacing
BH2	31/08/2022	9:35	5.00	2.12	635	6.12	14.1	72.3	4.13	Bailed sample due to partial blockage of bore
внз	31/08/2022	13:06	3.89	0.45	3364	6.67	10.9	-75.4	0.2	Yellow brown turbidity nil odour
BH4	1/09/2022	13:12	7.92	4.52	2378	6.36	12.7	-82.3	0.1	Yellow silver colour turbidity slight odour

Bore/Sample Point	Date	Time (EST)	Depth (mbmp)	SWL m (mbtoc)	Electrical Conductivity (us/cm @ 25°C)	рН	Temp. (°C)	Redox (mV)	DO (mg/L)	Comments
вн6	2/09/2022	7:29	15.48	11.72	713	5.03	13.8	242.0	0.34	Slightly white-grey turbidity
вн7	31/08/2022	15:13	7.18	2.42	1127	6.42	12.4	-42.1	0.21	light yellow brown turbidity with nil odour
вн8	31/08/2022	10:28	7.57	2.25	1122	6.71	12.2	-96.6	0.33	Grey-brown thick turbidity nil odour. Duplicate samples taken
BH10	1/09/2022	16:15	6.70	2.26	691	5.99	12.6	96.6	0.35	High yellow-brown turbidity nil odour.
BH14	1/09/2022	9:46	6.30	2.23	1608	6.42	10.7	-30.7	0.63	Brown turbidity nil odour

NOTES:

Groundwater samples taken using the low-flow method (as per EPA Publication 669) unless otherwise noted All depths measured from the top of the PVC casing

¹ 2

Notes: All bore measuremen	nts are referend	ced to the mark					Lshoot	Env I	Monitoring	7	ventia	
Para ID No	D	uэ									40	
		H2	=	Project Name						pling Staff		
Project Area:			Ī					-		ter Model		
	31/0		_	Project No					WQ. Met	er Serial #	.844337.	
	cted Bore D											
Internal Dia	ameter (mm)			Easting		-	Total I	Depth (m)		Screen	Depth From (m)
Drop Tube already in	n bore? (Y/N)	N		Northing		-	Water	Level (m)		Scre	en Depth To (m)
Drop Tub	e Length (m)	0.00		Zone			Set Pump ir	nlet at (m)		_	Set Pump at (m)
Additiona	I Information											
Bore Fi	ield Measur	ements										
	9:35		otal Depth (m)					ar	Depth pump			
Static Water Level (m)		•	re Diam (mm)	50	Open Scree		0.00		Depth of pump			
	l Purging De				Sampling D					T .	les Required	
Purge Method					oling Method				Bottle Type	Quantity	Bottle Type	Quantity
Time Pump in					Time Started							
		WL m (start)			me Stopped							
Time Stopped		-	2.12		sample ID?							
Volume Removed (I)		-			sample ID?		-					
Discharge Rate (I/m)		- -		Rinsate	sample ID?		-					
Time of removal	ump Remov		n(post-removal)		Rore Der	oth at end (m)						
	ump Setting		П(резкленночан)		2010 201	strat ond (m)						
Fill / Discharge used		CPM		Air/Gas	Pressure (kPa)							
Comments		<u>- </u>		-		Bore Bailed	-					
Comments						partially bloc	kad					
					вые	Dartially bloc	keu					
		Field Parameters	are considered sta	able when within th	ne FPA limits for 3	consecutive me	easurements					_
	17	= vol required for		+/- 3%	+/- 0.05 pH	+/- 10%	+/- 10mV	+/- 10%	Ī			
Time	Cumulative Volume	Water Level (m	Stability of Field	Specific Conductance	рН	Temp.	Redox	DO		Commen	ts (colour,	
line	Removed (I)	below MP)	Params	EC (uS/cm) @25°C		(°C)	ORP (mV)	(mg/L)		turbidity, od	dours, other)	
10:00	4	2.27	Keep purging	635	6.12	14.08	72.3	4.13	turbid red colou	ur nil odou	ır	

Notes: All bore measuremen	nts are referen	ced to the mark					l sheet .	. Fny N	Monitoring	ventia	
Poro ID No	В	НЗ			-	_		LIIVI	_	f AC	
			-	Project Name				=	Sampling Staf		1.500
Project Area:								=	WQ. Meter Mode		
Date		8/2022		Project No					WQ. Meter Serial #	,05710	0
	cted Bore D										
Internal Dia	imeter (mm)			Easting	-		Total I	Depth (m)	Screen	n Depth From (m)
Drop Tube already in	bore? (Y/N)	N		Northing			Water	Level (m)	Scre	een Depth To (m)
Drop Tube	e Length (m)	0.00		Zone			Set Pump ir	nlet at (m)		Set Pump at (m)
Additiona	I Information										
	ield Measur										
Time of SWL			ital Depth (m)	3.89	Mid-screen	accessible?	Cle	ar	Depth pump set at (m)	2.50	
Static Water Level (m)	0.45	Вог	re Diam (mm)	50	Open Scree	n Length(m)	0.00	-	Depth of pump inlet (m	2.50	
Wel	l Purging De	etails			Sampling D	etails			Sample Bo	ttles Required	
Purge Method	LF	Pump Type	Micro purge	Samp	oling Method	LF			Bottle Type Quantity	y Bottle Type	Quantity
Time Pump in	12:25	Pump in' WL	0.44		Time Started	13:06	WL m (start)	0.45			
Time Started	12:26	WL m (start)	0.45	Т	ime Stopped	13:11	WL m (end)	0.45			
Time Stopped	13:03	WL m (end)	0.45	1	sample ID?		-				
Volume Removed (I)		-			sample ID?		-				
Discharge Rate (I/m)		_		Rinsate	sample ID?		_				
	ump Remov		· (1	0.45	00		2.00				
Time of removal	13:21		n(post-removal)	0.45	Rote Det	oth at end (m)	3.89				
Fill / Discharge used	25/5	JS CPM		Air/Gas	Pressure (kPa)	30					
Comments					measured to		a not cover				
	20	Field Parameters a	are considered sta	+/- 3%	e EPA limits for 3 c	onsecutive mea	surements +/- 10mV	+/- 10%			_
Time	Cumulative Volume	Water Level (m below MP)	Stability of Field Params	Specific Conductance EC (uS/cm)	pH	Temp.	Redox	DO		ents (colour,	
40.00	Removed (I)	0.45		@25°C	4.70	(°C)	ORP (mV)	(mg/L)		odours, other)	
12:30	0.1	0.45	Keep purging	3199	6.70	10.84	-41.9	3.63	Yellow brown turbid nil o		
12:33	0.5	0.44	Keep purging	3404	6.65	10.82	-51.9	0.85	Yellow brown turbid nil o		
12:36	0.9	0.45	Keep purging	3430	6.64	10.99	-65.6	0.44	Yellow brown turbid nil o		
·	1.3	0.45	Keep purging	3437	6.65	11.13	-67.8	0.46			
12:42	1.7	0.44	Keep purging	3434	6.65	10.99	-70.0	0.40	Yellow brown turbid nil o		
12:45	2.1	0.45	Keep purging	3392	6.66	10.96	-72.1	0.35	Yellow brown turbid nil o		
12:48	2.5	0.45	Keep purging	3396	6.66	10.98	-73.4	0.34			
12:51	2.9	0.45	Keep purging	3395	6.65	10.96	-73.7	0.31	Yellow brown turbid nil o		
12:54	3.3	0.45	Keep purging	3385	6.66	11.00	-74.5	0.30	Yellow brown turbid nil o		
12:57	3.7	0.45	Keep purging	3370	6.67	10.98	-74.8	0.22	Yellow brown turbid nil o		
13:00	4.1	0.45	Keep purging	3363	6.67	10.84	-75.4	0.24	Yellow brown turbid nil o		
13:03	4.5	0.450	OK to sample	3364	6.67	10.91	-75.4	0.23	Yellow brown turbid nil o	doui	

Hidden formulas here --> <-- Hidden

Notes: All bore measuremen	nts are referenc	ced to the mark					l sheet -	· Fnv ľ	Monitoring V	entia	
Rore ID No.	В	3H4		Project Name		J			Sampling Staff	AC	
		7117		•							U 500
Project Area:			.						WQ. Meter Model		
Date	cted Bore D	9/2022 Notails		Project No					WQ. Meter Serial #	,0571	0
Ехре	Cled Bore L	Details									
Internal Dia	imeter (mm)		-	Easting		= -	Total [Depth (m)	Screen	Depth From (m)
Drop Tube already in						-				een Depth To (m	
Drop Tube	e Length (m)	0.00	-	Zone		= -	Set Pump in	let at (m)		Set Pump at (m)
Additional	I Information										_
Bore Fi	eld Measur	ements									
Time of SWL	11:25	To	tal Depth (m)	7.92	Mid-screen	accessible?	Clea	ar	Depth pump set at (m)	7.00	
Static Water Level (m)	4.52	Во	re Diam (mm)	50	Open Scree	n Length(m)	0.00		Depth of pump inlet (m)	7.00	
Wel	l Purging De	etails			Sampling D	Details			Sample Bot	tles Required	
Purge Method	low flow			Samp	oling Method	low flow			Bottle Type Quantity	Bottle Type	Quantity
Time Pump in		·					WL m (start)				
Time Started							WL m (end)	4.52			
Time Stopped		WL m (end)	4.52	i .	sample ID?		_				
Volume Removed (I)		-			sample ID?		-				
Discharge Rate (I/m)				Rinsate	sample ID?		_				
	ump Remov		-(t)	4.52	D D	-464	7.02				
Time of removal	13:30 tump Setting	_	n(post-removal)	4.52	Bore Det	oth at end (m)	7.92				
Fill / Discharge used	25/5	gs CPM		Air/Gas	Pressure (kPa)	30					
Comments											
	20	Field Parameters a	are considered stal	+/- 3%	e EPA limits for 3 c	eonsecutive mea	+/- 10mV	+/- 10%			
Time	Cumulative Volume	Water Level (m below MP)	Stability of Field Params	Specific Conductance EC (uS/cm)	pH	Temp.	Redox	DO	Commer	nts (colour,	
	Removed (I)		raidins	@25°C		(°C)	ORP (mV)	(mg/L)		dours, other)	
12:42	0.1	4.52	Keep purging	2278	6.35	11.00	-36.3	2.86	Pumping delayed by pur		
12:45	0.5	4.52	Keep purging	2343	6.35	11.77	-46.1	1.61	yellow silver turbidity very		
12:48	0.9	4.52	Keep purging	2341	6.36	11.71	-50.7	0.88	yellow silver turbidity very		
12:51	1.3	4.52	Keep purging	2339	6.34	12.10	-58.6	0.31	yellow silver turbidity very	slight odour	
12:54	1.7	4.52	Keep purging	2349	6.34	12.42	-65.1	0.15	yellow silver turbidity very	slight odour	
12:57	2.1	4.52	Keep purging	2359	6.35	12.56	-71.2	0.09	yellow silver turbidity very	slight odour	
13:00	2.5	4.52	Keep purging	2375	6.36	12.67	-77.1	0.06	yellow silver turbidity very	slight odour	
13:03	2.9	4.52	Keep purging	2386	6.37	12.70	-81.2	0.05	yellow silver turbidity very		
13:06	3.3	4.52	Keep purging	2378	6.36	12.72	-82.1	0.05	yellow silver turbidity very	slight odour	
13:09	3.7	4.52	OK to sample	2378	6.36	12.70	-82.3	0.05	yellow silver turbidity very	slight odour	
			Ì								

Hidden formulas here --> <-- Hidden

Notes: All bore measuremen	nts are referen	ced to the mark	ed measuremer	nt point. All Coor	dinates in GDA	A94 .				1//	entia	
			TS Grou	ndwater	sampli	ng field	l sheet -	Env I	Monitoring		CIILIA	•
Bore ID No	В	H6		Project Name	He	epburn Land	Fill		Samp	oling Staff	AC	
Project Area:				Client					WQ. Met	er Model	Aqua troll	500
Date		9/2022		Project No					WQ. Mete	er Serial #	,05710	
	cted Bore D			,							,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
,										_		
Internal Dia	ımeter (mm)			Easting			Total E	Depth (m)		Screen	Depth From (m)	
Drop Tube already in	bore? (Y/N)	N		Northing			Water	Level (m)		Scre	en Depth To (m)	
Drop Tube	e Length (m)	0.00		Zone			Set Pump in	let at (m)			Set Pump at (m)	ı
A -1 -1245			='			•				-		
	I Information											
Time of SWL	eld Measur 6:45		otal Depth (m)	15.48	Mid scroon	accessible?	Clea	or.	Depth pump s	ot at (m)	15.00	
Static Water Level (m)			re Diam (mm)	50	Open Scree			JI	Depth of pump			
	l Purging De		re Diam (mm)	30	Sampling D		0.00				les Required	
Purge Method		Pump Type	Bladder	Samn	ling Method				Bottle Type	1	Bottle Type	Quantity
Time Pump in		Pump in' WL			Time Started		WL m (start)	11 74	201110 1920	Quartity	Bottle Type	Quartity
Time Started		WL m (start)					WL m (end)					
Time Stopped		WL m (end)			sample ID?			11.70				
Volume Removed (I)		-			sample ID?		∃ ∘					
Discharge Rate (I/m)	0.11	-			sample ID?		-					
	ump Remov	/al										
Time of removal			n(post-removal)	11.74	Bore Dep	oth at end (m)	15.50					
P	ump Setting	gs										
Fill / Discharge used	22/8	СРМ		Air/Gas	Pressure (kPa)	40						
Comments												
												Ī
												Ī
		Field Parameters	are considered stal	ble when within the	e EPA limits for 3 c	onsecutive mea	surements					<u>-</u>
	22	= vol required for		+/- 3%	+/- 0.05 pH	+/- 10%	+/- 10mV	+/- 10%				
Time	Cumulative Volume	Water Level (m	Stability of Field	Specific Conductance	рН	Temp.	Redox	DO		Commen	ts (colour,	
line	Removed (I)	below MP)	Params	EC (uS/cm) @25°C		(°C)	ORP (mV)	(mg/L)		turbidity, od	lours, other)	
7:02	0.1	11.74	Keep purging	702	5.16	12.42	154.2	2.34	clear nil odour			
7:05	0.5	11.73	Keep purging	712	5.07	13.07	187.6	1.13	Slight white turb	idity nil oc	lour	
7:08	0.9	11.74	Keep purging	713	5.10	13.02	190.8	1.08	Slight white turb	idity nil oc	lour	
7:11	1.3	11.74	Keep purging	715	5.06	13.57	213.9	0.62	Slight white turb	idity nil oc	lour	
7:14	1.7	11.74	Keep purging	715	4.99	13.80	221.8	0.58	Slight white turb	idity nil oc	lour	
7:17	2.1	11.73	Keep purging	714	5.04	13.79	230.2	0.48	Slight white turb			
7:20	2.5	11.74	Keep purging	713	5.04	13.89	236.4	0.36	Slight white turb			
7:23	2.9	11.74	Keep purging	714	5.04	13.84	240.2	0.35	Slight white turb			
							242.0	0.34	Slight white turb			
7:26	3.3	11.74	OK to sample	713	5.03	13.82	242.0	0.34	signt write turb	idity fill oc	ioui	

	its are referen	ced to the mark	ed measuremer	•						V	entia	
			TS Grou	ndwater	sampli	ng field	l sheet -	· Env N	Monitoring		Citcio	•
Bore ID No	В	H7		Project Name		HEPBURN GV	V	=	Samp	oling Staff	AC	
Project Area:				Client	H	HEPBURN SHIF	RE		WQ. Met	er Model	Aqua trol	500
Date	31/0	8/2022		Project No				3	WQ. Mete	er Serial #	,05710)
Expe	cted Bore D	etails										
Internal Dia	meter (mm)			Easting			Total [Depth (m)		Screen	Depth From (m))
Drop Tube already in	horo2 (V/NI)	N	·								een Depth To (m)	
brop lube alleady iii	bole! (17N)	IN	<u>.</u>	Northing							en bepin 10 (III)	'
Drop Tube	e Length (m)	0.00		Zone			Set Pump in	ilet at (m)			Set Pump at (m)	
Additional	Information											
Bore Fi	eld Measur	ements										
Time of SWL	14:05	To	tal Depth (m)	7.18	Mid-screen	accessible?	Clea	ar	Depth pump s	et at (m)	6.50	
Static Water Level (m)	2.42	Вог	re Diam (mm)	50	Open Scree	n Length(m)	0.00		Depth of pump	inlet (m)	6.50	
	Purging De				Sampling D					i	tles Required	
Purge Method			MicroPurge		ling Method				Bottle Type		Bottle Type	Quantity
Time Pump in		· ·					WL m (start)		1Ltr green	1		
·-		WL m (start)					WL m (end)	2.43	oml filtered meta			
Time Stopped		-	2.43		sample ID?		-		60ml COD	1		
Volume Removed (I) Discharge Rate (I/m)	4	-			sample ID?		-		50ml glass	1		
-	ımp Remov	val		Kirisate	sample iD:		_					
Time of removal	15:28		n(post-removal)	2.44	Bore Dep	oth at end (m)	7.18					
	ump Setting		<u> </u>									
Fill / Discharge used	25/5	СРМ		Air/Gas	Pressure (kPa)	30						
Comments					Į.	All times EST						
		Field Parameters a	are considered stal	ble when within the	e EPA limits for 3 c	onsecutive mea	surements					=
	28	= vol required for	3V method (L)	+/- 3%	+/- 0.05 pH	+/- 10%	+/- 10mV	+/- 10%				
Time	Cumulative Volume											
		Water Level (m below MP)	Stability of Field Params	Specific Conductance EC (uS/cm)	pH	Temp.	Redox	DO			nts (colour,	
14:46	Removed (I)	below MP)	Stability of Field Params	Conductance EC (uS/cm) @25°C		(°C)	ORP (mV)	(mg/L)		turbidity, o	dours, other)	
	Removed (I)	below MP)		Conductance EC (uS/cm) @25°C 1089	6.56	(°C)	ORP (mV) -14.9	(mg/L) 5.74	Light Yellow Bro	turbidity, o	dours, other)	
14:49	0.1 0.6	2.42 2.43		Conductance EC (u5/cm) @25°C 1089 1125	6.56	(°C) 11.63 11.90	ORP (mV) -14.9 -31.1	(mg/L) 5.74 0.86	Light Yellow Bro	turbidity, o	dours, other) dity. No odour. dity. No odour.	
14:49 14:52	0.1 0.6	2.42 2.43 2.44		Conductance EC (uS/cm) @25°C 1089 1125 1128	6.56 6.45 6.44	(°C) 11.63 11.90 12.12	ORP (mV) -14.9 -31.1 -35.7	(mg/L) 5.74 0.86 0.35	Light Yellow Bro	turbidity, or own turbic own turbic	dity. No odour. dity. No odour.	
14:49 14:52 14:55	0.1 0.6 1 1.5	2.42 2.43 2.44 2.43		Conductance EC (uS/cm) @25°C 1089 1125 1128	6.56 6.45 6.44 6.43	(°C) 11.63 11.90 12.12 12.18	ORP (mV) -14.9 -31.1 -35.7 -37.9	(mg/L) 5.74 0.86 0.35 0.26	Light Yellow Bro	turbidity, or own turbic own turbic own turbic	dours, other) dity. No odour. dity. No odour. dity. No odour. dity. No odour.	
14:49 14:52 14:55 14:58	0.1 0.6 1 1.5 2.1	2.42 2.43 2.44 2.43 2.43		Conductance EC (us/cm)	6.56 6.45 6.44 6.43	(°C) 11.63 11.90 12.12 12.18 12.21	ORP (mV) -14.9 -31.1 -35.7 -37.9 -39.4	(mg/L) 5.74 0.86 0.35 0.26 0.28	Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro	turbidity, or own turbic own turbic own turbic own turbic	dours, other) dity. No odour.	
14:49 14:52 14:55 14:58 15:01	0.1 0.6 1 1.5 2.1 2.5	2.42 2.43 2.44 2.43 2.43 2.43		Conductance EC (uS/m) #25°C 1089 1125 1128 1126 1123 1129	6.56 6.45 6.44 6.43 6.43	(°C) 11.63 11.90 12.12 12.18 12.21 12.28	ORP (mV) -14.9 -31.1 -35.7 -37.9 -39.4 -39.9	(mg/L) 5.74 0.86 0.35 0.26 0.28	Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro	turbidity, or own turbic own turbic own turbic own turbic own turbic	dours, other) dity. No odour.	
14:49 14:52 14:55 14:58 15:01 15:04	0.1 0.6 1 1.5 2.1 2.5 3	2.42 2.43 2.44 2.43 2.43 2.43 2.43		Conductance EC (uS/cm) e25°C 1089 1125 1128 1126 1123 1129 1129	6.56 6.45 6.44 6.43 6.43 6.41	(°C) 11.63 11.90 12.12 12.18 12.21 12.28 12.43	ORP (mV) -14.9 -31.1 -35.7 -37.9 -39.4 -39.9 -40.2	(mg/L) 5.74 0.86 0.35 0.26 0.28 0.35	Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro	turbidity, or wwn turbic wwn turbic wwn turbic wwn turbic wwn turbic wwn turbic	dours, other) dity. No odour.	
14:49 14:52 14:55 14:58 15:01 15:04 15:07	0.1 0.6 1 1.5 2.1 2.5 3	2.42 2.43 2.44 2.43 2.43 2.43 2.43 2.43	Params	Conductance EC (us/cm)	6.56 6.45 6.44 6.43 6.43 6.41 6.42	(c) 11.63 11.90 12.12 12.18 12.21 12.28 12.43	ORP (mV) -14.9 -31.1 -35.7 -37.9 -39.4 -39.9 -40.2 -41.9	(mg/L) 5.74 0.86 0.35 0.26 0.28 0.35 0.23	Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro	turbidity, or wan turbic wan turbic wan turbic wan turbic wan turbic wan turbic wan turbic	dours, other) dity. No odour.	
14:49 14:52 14:55 14:58 15:01 15:04	0.1 0.6 1 1.5 2.1 2.5 3	2.42 2.43 2.44 2.43 2.43 2.43 2.43		Conductance EC (uS/cm) e25°C 1089 1125 1128 1126 1123 1129 1129	6.56 6.45 6.44 6.43 6.43 6.41	(°C) 11.63 11.90 12.12 12.18 12.21 12.28 12.43	ORP (mV) -14.9 -31.1 -35.7 -37.9 -39.4 -39.9 -40.2	(mg/L) 5.74 0.86 0.35 0.26 0.28 0.35	Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro	turbidity, or wan turbic wan turbic wan turbic wan turbic wan turbic wan turbic wan turbic	dours, other) dity. No odour.	
14:49 14:52 14:55 14:58 15:01 15:04 15:07	0.1 0.6 1 1.5 2.1 2.5 3	2.42 2.43 2.44 2.43 2.43 2.43 2.43 2.43	Params	Conductance EC (us/cm)	6.56 6.45 6.44 6.43 6.43 6.41 6.42	(c) 11.63 11.90 12.12 12.18 12.21 12.28 12.43	ORP (mV) -14.9 -31.1 -35.7 -37.9 -39.4 -39.9 -40.2 -41.9	(mg/L) 5.74 0.86 0.35 0.26 0.28 0.35 0.23	Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro	turbidity, or wan turbic wan turbic wan turbic wan turbic wan turbic wan turbic wan turbic	dours, other) dity. No odour.	
14:49 14:52 14:55 14:58 15:01 15:04 15:07	0.1 0.6 1 1.5 2.1 2.5 3	2.42 2.43 2.44 2.43 2.43 2.43 2.43 2.43	Params	Conductance EC (us/cm)	6.56 6.45 6.44 6.43 6.43 6.41 6.42	(c) 11.63 11.90 12.12 12.18 12.21 12.28 12.43	ORP (mV) -14.9 -31.1 -35.7 -37.9 -39.4 -39.9 -40.2 -41.9	(mg/L) 5.74 0.86 0.35 0.26 0.28 0.35 0.23	Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro	turbidity, or wan turbic wan turbic wan turbic wan turbic wan turbic wan turbic wan turbic	dours, other) dity. No odour.	
14:49 14:52 14:55 14:58 15:01 15:04 15:07	0.1 0.6 1 1.5 2.1 2.5 3	2.42 2.43 2.44 2.43 2.43 2.43 2.43 2.43	Params	Conductance EC (us/cm)	6.56 6.45 6.44 6.43 6.43 6.41 6.42	(c) 11.63 11.90 12.12 12.18 12.21 12.28 12.43	ORP (mV) -14.9 -31.1 -35.7 -37.9 -39.4 -39.9 -40.2 -41.9	(mg/L) 5.74 0.86 0.35 0.26 0.28 0.35 0.23	Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro	turbidity, or wan turbic wan turbic wan turbic wan turbic wan turbic wan turbic wan turbic	dours, other) dity. No odour.	
14:49 14:52 14:55 14:58 15:01 15:04 15:07	0.1 0.6 1 1.5 2.1 2.5 3	2.42 2.43 2.44 2.43 2.43 2.43 2.43 2.43	Params	Conductance EC (us/cm)	6.56 6.45 6.44 6.43 6.43 6.41 6.42	(c) 11.63 11.90 12.12 12.18 12.21 12.28 12.43	ORP (mV) -14.9 -31.1 -35.7 -37.9 -39.4 -39.9 -40.2 -41.9	(mg/L) 5.74 0.86 0.35 0.26 0.28 0.35 0.23	Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro	turbidity, or wan turbic wan turbic wan turbic wan turbic wan turbic wan turbic wan turbic	dours, other) dity. No odour.	
14:49 14:52 14:55 14:58 15:01 15:04 15:07	0.1 0.6 1 1.5 2.1 2.5 3	2.42 2.43 2.44 2.43 2.43 2.43 2.43 2.43	Params	Conductance EC (us/cm)	6.56 6.45 6.44 6.43 6.43 6.41 6.42	(c) 11.63 11.90 12.12 12.18 12.21 12.28 12.43	ORP (mV) -14.9 -31.1 -35.7 -37.9 -39.4 -39.9 -40.2 -41.9	(mg/L) 5.74 0.86 0.35 0.26 0.28 0.35 0.23	Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro	turbidity, or wan turbic wan turbic wan turbic wan turbic wan turbic wan turbic wan turbic	dours, other) dity. No odour.	
14:49 14:52 14:55 14:58 15:01 15:04 15:07	0.1 0.6 1 1.5 2.1 2.5 3	2.42 2.43 2.44 2.43 2.43 2.43 2.43 2.43	Params	Conductance EC (us/cm)	6.56 6.45 6.44 6.43 6.43 6.41 6.42	(c) 11.63 11.90 12.12 12.18 12.21 12.28 12.43	ORP (mV) -14.9 -31.1 -35.7 -37.9 -39.4 -39.9 -40.2 -41.9	(mg/L) 5.74 0.86 0.35 0.26 0.28 0.35 0.23	Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro	turbidity, or wan turbic wan turbic wan turbic wan turbic wan turbic wan turbic wan turbic	dours, other) dity. No odour.	
14:49 14:52 14:55 14:58 15:01 15:04 15:07	0.1 0.6 1 1.5 2.1 2.5 3	2.42 2.43 2.44 2.43 2.43 2.43 2.43 2.43	Params	Conductance EC (us/cm)	6.56 6.45 6.44 6.43 6.43 6.41 6.42	(c) 11.63 11.90 12.12 12.18 12.21 12.28 12.43	ORP (mV) -14.9 -31.1 -35.7 -37.9 -39.4 -39.9 -40.2 -41.9	(mg/L) 5.74 0.86 0.35 0.26 0.28 0.35 0.23	Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro	turbidity, or wan turbic wan turbic wan turbic wan turbic wan turbic wan turbic wan turbic	dours, other) dity. No odour.	
14:49 14:52 14:55 14:58 15:01 15:04 15:07	0.1 0.6 1 1.5 2.1 2.5 3	2.42 2.43 2.44 2.43 2.43 2.43 2.43 2.43	Params	Conductance EC (us/cm)	6.56 6.45 6.44 6.43 6.43 6.41 6.42	(c) 11.63 11.90 12.12 12.18 12.21 12.28 12.43	ORP (mV) -14.9 -31.1 -35.7 -37.9 -39.4 -39.9 -40.2 -41.9	(mg/L) 5.74 0.86 0.35 0.26 0.28 0.35 0.23	Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro	turbidity, or wan turbic wan turbic wan turbic wan turbic wan turbic wan turbic wan turbic	dours, other) dity. No odour.	
14:49 14:52 14:55 14:58 15:01 15:04 15:07	0.1 0.6 1 1.5 2.1 2.5 3	2.42 2.43 2.44 2.43 2.43 2.43 2.43 2.43	Params	Conductance EC (us/cm)	6.56 6.45 6.44 6.43 6.43 6.41 6.42	(c) 11.63 11.90 12.12 12.18 12.21 12.28 12.43	ORP (mV) -14.9 -31.1 -35.7 -37.9 -39.4 -39.9 -40.2 -41.9	(mg/L) 5.74 0.86 0.35 0.26 0.28 0.35 0.23	Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro	turbidity, or wan turbic wan turbic wan turbic wan turbic wan turbic wan turbic wan turbic	dours, other) dity. No odour.	
14:49 14:52 14:55 14:58 15:01 15:04 15:07	0.1 0.6 1 1.5 2.1 2.5 3	2.42 2.43 2.44 2.43 2.43 2.43 2.43 2.43	Params	Conductance EC (us/cm)	6.56 6.45 6.44 6.43 6.43 6.41 6.42	(c) 11.63 11.90 12.12 12.18 12.21 12.28 12.43	ORP (mV) -14.9 -31.1 -35.7 -37.9 -39.4 -39.9 -40.2 -41.9	(mg/L) 5.74 0.86 0.35 0.26 0.28 0.35 0.23	Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro	turbidity, or wan turbic wan turbic wan turbic wan turbic wan turbic wan turbic wan turbic	dours, other) dity. No odour.	
14:49 14:52 14:55 14:58 15:01 15:04 15:07	0.1 0.6 1 1.5 2.1 2.5 3	2.42 2.43 2.44 2.43 2.43 2.43 2.43 2.43	Params	Conductance EC (us/cm)	6.56 6.45 6.44 6.43 6.43 6.41 6.42	(c) 11.63 11.90 12.12 12.18 12.21 12.28 12.43	ORP (mV) -14.9 -31.1 -35.7 -37.9 -39.4 -39.9 -40.2 -41.9	(mg/L) 5.74 0.86 0.35 0.26 0.28 0.35 0.23	Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro	turbidity, or wan turbic wan turbic wan turbic wan turbic wan turbic wan turbic wan turbic	dours, other) dity. No odour.	
14:49 14:52 14:55 14:58 15:01 15:04 15:07	0.1 0.6 1 1.5 2.1 2.5 3	2.42 2.43 2.44 2.43 2.43 2.43 2.43 2.43	Params	Conductance EC (us/cm)	6.56 6.45 6.44 6.43 6.43 6.41 6.42	(c) 11.63 11.90 12.12 12.18 12.21 12.28 12.43	ORP (mV) -14.9 -31.1 -35.7 -37.9 -39.4 -39.9 -40.2 -41.9	(mg/L) 5.74 0.86 0.35 0.26 0.28 0.35 0.23	Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro	turbidity, or wan turbic wan turbic wan turbic wan turbic wan turbic wan turbic wan turbic	dours, other) dity. No odour.	
14:49 14:52 14:55 14:58 15:01 15:04 15:07	0.1 0.6 1 1.5 2.1 2.5 3	2.42 2.43 2.44 2.43 2.43 2.43 2.43 2.43	Params	Conductance EC (us/cm)	6.56 6.45 6.44 6.43 6.43 6.41 6.42	(c) 11.63 11.90 12.12 12.18 12.21 12.28 12.43	ORP (mV) -14.9 -31.1 -35.7 -37.9 -39.4 -39.9 -40.2 -41.9	(mg/L) 5.74 0.86 0.35 0.26 0.28 0.35 0.23	Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro	turbidity, or wan turbic wan turbic wan turbic wan turbic wan turbic wan turbic wan turbic	dours, other) dity. No odour.	

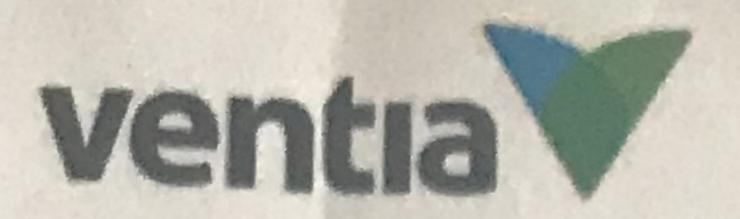
Notes: All bore measuremen	nts are referen			•						V	entia	
			TS Grou	ndwater	sampli	ng field	l sheet -	Env I	Monitoring		CITCIO	•
Bore ID No	В	H8		Project Name	HEI	PBURN SHIRE	GW		Samp	oling Staff	AC	
Project Area:			·	Client	F	HEPBURN SHIR	RE		WQ. Met	er Model	Aqua trol	500
Date	31/0	8/2022		Project No				WQ. Mete	er Serial #	,05710)	
Ехре	Expected Bore Details											
Internal Dia	ımeter (mm)		-	Easting		=	Total [Depth (m)		Screen	Depth From (m)	
Drop Tube already in	bore? (Y/N)	N		Northina			Water	Level (m)		Scre	en Depth To (m)	
Drop Tube	e Length (m)	0.00		Zone		-	Set Pump in	ilet at (m)		-	Set Pump at (m)	
Additional	I Information											
	eld Measur											
Time of SWL			tal Depth (m)			accessible?		ar	Depth pump s			
Static Water Level (m)			re Diam (mm)	50	Open Scree		0.00		Depth of pump			
	l Purging De		14: 5		Sampling D					ľ	tles Required	0 "
Purge Method			MicroPurge		ling Method		\A/I (-44)	2.21	Bottle Type		Bottle Type	Quantity
Time Pump in Time Started		Pump in' WL WL m (start)			Time Started		WL m (start) WL m (end)		1ltr Iml METALS filtere	1		
Time Stopped		WL m (end)			sample ID?			2.34	60ml COD	1		
Volume Removed (I)		- WETH (end)	2.30		sample ID?		-		50ml GLASS	1		
Discharge Rate (I/m)	0.00	-			sample ID?		-		JOHN GEASS			
	ump Remov	·al					_					
Time of removal	<u>'</u>		n(post-removal)	2.38	Bore Dep	oth at end (m)	7.57					
P	ump Setting	gs										
Fill / Discharge used	50/10	СРМ		Air/Gas	Pressure (kPa)	30						
Comments					Dups a	and blanks ta	aken					
		Field Parameters a	are considered sta	ble when within the	EPA limits for 3 c	onsecutive mea	surements		•			
	31	= vol required for	3V method (L)	+/- 3% Specific	+/- 0.05 pH	+/- 10%	+/- 10mV	+/- 10%				
Time	Cumulative Volume	Water Level (m below MP)	Stability of Field Params	Conductance EC (uS/cm)	pH	Temp.	Redox	DO			its (colour,	
	Removed (I)			@25°C		(°C)	ORP (mV)	(mg/L)			dours, other)	
10:10		2.33	Keep purging	1113	6.70	10.87	-66.9	2.64	grey brown, thic			
10:13		2.31	Keep purging	1119	6.70	11.34	-79.2	0.79	grey brown, thic			
10:16		2.30	Keep purging	1121	6.71	11.79	-90.6	0.20	grey brown, thic			
10:19		2.30	Keep purging	1122	6.70	12.05	-92.9	0.35	grey brown, thic			
10:22		2.30	Keep purging	1123	6.71	12.16	-95.5	0.33	grey brown, thic			
10:25		2.30	OK to sample	1122	6.71	12.24	-96.6	0.33	grey brown, thic	k turb, no	odour.	

Notes: All bore measuremen	nts are referen	ced to the mark					Lshoot	Env. N	Monitoring	V	entia	
D ID N-	DI	J10			-	_		· CIIV I	_			
	BI		-	Project Name				-	Sampling		AC	
Project Area:								-			Aqua troll	
Date		9/2022	_	Project No				-	WQ. Meter Se	erial#	,05710	
Ехре	cted Bore D	etalis										
Internal Dia	meter (mm)		ī	Easting		-	Total I	Depth (m)	So	creen l	Depth From (m)	
Drop Tube already in	bore? (Y/N)	N		Northing		-	Water	Level (m)		Scree	en Depth To (m)	
Drop Tube	e Length (m)	0.00		Zone		=	Set Pump ir	ılet at (m)		S	et Pump at (m)	
Additiona	I Information											
	ield Measur											<u>-</u>
Time of SWL	14:15	To	otal Depth (m)	6.70	Mid-screen	accessible?	Cle	ar	Depth pump set a	at (m)	5.70	
Static Water Level (m)	2.26	Во	re Diam (mm)	50	Open Scree	n Length(m)	0.00		Depth of pump inle	et (m)	5.70	
Wel	l Purging De	etails			Sampling D	etails			Sample	e Bottl	es Required	ı
Purge Method	LF	Pump Type	MicroPurge	Samp	oling Method	LF			Bottle Type Qu	antity	Bottle Type	Quantity
Time Pump in	14:25	Pump in' WL	2.26		Time Started	16:15	WL m (start)	2.35				
Time Started		WL m (start)			me Stopped		-	2.35				
Time Stopped			2.36		sample ID?		-					
Volume Removed (I)		-			sample ID?		-					
Discharge Rate (I/m)		- 		Rinsate	sample ID?		_					
Time of removal	ump Remov		n(post-removal)	2.37	Bore Der	oth at end (m)	6.73					
	ump Setting		(post removal)	2.07	2010 201	strat ona (ii)	0.70					
Fill / Discharge used		CPM		Air/Gas	Pressure (kPa)	30						
Comments					A	All times EST				•		
		Field Parameters	are considered sta	ble when within th	e EPA limits for 3 c	onsecutive mea	surements		_			-
	26	= vol required for	3V method (L)	+/- 3%	+/- 0.05 pH	+/- 10%	+/- 10mV	+/- 10%				
Time	Cumulative Volume	Water Level (m below MP)	Stability of Field Params	Specific Conductance EC (uS/cm)	pH	Temp.	Redox	DO		comments		
	Removed (I)			@25°C		(°C)	ORP (mV)	(mg/L)			ours, other)	
15:48	0.1	2.31	Keep purging	710	6.08	12.07	74.7	3.73	Pump issuses delaye			
15:51	0.5	2.33	Keep purging	695	6.03	12.63	88.3	0.72	Highly turbid, yellow			
15:54	0.9	2.35	Keep purging	690	6.02	12.65	89.2	0.63	Highly turbid, yellow			
15:57	1.3	2.35	Keep purging	687	5.98	12.71	92.4	0.36	Highly turbid, yellow			
16:00	1.7	2.35	Keep purging	687	5.93	12.68	94.3	0.33	Highly turbid, yellow			
16:03	2.1	2.35	Keep purging	687	5.99	12.66	94.2	0.41	Highly turbid, yellow			
16:06	2.5	2.35	Keep purging	688	5.99	12.66	98.6	0.35	Highly turbid, yellow			
16:09	2.9	2.35	Keep purging	690	5.99	12.64	94.5	0.36	Highly turbid, yellow			
16:12	3.3	2.36	OK to sample	691	5.99	12.61	96.6	0.35	Highly turbid, yellow	WOIG (V	n nii odour	

	its are referen	ced to the mark		nt point. All Cool ndwater			sheet _	. Fny N	Monitoring	, V	entia	
Rore ID No.	BI	H14		Project Name	•	J		LIIVI		f oling Staff	AC	
Project Area:			=	,		•		•		_	Aqua troll	500
Date		9/2022		Project No				•	WQ. Mete			
	cted Bore D			110,001.110						31 001IGI #	700710	
Internal Dia	ımeter (mm)			Fasting			Total (epth (m)		Screen	Depth From (m)	
Drop Tube already in										-	en Depth To (m)	
Drop Tube	e Length (m)	0.00		Zone		:	Set Pump in	ilet at (m)		-	Set Pump at (m)	
	I Information											-
Bore Fi	eld Measur 8:02		otal Depth (m)	6.30	Mid scroon	accossible?	Clea	or.	Depth pump	ot at (m)	5.90	
Static Water Level (m)			re Diam (mm)			n Length(m)		21	Depth of pump			
	l Purging De				Sampling D	_					tles Required	
Purge Method	LF	Pump Type	MicroPurge	Samp	ling Method	LF			Bottle Type	Quantity	Bottle Type	Quantity
Time Pump in	8:12	Pump in' WL	2.23	-	Time Started	9:46	WL m (start)	2.23				
Time Started					me Stopped			2.23				
Time Stopped		WL m (end)	2.23		sample ID?		•					
Volume Removed (I) Discharge Rate (I/m)		-		·	sample ID?		-					
	ump Remov	·al		Kirisate	sample ib:							
Time of removal			n(post-removal)	2.23	Bore Dep	oth at end (m)	6.29					
Р	ump Setting	gs										
Fill / Discharge used	25/5	CPM		Air/Gas	Pressure (kPa)	30						
Comments												-
					go	ood recharge	9					
		Field December		ble when within the	- FDA liit- f 2 -							
	24	= vol required for		+/- 3%	+/- 0.05 pH	+/- 10%	+/- 10mV	+/- 10%]			
Time	Cumulative											
	Volume	Water Level (m	Stability of Field	Specific Conductance	pН	Temp.	Redox	DO		Commen	nts (colour,	
		Water Level (m below MP)	Stability of Field Params		pH	Temp.	Redox ORP (mV)	DO (mg/L)			nts (colour, dours, other)	
9:10	Volume Removed (I)	below MP) 2.23	Params Keep purging	Conductance EC (uS/cm) @25°C 1545	6.57	(°C)	ORP (mV)	(mg/L) 2.83	Pump malfuncti	turbidity, od	dours, other)	
9:13	Volume Removed (I) 0.1 0.5	2.23 2.23	Reep purging Keep purging	Conductance EC (uS/cm) @25°C 1545	6.57	(°C) 8.27 9.29	ORP (mV) -38.8 -37.1	(mg/L) 2.83 1.60	Thick brown turk	turbidity, od	ed pumping	
9:13 9:16	Volume Removed (I) 0.1 0.5 0.9	2.23 2.23 2.23	Reep purging Keep purging Keep purging	Conductance EC (uS/cm)	6.57 6.52 6.49	(°C) 8.27 9.29 9.99	ORP (mV) -38.8 -37.1 -36.2	(mg/L) 2.83 1.60 0.93	Thick brown turb	turbidity, ocion delaye bidity nil ocionity nil ocionity nil ocionity	ed pumping dour	
9:13 9:16 9:19	Volume Removed (I) 0.1 0.5 0.9	2.23 2.23 2.23 2.23	Reep purging Keep purging Keep purging Keep purging Keep purging	Conductance EC (uS/cm) #25°C 1545 1626 1599 1589	6.57 6.52 6.49 6.49	(°C) 8.27 9.29 9.99 10.17	ORP (mV) -38.8 -37.1 -36.2 -36.1	(mg/L) 2.83 1.60 0.93 0.89	Thick brown turb Thick brown turb Thick brown turb	turbidity, ocion delayer bidity nil ocionidity nil	dours, other) ed pumping dour dour	
9:13 9:16 9:19 9:22	Volume Removed (I) 0.1 0.5 0.9 1.3	2.23 2.23 2.23 2.23 2.23 2.23	Reep purging Keep purging Keep purging Keep purging Keep purging Keep purging	Conductance EC (uS/cm) #25°C 1545 1626 1599 1589 1551	6.57 6.52 6.49 6.49	(°C) 8.27 9.29 9.99 10.17	ORP (mV) -38.8 -37.1 -36.2 -36.1 -36.5	(mg/L) 2.83 1.60 0.93 0.89 0.81	Thick brown turk Thick brown turk Thick brown turk Thick brown turk	turbidity, ocion delaye bidity nil ocionidity nil o	dours, other) ed pumping dour dour dour	
9:13 9:16 9:19	Volume Removed (I) 0.1 0.5 0.9	2.23 2.23 2.23 2.23	Reep purging Keep purging Keep purging Keep purging Keep purging	Conductance EC (uS/cm) #25°C 1545 1626 1599 1589	6.57 6.52 6.49 6.49	(°C) 8.27 9.29 9.99 10.17	ORP (mV) -38.8 -37.1 -36.2 -36.1	(mg/L) 2.83 1.60 0.93 0.89	Thick brown turb Thick brown turb Thick brown turb	turbidity, ocion delayer ion delayer bidity nil ocionidity nil oci	dours, other) ed pumping dour dour dour dour dour	
9:13 9:16 9:19 9:22 9:25	Volume Removed (I) 0.1 0.5 0.9 1.3 1.7 2.1	2.23 2.23 2.23 2.23 2.23 2.23 2.23	Reep purging Keep purging Keep purging Keep purging Keep purging Keep purging Keep purging	Conductance EC (uS/m) #25°C 1545 1626 1599 1589 1551 1539	6.57 6.52 6.49 6.49 6.49	(°C) 8.27 9.29 9.99 10.17 10.26	ORP (mV) -38.8 -37.1 -36.2 -36.1 -36.5	(mg/L) 2.83 1.60 0.93 0.89 0.81 0.75	Thick brown turk	turbidity, ocion delayer pidity nil ocionidity nil	dours, other) ed pumping dour dour dour dour dour dour	
9:13 9:16 9:19 9:22 9:25 9:28	Volume Removed (I) 0.1 0.5 0.9 1.3 1.7 2.1	2.23 2.23 2.23 2.23 2.23 2.23 2.23 2.23	Params Keep purging	Conductance EC (us/cm) @25°C 1545 1626 1599 1589 1551 1539 1534	6.57 6.52 6.49 6.49 6.49 6.48	(°C) 8.27 9.29 9.99 10.17 10.26 10.32 10.60	ORP (mV) -38.8 -37.1 -36.2 -36.1 -36.5 -36.5	(mg/L) 2.83 1.60 0.93 0.89 0.81 0.75	Thick brown turk	turbidity, ocion delayo ion delayo bidity nil ocioidity ni	dours, other) ed pumping dour dour dour dour dour dour dour dour	
9:13 9:16 9:19 9:22 9:25 9:28 9:31	Volume Removed (t) 0.1 0.5 0.9 1.3 1.7 2.1 2.5 2.9	2.23 2.23 2.23 2.23 2.23 2.23 2.23 2.23	Reap purging Keep purging	Conductance EC (uS/m) @25°C 1545 1626 1599 1589 1551 1539 1534 1539	6.57 6.52 6.49 6.49 6.49 6.48 6.46	(c) 8.27 9.29 9.99 10.17 10.26 10.32 10.60	ORP (mV) -38.8 -37.1 -36.2 -36.1 -36.5 -36.5 -34.2 -34.0	(mg/L) 2.83 1.60 0.93 0.89 0.81 0.75 0.68	Thick brown turk	turbidity, ocion delayorosion delayorosionidity nil ociodity nil ociod	dours, other) ed pumping dour dour dour dour dour dour dour dour	
9:13 9:16 9:19 9:22 9:25 9:28 9:31	Volume Removed (I) 0.1 0.5 0.9 1.3 1.7 2.1 2.5 2.9 3.3	2.23 2.23 2.23 2.23 2.23 2.23 2.23 2.23	Reap purging Keep purging	Conductance EC (uS/m)	6.57 6.52 6.49 6.49 6.49 6.48 6.46 6.45	(°C) 8.27 9.29 9.99 10.17 10.26 10.32 10.60 10.66 10.75	ORP (mV) -38.8 -37.1 -36.2 -36.1 -36.5 -34.2 -34.0 -33.8	(mg/L) 2.83 1.60 0.93 0.89 0.81 0.75 0.68 0.66	Thick brown turk	turbidity, ocion delayerson delay	dours, other) ed pumping dour dour dour dour dour dour dour dour	
9:13 9:16 9:19 9:22 9:25 9:28 9:31 9:34	Volume Removed (I) 0.1 0.5 0.9 1.3 1.7 2.1 2.5 2.9 3.3 3.7	2.23 2.23 2.23 2.23 2.23 2.23 2.23 2.23	Params Keep purging	Conductance EC (uS/m) #25°C 1545 1626 1599 1589 1551 1539 1534 1539 1553 1612	6.57 6.52 6.49 6.49 6.49 6.48 6.46 6.45 6.45	(°C) 8.27 9.29 9.99 10.17 10.26 10.32 10.60 10.66 10.75 10.68	ORP (mV) -38.8 -37.1 -36.2 -36.1 -36.5 -36.5 -34.2 -34.0 -33.8 -33.6	(mg/L) 2.83 1.60 0.93 0.89 0.81 0.75 0.68 0.66 0.56	Thick brown turk	turbidity, ocion delaysion	dours, other) ed pumping dour dour dour dour dour dour dour dour	
9:13 9:16 9:19 9:22 9:25 9:28 9:31 9:34 9:37 9:40	Volume Removed (t) 0.1 0.5 0.9 1.3 1.7 2.1 2.5 2.9 3.3 3.7 4.1	2.23 2.23 2.23 2.23 2.23 2.23 2.23 2.23	Reap purging Keep purging	Conductance EC (us/cm) @25°C 1545 1626 1599 1589 1551 1539 1534 1539 1553 1612 1602	6.57 6.52 6.49 6.49 6.49 6.48 6.46 6.45 6.45	(°C) 8.27 9.29 9.99 10.17 10.26 10.32 10.60 10.66 10.75 10.68 10.62	ORP (mV) -38.8 -37.1 -36.2 -36.1 -36.5 -36.5 -34.2 -34.0 -33.8 -33.6 -32.5	(mg/L) 2.83 1.60 0.93 0.89 0.81 0.75 0.68 0.66 0.56 0.61	Thick brown turk	turbidity, ocion delaysion	dours, other) ed pumping dour dour dour dour dour dour dour dour	
9:13 9:16 9:19 9:22 9:25 9:28 9:31 9:34 9:37 9:40	Volume Removed (t) 0.1 0.5 0.9 1.3 1.7 2.1 2.5 2.9 3.3 3.7 4.1	2.23 2.23 2.23 2.23 2.23 2.23 2.23 2.23	Reap purging Keep purging	Conductance EC (us/cm) @25°C 1545 1626 1599 1589 1551 1539 1534 1539 1553 1612 1602	6.57 6.52 6.49 6.49 6.49 6.48 6.46 6.45 6.45	(°C) 8.27 9.29 9.99 10.17 10.26 10.32 10.60 10.66 10.75 10.68 10.62	ORP (mV) -38.8 -37.1 -36.2 -36.1 -36.5 -36.5 -34.2 -34.0 -33.8 -33.6 -32.5	(mg/L) 2.83 1.60 0.93 0.89 0.81 0.75 0.68 0.66 0.56 0.61	Thick brown turk	turbidity, ocion delaysion	dours, other) ed pumping dour dour dour dour dour dour dour dour	
9:13 9:16 9:19 9:22 9:25 9:28 9:31 9:34 9:37 9:40	Volume Removed (t) 0.1 0.5 0.9 1.3 1.7 2.1 2.5 2.9 3.3 3.7 4.1	2.23 2.23 2.23 2.23 2.23 2.23 2.23 2.23	Reap purging Keep purging	Conductance EC (us/cm) @25°C 1545 1626 1599 1589 1551 1539 1534 1539 1553 1612 1602	6.57 6.52 6.49 6.49 6.49 6.48 6.46 6.45 6.45	(°C) 8.27 9.29 9.99 10.17 10.26 10.32 10.60 10.66 10.75 10.68 10.62	ORP (mV) -38.8 -37.1 -36.2 -36.1 -36.5 -36.5 -34.2 -34.0 -33.8 -33.6 -32.5	(mg/L) 2.83 1.60 0.93 0.89 0.81 0.75 0.68 0.66 0.56 0.61	Thick brown turk	turbidity, ocion delaysion	dours, other) ed pumping dour dour dour dour dour dour dour dour	
9:13 9:16 9:19 9:22 9:25 9:28 9:31 9:34 9:37 9:40	Volume Removed (t) 0.1 0.5 0.9 1.3 1.7 2.1 2.5 2.9 3.3 3.7 4.1	2.23 2.23 2.23 2.23 2.23 2.23 2.23 2.23	Reap purging Keep purging	Conductance EC (us/cm) @25°C 1545 1626 1599 1589 1551 1539 1534 1539 1553 1612 1602	6.57 6.52 6.49 6.49 6.48 6.46 6.45 6.45 6.45	(°C) 8.27 9.29 9.99 10.17 10.26 10.32 10.60 10.66 10.75 10.68 10.62	ORP (mV) -38.8 -37.1 -36.2 -36.1 -36.5 -36.5 -34.2 -34.0 -33.8 -33.6 -32.5	(mg/L) 2.83 1.60 0.93 0.89 0.81 0.75 0.68 0.66 0.56 0.61	Thick brown turk	turbidity, ocion delaysion	dours, other) ed pumping dour dour dour dour dour dour dour dour	
9:13 9:16 9:19 9:22 9:25 9:28 9:31 9:34 9:37 9:40	Volume Removed (t) 0.1 0.5 0.9 1.3 1.7 2.1 2.5 2.9 3.3 3.7 4.1	2.23 2.23 2.23 2.23 2.23 2.23 2.23 2.23	Reap purging Keep purging	Conductance EC (us/cm) @25°C 1545 1626 1599 1589 1551 1539 1534 1539 1553 1612 1602	6.57 6.52 6.49 6.49 6.48 6.46 6.45 6.45 6.45	(°C) 8.27 9.29 9.99 10.17 10.26 10.32 10.60 10.66 10.75 10.68 10.62	ORP (mV) -38.8 -37.1 -36.2 -36.1 -36.5 -36.5 -34.2 -34.0 -33.8 -33.6 -32.5	(mg/L) 2.83 1.60 0.93 0.89 0.81 0.75 0.68 0.66 0.56 0.61	Thick brown turk	turbidity, ocion delaysion	dours, other) ed pumping dour dour dour dour dour dour dour dour	
9:13 9:16 9:19 9:22 9:25 9:28 9:31 9:34 9:37 9:40	Volume Removed (t) 0.1 0.5 0.9 1.3 1.7 2.1 2.5 2.9 3.3 3.7 4.1	2.23 2.23 2.23 2.23 2.23 2.23 2.23 2.23	Reap purging Keep purging	Conductance EC (us/cm) @25°C 1545 1626 1599 1589 1551 1539 1534 1539 1553 1612 1602	6.57 6.52 6.49 6.49 6.48 6.46 6.45 6.45 6.45	(°C) 8.27 9.29 9.99 10.17 10.26 10.32 10.60 10.66 10.75 10.68 10.62	ORP (mV) -38.8 -37.1 -36.2 -36.1 -36.5 -36.5 -34.2 -34.0 -33.8 -33.6 -32.5	(mg/L) 2.83 1.60 0.93 0.89 0.81 0.75 0.68 0.66 0.56 0.61	Thick brown turk	turbidity, ocion delaysion	dours, other) ed pumping dour dour dour dour dour dour dour dour	
9:13 9:16 9:19 9:22 9:25 9:28 9:31 9:34 9:37 9:40	Volume Removed (t) 0.1 0.5 0.9 1.3 1.7 2.1 2.5 2.9 3.3 3.7 4.1	2.23 2.23 2.23 2.23 2.23 2.23 2.23 2.23	Reap purging Keep purging	Conductance EC (us/cm) @25°C 1545 1626 1599 1589 1551 1539 1534 1539 1553 1612 1602	6.57 6.52 6.49 6.49 6.48 6.46 6.45 6.45 6.45	(°C) 8.27 9.29 9.99 10.17 10.26 10.32 10.60 10.66 10.75 10.68 10.62	ORP (mV) -38.8 -37.1 -36.2 -36.1 -36.5 -36.5 -34.2 -34.0 -33.8 -33.6 -32.5	(mg/L) 2.83 1.60 0.93 0.89 0.81 0.75 0.68 0.66 0.56 0.61	Thick brown turk	turbidity, ocion delaysion	dours, other) ed pumping dour dour dour dour dour dour dour dour	
9:13 9:16 9:19 9:22 9:25 9:28 9:31 9:34 9:37 9:40	Volume Removed (t) 0.1 0.5 0.9 1.3 1.7 2.1 2.5 2.9 3.3 3.7 4.1	2.23 2.23 2.23 2.23 2.23 2.23 2.23 2.23	Reap purging Keep purging	Conductance EC (us/cm) @25°C 1545 1626 1599 1589 1551 1539 1534 1539 1553 1612 1602	6.57 6.52 6.49 6.49 6.48 6.46 6.45 6.45 6.45	(°C) 8.27 9.29 9.99 10.17 10.26 10.32 10.60 10.66 10.75 10.68 10.62	ORP (mV) -38.8 -37.1 -36.2 -36.1 -36.5 -36.5 -34.2 -34.0 -33.8 -33.6 -32.5	(mg/L) 2.83 1.60 0.93 0.89 0.81 0.75 0.68 0.66 0.56 0.61	Thick brown turk	turbidity, ocion delaysion	dours, other) ed pumping dour dour dour dour dour dour dour dour	
9:13 9:16 9:19 9:22 9:25 9:28 9:31 9:34 9:37 9:40	Volume Removed (t) 0.1 0.5 0.9 1.3 1.7 2.1 2.5 2.9 3.3 3.7 4.1	2.23 2.23 2.23 2.23 2.23 2.23 2.23 2.23	Reap purging Keep purging	Conductance EC (us/cm) @25°C 1545 1626 1599 1589 1551 1539 1534 1539 1553 1612 1602	6.57 6.52 6.49 6.49 6.49 6.48 6.46 6.45 6.45	(°C) 8.27 9.29 9.99 10.17 10.26 10.32 10.60 10.66 10.75 10.68 10.62	ORP (mV) -38.8 -37.1 -36.2 -36.1 -36.5 -36.5 -34.2 -34.0 -33.8 -33.6 -32.5	(mg/L) 2.83 1.60 0.93 0.89 0.81 0.75 0.68 0.66 0.56 0.61	Thick brown turk	turbidity, ocion delaysion	dours, other) ed pumping dour dour dour dour dour dour dour dour	
9:13 9:16 9:19 9:22 9:25 9:28 9:31 9:34 9:37 9:40	Volume Removed (t) 0.1 0.5 0.9 1.3 1.7 2.1 2.5 2.9 3.3 3.7 4.1	2.23 2.23 2.23 2.23 2.23 2.23 2.23 2.23	Reap purging Keep purging	Conductance EC (us/cm) @25°C 1545 1626 1599 1589 1551 1539 1534 1539 1553 1612 1602	6.57 6.52 6.49 6.49 6.49 6.48 6.46 6.45 6.45	(°C) 8.27 9.29 9.99 10.17 10.26 10.32 10.60 10.66 10.75 10.68 10.62	ORP (mV) -38.8 -37.1 -36.2 -36.1 -36.5 -36.5 -34.2 -34.0 -33.8 -33.6 -32.5	(mg/L) 2.83 1.60 0.93 0.89 0.81 0.75 0.68 0.66 0.56 0.61	Thick brown turk	turbidity, ocion delaysion	dours, other) ed pumping dour dour dour dour dour dour dour dour	

AND CALIBRATION

Serial no.: 07510	Centre:
Model no .: Agaatroll 500.	
Parameter:	
(EC, DO, TU, pH, Temperature, Redox)	


Date of			Res	ults			Comments	Staff
verification /calibration	Expected	Observed	Adjusted	Batch no.	Slope mV	Asy my		initials
29/8/22	4.01	4.02	Y				pH	AC
29/8/22	7.00	6.98	4				pH	AC
29/8/22	10.01	9.88	Y				pH	AC
29/8/22	0	3	N				EC	AC
29/8/22	1413	1421	Y				EC	AC
29/8/22	100%	96.4	Y				DO	AC
29/8/22	246.8	248.1	Y				REDOX	AC
1 1								
30/8/22	4.01	1.00	Y				pH	AC
30/8/22	7.00	6.99	7				pH	AC
30/8/22	10.01	9.93	Y				pH	AC
30/8/22	0	0	N				EC	AC
3018122	1413	1414	Y				EC	AC
3018122	A STREET, SANS TO STREET, STRE	101.0	Y				DO	AC
3018122	7468	247.4	Y				REDOX	AC
1 1								
3/8/22	4.01	4.00	Y				pH	AC
3/8/22	7.00	7.01	Y				pH	AC
31/8/22	\$1000 Mile add \$1000 Me \$100 M	1003	Y				pH	AC
31/8/22	0	1	N				EC	AC
31/8/22	1413	1416	Y				EC	AC
1/8/27		49.6	Y				DO	AC
1/8/22			Y				REDOX	AC

*If standards are not used to calibrate instrument - explanation required under comments

Water quality measurements where Q = 10 shall meet the following calibration limits

EC	pH	Turbidity	DO	Temperature	
Standard +/- 5%	Standard +/- 0.1	Standard +/- 3%	<+/-2% FS	+/-0.2°C	
+/- 10 µS/cm < 1,000	4 3.9 - 4.1	0 - 10 = 0.10 NTU	(0-20mg/l)	(When a temperature	
+/- 100 µS/cm > 1,000	7 6.9 - 7.1	0 - 100 = 1.00 NTU	<+/- 0.4 mg/l	stabilised environment can be created)	
	10 9.9 - 10.1	0 - 1000 = 10.00 NTU	(0-20mg/l)		

WQ Instruments that require continual calibration from initial values outside the above tolerance ranges using the specified solutions will need to be returned to the manufacturer for assessment or repair.

(EC, DO, TU, pH, Temperature, Redox)

INSTRUMENTATION INTERMEDIATE VERIFICATION AND CALIBRATION

Serial no.: 07510

Model no.: Aqua troll 500

Parameter:

Date of			Res	ults			Comments	Staff
verification /calibration	ALL STREET, MARKET BY AND AND ADDRESS.	Observed	Adjusted	Batch no.	Slope mV	Asy my		initials
1 1199122	4.01	4.00	Y				pH	AC
119122	7.00	6.99	Y				pH	AC
119122	10.01	9.95	Y				pH	AC
1/9/22	the state of the s	0	N				EC	AC
1 19 122							EC	AC
1/9/22	100%	1006	Y				DO	AC
14/22	250.4	249.9	Y				REDOX	AC
1 1								
2 19 1 22		3.98	Y				pH	AC
219122	7.00	70.01	Y				pH	AC
219122	10.01	10.09	Y				pH	AC
219172	0	0	N				EC	AC
219172	1413	1413	N				EC	AC
219172	100%	99.8	Y				DO	AC
219172	A STATE OF THE PARTY OF THE PAR						REDOX	AC
1 1								
1 1	4.01						pH	AC
1 1	7.00						pH	AC
1 1	10.01						pH	AC
1 1	0						EC	AC
1 1	1413						EC	AC
1 1	100%	4.660					DO	AC
1 1							REDOX	AC

*If standards are not used to calibrate instrument - explanation required under comments

Water quality measurements where Q = 10 shall meet the following calibration limits

EC	pH	Turbidity	DO	Temperature	
Standard +/- 5%	Standard +/- 0.1	Standard +/- 3%	<+/-2% FS	+/-0.2°C	
+/- 10 µS/cm < 1,000	4 3.9 - 4.1	0 - 10 = 0.10 NTU	(0-20mg/l)	(When a temperature	
+/- 100 µS/cm > 1,000	7 6.9 - 7.1	0 - 100 = 1.00 NTU	<+/- 0.4 mg/l	stabilised environment can be created)	
	10 9.9 - 10.1	0 - 1000 = 10.00 NTU	(0-20mg/l)		

WQ Instruments that require continual calibration from initial values outside the above tolerance ranges using the specified solutions will need to be returned to the manufacturer for assessment or repair.

Ventia Landfill Surface Gas Monitoring - Field Sheet ventia

Project	Creswick Landfill
Client	Hepburn Shire
Job Location	Landfill Cap Workover
Sampling Staff	Andrew Callander
Instrument Type	Inspectra laser
Instrument Serial Number	34090717
Calibration Record Supplied (Y.	Υ
Date	6/09/2022
Weather and Temperature	17 degrees / 15 km wind
Site Ground Conditions	Dry to moist conitions
Barometric Pressure	974

		CH ₄ Concentration	
Reading #	Time	(ppm)	Comment i.e. batter / penetration / sump
B7	13:45	1.4	
B8	13:46	1.4	
C5	13:50	1.6	
C6	13:50	1.2	
C7	13:51	1.1	
C8	13:51	1.3	
C9	13:51	1.8	
D5	13:55	1.3	
D6	13:55	1.2	
D7	13:54	1.5	
D8	13:53	1.9	
D9	13:53	2	
E6	13:58	2.3	
E7	13:58	2.2	
E8	13:59	2.3	
E9	14:00	2.1	
E10	14:01	1.5	
F6	14:06	1.9	
F7	14:06	1.8	
F8	14:05	1.6	
F9	14:05	2.1	
F10	14:04	2	
G6	14:08	1.8	
G7	14:08	2.1	
G8	14:09	2	
G9	14:09	2.3	
G10	14:09	1.8	
H5	14:11	1.4	
H6	14:11	1.2	
H7	14:12	1.5	
H8	14:12	1.3	
H9	14:13	1.8	
H10	14:14	2.2	
15	14:18	1.8	
16	14:17	1.7	
17	14:17	2.4	
18	14:16	2.6	
19	14:16	2.4	
I10	14:16	2.4	
J5	14:20	2.3	
J6	14:20	2.2	
J7	14:20	2	
J8	14:21	2.2	
J9	14:21	2.6	
J10	14:22	2.7	
K5	14:25	2.5	
K6	14:25	2.1	
K7	14:27	2.2	

Ventia Landfill Subsurface Gas Monitoring - Field Sheet

Project	Creswick Landfill
Client	Hepburn Shire
Job Location	Creswick Landfill
Sampling Staff	Andrew Callander
Instrument Type	GA 5000
Instrument Serial Number	G504479
Calibration Record Supplied (Y/N)	Υ
Weather & Temperature	14 degrees / 12 km wind
Site Ground Conditions	Moist
Barometric Pressure	970

General	Comments

BH 12's J plug was not sealed properly which may have affected readings from this bore

LFG ID	Date	Time	Peak Flow (I/hr)	Stabilised Flow (I/hr)	SWL (mBTOC)	Depth (mBTOC)	Bore & Headworks Condition	Comments
BH11	1/09/2022	15:17	0	0	DRY	10.33	Good cond	
BH12	1/09/2022	13:50	0.1	0.1	DRY	6.57	J Plug does not seal properly	J plug needs replacing
BH10	1/09/2022	14:08	0	0	2.26	6.7	Good cond	
BH9	1/09/2022	10:38	0	0	DRY	6.84	Good cond	

[#] Instrumentation Gas Readings recorded on instrument data export

Table 1: Subsurface Gas Bore Results (September 2022)

Tubic 1. Subsuitu	ee das bore nesants (sop terriber	LULL)									
ID	DATE and TIME	CH4	CO2	02	PEAKCH4	PEAKCO2	MIN O2	BARO	REL.PRESSURE	TERNAL FLO	CO	H2S
ID	DATE and Thirl	%	%	%	%	%	%	mb	mb	I/h	ppm	ppm
BH12*	1/09/2022 13:50	37.4	16.1	0	37.5	16.3	0	973	0.05	0.1	1	0
BH9	1/09/2022 10:38	0	10.3	8.9	0	10.3	8.9	976	-0.38	0	0	0
BH11	1/09/2022 15:17	0	4	9.5	0	4	9.5	973	0.33	0	0	0
BH10	1/09/2022 14:08	0	10.3	4.8	0.9	10.3	4.8	974	-0.22	0	0	0
Notes:		Exceedance of	Adopted Assesr	ment Criteria			•		•		•	•

Methane 1% v/v (EPA Victoria, Best Practice Environmental Management, Siting, design, operation and rehabilitation of landfills, 2015) Carbon Dioxide 10% v/v (Mackenzie 2016)

 $[\]ensuremath{^{\star}}$ not applicable due to location within waste mass

Ventia Landfill Building Gas Monitoring - Field Sheet

Project	Creswick Landfill
Client	Hepburn Shire
Job Location	Landfill Cap Workover
Sampling Staff	Andrew Callander
Instrument Type	Inspectra laser
Instrument Serial Number	34090717
Calibration Record Supplied (Y/N)	Υ
Weather and Temperature	15 degrees / 15 km wind
Site Ground Conditions	Dry
Barometric Pressure	473

General Comments

Locations as per Landserv Service location map

970

Location #	Date	Time	CH ₄ Concentration (ppm)	Building and service condition	Sample Location Notes
B1	6/09/2022	13:58	0.9	Good condition	Taken at foot of office building
B2	6/09/2022	14:00	1.3	Good condition	-
В3	6/09/2022	14:01	1.5	Good condition	-
B4	6/09/2022	14:02	1.1	Good condition	-
B5	6/09/2022	14:03	1.3	Good condition	Taken at foot of office building
В6	6/09/2022	14:04	1.8	Good condition	-
В7	6/09/2022	14:05	1.5	Good condition	-
B8	6/09/2022	14:06	1.1	Good condition	-
В9	6/09/2022	14:07	0.9	Good condition	taken on inside edge of open shed
B10	6/09/2022	14:08	0.7	Good condition	-
B11	6/09/2022	14:09	0.8	Good condition	taken on inside edge of open shed
B12	6/09/2022	14:10	0.7	Good condition	-
B13	6/09/2022	14:11	0.9	Good condition	-
B14	6/09/2022	14:12	2.1	Good condition	could not access shed - taken at base of slab
B15	6/09/2022	14:13	2.2	Good condition	-
B16	6/09/2022	14:14	1.8	Good condition	-
B17	6/09/2022	14:15	0.8	Good condition	Taken under outer edge of shed / slab
B18	6/09/2022	14:16	1.2	Good condition	-
B19	6/09/2022	14:17	1.3	Good condition	-
B20	6/09/2022	14:18	1.4	Good condition	-

Location #	Date	Time	CH₄ Concentration (ppm)	Building and service condition	Sample Location Notes
TP1	6/09/2022	14:19	1.1	Good condition	drain / pit
TP2	6/09/2022	14:20	1	Good condition	-
TP3	6/09/2022	14:21	1.8	Good condition	-
TP4	6/09/2022	14:22	1.5	Good condition	-
TP5	6/09/2022	14:23	1.4	Good condition	-
TP6	6/09/2022	14:24	1.4	unknown	cannot locate taken in area
TP7	6/09/2022	14:25	1.5	Good condition	-
TP8	6/09/2022	14:26	1.8	Good condition	-
TP9	6/09/2022	14:27	1.7	Good condition	-
TP10	6/09/2022	14:28	1.5	Good condition	-
TP11 (new)	6/09/2022	14:32	2.9	Good condition	in front of green waste pile

Document No: 2003
Reviewed by: IT
Approved by: R&WM
Issued date: 25/11/21

EQUIPMENT QUALITY REPORT

GA5000

Equipment Code: MLG-275 Serial Number: G500275

		Equipment co	ac.w.co z	75 36110	arrumber. C	3500275	
The	equipment	t has been issued as follo	ws:				
V	Z Equipme	ent is clean	Pump and b	oattery voltage	e check	5	Z Clear Data
Calibra	ation Resul	ts				Calib	ration Gas (Expiry Date)
Param	eter	Standard		Result	Error Ra	nge	
CH4		Methane by Volume	60%	60%	± 2%	5521	-1-6 Exp. 27/08/2026
CO2		Carbon Dioxide by volu	me 40%	40%	± 2%	5521	-1-6 Exp. 27/08/2026
H2S		Hydrogen Sulphide	25 ppm	25ppm	± 2 ppm		12609-2 Exp.
02		Overson	100/	100/	+ 0.20/		8/2023
02		Oxygen	18%	18%	± 0.2%		12609-2 Exp. 8/2023
СО		Carbon Monoxide	50 ppm	50ppm	± 2ppm		79607-2 Exp.
						1//1	2/2025
Date	e: 30/	08/2022					
C-1:1			als.				
Call	brated by:	Lachlan War	a				
Pleas		at the following items are					
	returni	ng. A minimum \$20 servi	ce/repair ch	arge applies	to any unclea	n or damaged	d items.
Photo Ref.	Checklist	Item at the back of this form)		HT Id No.	Sent?	Returned?	Comments
1		ng with an inlet barb fittir	ng.	N/A	√		
2		ing with an inlet Brass Ex-		N/A	√		
		itting (filter attached)	Сар	NA			
3		ter trap filter(s) Qty 1		N/A	✓		
4	Yellow tu	bing with an inlet barb fit	tting	N/A	✓		
5	Clear tubi	ing		N/A	✓		
6	Charger 2	40/110V to 12V 500mA		N/A	✓		
7	GA5000 v	vith a carry bag		MLG-275	✓		
8	Hard case			N/A	✓		
9	Instructio	n Manual		N/A	✓		
10	Well cap	fitting		N/A	✓		
-	Test & Ta	g		N/A			
\checkmark	Equipment	t voltage	☑ Pre	e-delivery Cali	bration Test C	omplete	
Dot	· ·	20/00/2022					
Date	=. <u> </u>	30/08/2022					
Che	cked by:	Lachlan Ward					
нт	IOB NO: 19	894			CLIENTS	REF: P/O No	: TBC

CONDITION ON RETURN:

TIME:

RETURN DATE:

Document No: 2003
Reviewed by: IT
Approved by: R&WM
Issued date: 25/11/21

SAMPLING RESULTS SUBMISSION SHEET (SAMPLING UNDERTAKEN BY VENTIA)

Client: Hepburn Shire Council
Site: Creswick Landfill

Program: Groundwater/Surface Water Sampling

Samping Period: November 2022
Sampler: A Callander
Phone: 427529051

Bore/Sample Point	Date	Time (EST)	Depth (mbmp)	SWL m (mbtoc)	Electrical Conductivity (us/cm @ 25°C)	рН	Temp. (°C)	Redox (mV)	DO (mg/L)	Comments
LB1	18/11/2022	8:05	17.32	12.99						NO sample bore blocked
LB2	18/11/2022	8:25	15.43	14.37						Bore blocked at 5.8m
LB3	18/11/2022	9:01		10.39						level only no odour, appears to be misslabled BH3
Creek U/S BH3	16/11/2022	11:30			179	7.02	13.1	145.6	9.57	see photos
Creek @ BH3	16/11/2022	11:07			179	7.01	13.0	151.2	9.54	see photos
Creek D/S BH3	16/11/2022	10:35			179	7.04	12.6	157.6	9.55	see photos
Leachate Pond	17/11/2022	10:40			741	6.94	14.1	-79.0	3.78	see photos
Wetland	17/11/2022	9:35			300	6.89	14.5	-69.2	8.20	see photos
Dredge hole	18/11/2022	7:30			875	6.44	13.8	3.7	5.92	No access through gate
вн1	17/11/2022	-	-	-	-	-	-	-	-	Bore location lost due to road resurfacing
BH2	17/11/2022	12:05	4.98	1.93	639	5.68	15.0	47.3	0.53	Orange turbid, Bailed sample due to resricted access to bore and bend in bore casing
внз	17/11/2022	9:10	3.88	0.59	3353	6.39	14.1	-42.6	0.1	Yellow redish brown slightly turbid nil odour
ВН4	16/11/2022	12:23	7.92	3.25	2512	6.05	13.0	-74.9	0.0	yellow silver turbidity very slight odour
вн6	17/11/2022	16:48	15.48	11.20	654	4.91	15.1	194.7	0.36	Clear nil odour
вн7	17/11/2022	10:22	7.18	2.42	880	6.35	14.5	-31.1	0.09	Light Yellow Brown. No odour.

Bore/Sample Point	Date	Time (EST)	Depth (mbmp)	SWL m (mbtoc)	Electrical Conductivity (us/cm @ 25°C)	рН	Temp. (°C)	Redox (mV)	DO (mg/L)	Comments
вн8	17/11/2022	12:54	7.57	3.18	1173	6.68	14.4	-90.1	0.08	Light brown, thick turb, no odour.
BH10	17/11/2022	14:02	6.70	2.06	777	5.72	14.5	68.3	0.21	Highly turbid,dark yellow/brown nil odour
BH14	16/11/2022	13:16	6.30	2.01	1541	6.15	12.3	6.4	0.14	Very thick brown turbidity nil odour

NOTES:

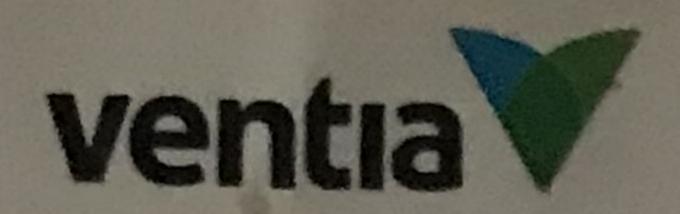
Groundwater samples taken using the low-flow method (as per EPA Publication 669) unless otherwise noted All depths measured from the top of the PVC casing $\frac{1}{2}$

¹ 2

Notes: All bore measurement	nts are referen	ced to the mark									ventia	V
					•	_			Monitorino	9	701100	
Bore ID No	E	BH2	-	Project Name	H	epburn Land	Fill	=	Sam	pling Staff	AC	
Project Area:			1	Client				=	WQ. Me	ter Model	Aqua Troll	
Date	17/1	1/2022		Project No				_	WQ. Met	er Serial #	.844337.	
Ехре	ected Bore [Details										
Internal Dia	ameter (mm)			Easting			Total	Depth (m)		Screen	Depth From (m	1)
Drop Tube already in	hore2 (V/N)	N			I		Water	Level (m)		Scre	en Denth To (m	
										=		·
Drop Tub	e Length (m)	0.00		Zone		-	Set Pump i	nlet at (m)		=	Set Pump at (m)
Additiona	I Information											
Bore F	ield Measur	ements										
	12:05		otal Depth (m)	4.98			Cle	ar	=			
Static Water Level (m)		_	re Diam (mm)	50		en Length(m)	0.00		Depth of pump			
	II Purging De			_	Sampling [les Required	
Purge Method				i e	oling Method				Bottle Type	Quantity	Bottle Type	Quantity
		Pump in' WL			Time Started							+
		WL m (start)			ime Stopped		='					+
Volume Removed (I)		_ WL m (end)	1.93		e sample ID? e sample ID?		=					+
Discharge Rate (I/m)		-			sample ID?		-					
	ump Remov	- /al					_					+
Time of removal			n(post-removal)		Bore De	pth at end (m)						
F	Pump Setting	- gs			_							
Fill / Discharge used		СРМ		Air/Gas	Pressure (kPa)							
Comments						Bore Bailed						
						partially bloc	ked					
		Field Parameters a	are considered sta	ble when within th	e EPA limits for 3 o	consecutive mea	surements	1	1			_
	18	Field Parameters a		+/- 3%	+/- 0.05 pH	+/- 10%	+/- 10mV	+/- 10%				
Time	Cumulative Volume			+/- 3% Specific Conductance EC (uS/cm)		+/- 10% Temp.	+/- 10mV Redox	DO			nts (colour,	
	Cumulative Volume Removed (I)	= vol required for Water Level (m below MP)	3V method (L) Stability of Field Params	+/- 3% Specific Conductance EC (uS/cm) @25°C	+/- 0.05 pH pH	+/- 10% Temp. (°C)	+/- 10mV Redox ORP (mV)	DO (mg/L)	Orango turbid		its (colour, dours, other)	
Time 12:30	Cumulative Volume	= vol required for Water Level (m	3V method (L) Stability of Field	+/- 3% Specific Conductance EC (uS/cm)	+/- 0.05 pH	+/- 10% Temp.	+/- 10mV Redox	DO	Orange turbid			
	Cumulative Volume Removed (I)	= vol required for Water Level (m below MP)	3V method (L) Stability of Field Params	+/- 3% Specific Conductance EC (uS/cm) @25°C	+/- 0.05 pH pH	+/- 10% Temp. (°C)	+/- 10mV Redox ORP (mV)	DO (mg/L)	Orange turbid			
	Cumulative Volume Removed (I)	= vol required for Water Level (m below MP)	3V method (L) Stability of Field Params	+/- 3% Specific Conductance EC (uS/cm) @25°C	+/- 0.05 pH pH	+/- 10% Temp. (°C)	+/- 10mV Redox ORP (mV)	DO (mg/L)	Orange turbid			
	Cumulative Volume Removed (I)	= vol required for Water Level (m below MP)	3V method (L) Stability of Field Params	+/- 3% Specific Conductance EC (uS/cm) @25°C	+/- 0.05 pH pH	+/- 10% Temp. (°C)	+/- 10mV Redox ORP (mV)	DO (mg/L)	Orange turbid			
	Cumulative Volume Removed (I)	= vol required for Water Level (m below MP)	3V method (L) Stability of Field Params	+/- 3% Specific Conductance EC (uS/cm) @25°C	+/- 0.05 pH pH	+/- 10% Temp. (°C)	+/- 10mV Redox ORP (mV)	DO (mg/L)	Orange turbid			
	Cumulative Volume Removed (I)	= vol required for Water Level (m below MP)	3V method (L) Stability of Field Params	+/- 3% Specific Conductance EC (uS/cm) @25°C	+/- 0.05 pH pH	+/- 10% Temp. (°C)	+/- 10mV Redox ORP (mV)	DO (mg/L)	Orange turbid			
	Cumulative Volume Removed (I)	= vol required for Water Level (m below MP)	3V method (L) Stability of Field Params	+/- 3% Specific Conductance EC (uS/cm) @25°C	+/- 0.05 pH pH	+/- 10% Temp. (°C)	+/- 10mV Redox ORP (mV)	DO (mg/L)	Orange turbid			
	Cumulative Volume Removed (I)	= vol required for Water Level (m below MP)	3V method (L) Stability of Field Params	+/- 3% Specific Conductance EC (uS/cm) @25°C	+/- 0.05 pH pH	+/- 10% Temp. (°C)	+/- 10mV Redox ORP (mV)	DO (mg/L)	Orange turbid			
	Cumulative Volume Removed (I)	= vol required for Water Level (m below MP)	3V method (L) Stability of Field Params	+/- 3% Specific Conductance EC (uS/cm) @25°C	+/- 0.05 pH pH	+/- 10% Temp. (°C)	+/- 10mV Redox ORP (mV)	DO (mg/L)	Orange turbid			
	Cumulative Volume Removed (I)	= vol required for Water Level (m below MP)	3V method (L) Stability of Field Params	+/- 3% Specific Conductance EC (uS/cm) @25°C	+/- 0.05 pH pH	+/- 10% Temp. (°C)	+/- 10mV Redox ORP (mV)	DO (mg/L)	Orange turbid			
	Cumulative Volume Removed (I)	= vol required for Water Level (m below MP)	3V method (L) Stability of Field Params	+/- 3% Specific Conductance EC (uS/cm) @25°C	+/- 0.05 pH pH	+/- 10% Temp. (°C)	+/- 10mV Redox ORP (mV)	DO (mg/L)	Orange turbid			
	Cumulative Volume Removed (I)	= vol required for Water Level (m below MP)	3V method (L) Stability of Field Params	+/- 3% Specific Conductance EC (uS/cm) @25°C	+/- 0.05 pH pH	+/- 10% Temp. (°C)	+/- 10mV Redox ORP (mV)	DO (mg/L)	Orange turbid			
	Cumulative Volume Removed (I)	= vol required for Water Level (m below MP)	3V method (L) Stability of Field Params	+/- 3% Specific Conductance EC (uS/cm) @25°C	+/- 0.05 pH pH	+/- 10% Temp. (°C)	+/- 10mV Redox ORP (mV)	DO (mg/L)	Orange turbid			
	Cumulative Volume Removed (I)	= vol required for Water Level (m below MP)	3V method (L) Stability of Field Params	+/- 3% Specific Conductance EC (uS/cm) @25°C	+/- 0.05 pH pH	+/- 10% Temp. (°C)	+/- 10mV Redox ORP (mV)	DO (mg/L)	Orange turbid			
	Cumulative Volume Removed (I)	= vol required for Water Level (m below MP)	3V method (L) Stability of Field Params	+/- 3% Specific Conductance EC (uS/cm) @25°C	+/- 0.05 pH pH	+/- 10% Temp. (°C)	+/- 10mV Redox ORP (mV)	DO (mg/L)	Orange turbid			
	Cumulative Volume Removed (I)	= vol required for Water Level (m below MP)	3V method (L) Stability of Field Params	+/- 3% Specific Conductance EC (uS/cm) @25°C	+/- 0.05 pH pH	+/- 10% Temp. (°C)	+/- 10mV Redox ORP (mV)	DO (mg/L)	Orange turbid			
	Cumulative Volume Removed (I)	= vol required for Water Level (m below MP)	3V method (L) Stability of Field Params	+/- 3% Specific Conductance EC (uS/cm) @25°C	+/- 0.05 pH pH	+/- 10% Temp. (°C)	+/- 10mV Redox ORP (mV)	DO (mg/L)	Orange turbid			
	Cumulative Volume Removed (I)	= vol required for Water Level (m below MP)	3V method (L) Stability of Field Params	+/- 3% Specific Conductance EC (uS/cm) @25°C	+/- 0.05 pH pH	+/- 10% Temp. (°C)	+/- 10mV Redox ORP (mV)	DO (mg/L)	Orange turbid			
	Cumulative Volume Removed (I)	= vol required for Water Level (m below MP)	3V method (L) Stability of Field Params	+/- 3% Specific Conductance EC (uS/cm) @25°C	+/- 0.05 pH pH	+/- 10% Temp. (°C)	+/- 10mV Redox ORP (mV)	DO (mg/L)	Orange turbid			
	Cumulative Volume Removed (I)	= vol required for Water Level (m below MP)	3V method (L) Stability of Field Params	+/- 3% Specific Conductance EC (uS/cm) @25°C	+/- 0.05 pH pH	+/- 10% Temp. (°C)	+/- 10mV Redox ORP (mV)	DO (mg/L)	Orange turbid			
	Cumulative Volume Removed (I)	= vol required for Water Level (m below MP)	3V method (L) Stability of Field Params	+/- 3% Specific Conductance EC (uS/cm) @25°C	+/- 0.05 pH pH	+/- 10% Temp. (°C)	+/- 10mV Redox ORP (mV)	DO (mg/L)	Orange turbid			
	Cumulative Volume Removed (I)	= vol required for Water Level (m below MP)	3V method (L) Stability of Field Params	+/- 3% Specific Conductance EC (uS/cm) @25°C	+/- 0.05 pH pH	+/- 10% Temp. (°C)	+/- 10mV Redox ORP (mV)	DO (mg/L)	Orange turbid			

Notes: All bore measuremen	nts are referen	ced to the mark					Lshoot	Env I	Monitorin	a	ventia	
David ID No.	D	эцэ			•	•		- LIIV I		_	40	
Bore ID No		BH3	-	Project Name				=		pling Staff		
Project Area:								-		ter Model		
Date		1/2022		Project No					WQ. Met	er Serial #	,0571	D
Expe	cted Bore D	Details										
Internal Dia	ameter (mm)			Easting		-	Total I	Depth (m)		Screen	Depth From (m)
Drop Tube already in	bore? (Y/N)	N		Northing			Water	Level (m)		Scre	en Depth To (m)
Drop Tub	e Length (m)	0.00		Zone			Set Pump ir	nlet at (m)			Set Pump at (m)
			-				·			_	, ,	·
	I Information ield Measur											
	8:18		otal Depth (m)	3.90	Mid-screen	accessible?	Cle	ar	Depth pump	set at (m)	2.50	
Static Water Level (m)			re Diam (mm)	50		n Length(m)		ui .	Depth of pum			
	l Purging De	_			Sampling D	-		<u>-</u>			les Required	
Purge Method			Micro purge	Samp	oling Method	LF			Bottle Type		Bottle Type	Quantity
Time Pump in	12:25	Pump in' WL	0.44		Time Started		WL m (start)	0.59				
Time Started	12:26	WL m (start)	0.45	Ti	ime Stopped	9:16	WL m (end)	0.59				
Time Stopped	9:07	WL m (end)	0.59	Duplicate	sample ID?		_					
Volume Removed (I)	6.1	_			sample ID?		='					
Discharge Rate (I/m)	-0.03	<u></u>		Rinsate	sample ID?							
Р	ump Remov	/al										
Time of removal	9:22	WLn	n(post-removal)	0.59	Bore Dep	oth at end (m)	3.89					
F	ump Setting	gs										
Fill / Discharge used	25/5	CPM		Air/Gas	Pressure (kPa)	30						
Comments					measured to	top of casing	g not cover					_
												_
		Field Parameters	are considered sta	ble when within the	e EPA limits for 3 c	onsecutive mea	surements	1	1			_
	19	= vol required for	3V method (L)	ble when within the +/- 3% Specific	+/- 0.05 pH	+/- 10%	+/- 10mV	+/- 10%			d- (l	
Time	19 Cumulative Volume Removed (I)			+/- 3% Specific Conductance EC (uS/cm)		+/- 10% Temp.	+/- 10mV Redox	DO			nts (colour,	
	Cumulative Volume Removed (I)	= vol required for Water Level (m below MP)	3V method (L) Stability of Field Params	+/- 3% Specific Conductance EC (uS/cm) @25°C	+/- 0.05 pH pH	+/- 10% Temp. (°C)	+/- 10mV Redox ORP (mV)	DO (mg/L)	Yellow brown t	turbidity, od	dours, other)	
8:31	Cumulative Volume Removed (I)	= vol required for Water Level (m below MP)	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) @25°C 3390	+/- 0.05 pH pH	+/- 10% Temp. (°C)	+/- 10mV Redox ORP (mV) 1.3	DO (mg/L) 4.12	Yellow brown t	turbidity, oo	dours, other)	
8:31 8:34	Cumulative Volume Removed (I) 0.1	= vol required for Water Level (m below MP) 0.590 0.590	3V method (L) Stability of Field Params Keep purging Keep purging	+/- 3% Specific Conductance EC (u5/cm) @25°C 3390 3381	+/- 0.05 pH pH 6.92 6.87	+/- 10% Temp. (°C) 13.40 13.80	+/- 10mV Redox ORP (mV) 1.3 -0.8	DO (mg/L) 4.12 2.39	Yellow brown t	turbidity, od urbid nil od urbid nil od	dours, other)	
8:31 8:34 8:37	Cumulative Volume Removed (I) 0.1 0.6 1.1	water Level (m below MP) 0.590 0.590 0.590	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 3390 3381	+/- 0.05 pH pH 6.92 6.87	+/- 10% Temp. (°C) 13.40 13.80	+/- 10mV Redox ORP (mV) 1.3 -0.8	DO (mg/L) 4.12 2.39 0.89	Yellow brown t	turbidity, oc urbid nil oc urbid nil oc urbid nil oc	dours, other) dour dour	
8:31 8:34 8:37 8:40	Cumulative Volume Removed (I) 0.1 0.6 1.1 1.6	= vol required for Water Level (m below MP) 0.590 0.590 0.590 0.590	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/m) =25°C 3390 3381 3371 3368	+/- 0.05 pH pH 6.92 6.87 6.61 6.57	+/- 10% Temp. (°C) 13.40 13.80 15.40 15.17	+/- 10mV Redox ORP (mV) 1.3 -0.8 -8.2 -21.3	DO (mg/L) 4.12 2.39 0.89 0.74	Yellow brown t	turbidity, oc urbid nil oc urbid nil oc urbid nil oc urbid nil oc	dours, other) dour dour dour	
8:31 8:34 8:37 8:40	Cumulative Volume Removed (I) 0.1 0.6 1.1 1.6 2.1	- vol required for Water Level (m below MP) 0.590 0.590 0.590 0.590 0.590	stability of Field Params Keep purging Keep purging Keep purging Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) @25°C 3390 3381 3371 3368 3369	+/- 0.05 pH pH 6.92 6.87 6.61 6.57	+/- 10% Temp. (°C) 13.40 13.80 15.40 15.17	+/- 10mV Redox ORP (mV) 1.3 -0.8 -8.2 -21.3	DO (mg/L) 4.12 2.39 0.89 0.74 0.68	Yellow brown to Yellow brown t	turbidity, oc urbid nil oc urbid nil oc urbid nil oc urbid nil oc urbid nil oc	dours, other) dour dour dour dour dour	
8:31 8:34 8:37 8:40 8:43	Cumulative Volume Removed (I) 0.1 0.6 1.1 1.6 2.1	- vol required for Water Level (m below MP) 0.590 0.590 0.590 0.590 0.590 0.590	Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (us/cm) @25°C 3390 3381 3371 3368 3369 3368	+/- 0.05 pH pH 6.92 6.87 6.61 6.57 6.49	+/- 10% Temp. (°C) 13.40 13.80 15.40 15.17 14.22	+/- 10mV Redox ORP (mV) 1.3 -0.8 -8.2 -21.3 -27.2 -29.1	0.89 0.52	Yellow brown t Yellow brown t Yellow brown t Yellow brown t	urbid nil oc urbid nil oc urbid nil oc urbid nil oc urbid nil oc urbid nil oc urbid nil oc	dours, other) dour dour dour dour dour dour	
8:31 8:34 8:37 8:40 8:43 8:46 8:49	Cumulative Volume Removed (I) 0.1 0.6 1.1 1.6 2.1 2.6 3.1	vol required for below MP) 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) @25°C 3390 3381 3371 3368 3369 3368 3370	+/- 0.05 pH pH 6.92 6.87 6.61 6.57 6.49 6.48	+/- 10% Temp. (°C) 13.40 13.80 15.40 15.17 14.22 14.18	+/- 10mV Redox ORP (mV) 1.3 -0.8 -8.2 -21.3 -27.2 -29.1 -31.8	DO (mg/L) 4.12 2.39 0.89 0.74 0.68 0.52	Yellow brown to Yellow brown t	urbid nil oc urbid nil oc	dours, other) dour dour dour dour dour dour dour	
8:31 8:34 8:37 8:40 8:43 8:46 8:49	Cumulative Volume Removed (f) 0.1 0.6 1.1 1.6 2.1 2.6 3.1 3.6	- vol required for Water Level (m below MP) 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590	Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 3390 3381 3371 3368 3369 3368 3370 3361	+/- 0.05 pH pH 6.92 6.87 6.61 6.57 6.49 6.48 6.44	+/- 10% Temp. (°C) 13.40 13.80 15.40 15.17 14.22 14.18 14.22	+/- 10mV Redox ORP (mV) 1.3 -0.8 -8.2 -21.3 -27.2 -29.1 -31.8	DO (mg/L) 4.12 2.39 0.89 0.74 0.68 0.52 0.49	Yellow brown I	urbid nil oc urbid nil oc	dours, other) dour dour dour dour dour dour dour dour	
8:31 8:34 8:37 8:40 8:43 8:46 8:49 8:52	Cumulative Volume Removed (t) 0.1 0.6 1.1 1.6 2.1 2.6 3.1 3.6 4.1	- vol required for Water Level (m below MP) 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590	Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (us/cm) @25°C 3390 3381 3371 3368 3369 3369 3361 3370 3361	+/- 0.05 pH pH 6.92 6.87 6.61 6.57 6.49 6.48 6.44 6.42	+/- 10% Temp. (°C) 13.40 13.80 15.40 15.17 14.22 14.18 14.22 14.21	+/- 10mV Redox ORP (mV) 1.3 -0.8 -8.2 -21.3 -27.2 -29.1 -31.8 -34.8	DO (mg/L) 4.12 2.39 0.89 0.74 0.68 0.52 0.49 0.22	Yellow brown I	urbid nil oc urbid nil oc	dours, other) dour dour dour dour dour dour dour dour	
8:31 8:34 8:37 8:40 8:43 8:46 8:49 8:52 8:55	Cumulative Volume Removed (I) 0.1 0.6 1.1 1.6 2.1 2.6 3.1 3.6 4.1	vol required for below MP) 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590	Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (us/cm) @25°C 3390 3381 3371 3368 3369 3368 3370 3361 3355	+/- 0.05 pH pH 6.92 6.87 6.61 6.57 6.49 6.48 6.44 6.42 6.42	+/- 10% Temp. (°C) 13.40 13.80 15.40 15.17 14.22 14.18 14.22 14.21 14.51	+/- 10mV Redox ORP (mV) 1.3 -0.8 -8.2 -21.3 -27.2 -29.1 -31.8 -34.8 -38.1 -41.8	DO (mg/L) 4.12 2.39 0.89 0.74 0.68 0.52 0.49 0.22 0.18	Yellow brown I	turbidity, oc urbid nil oc	dours, other) dour dour dour dour dour dour dour dour	
8:31 8:34 8:37 8:40 8:43 8:46 8:49 8:52 8:55 8:58	Cumulative Volume Removed () 0.1 0.6 1.1 1.6 2.1 2.6 3.1 3.6 4.1 4.6 5.1	ovol required for below MP) 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590	Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 3390 3381 3371 3368 3369 3368 3370 3361 3355 3357	+/- 0.05 pH pH 6.92 6.87 6.61 6.57 6.49 6.48 6.42 6.42 6.41 6.40	+/- 10% Temp. (°C) 13.40 13.80 15.40 15.17 14.22 14.18 14.22 14.21 14.51 14.17	+/- 10mV Redox ORP (mV) 1.3 -0.8 -8.2 -21.3 -27.2 -29.1 -31.8 -34.8 -38.1 -41.8	DO (mg/L) 4.12 2.39 0.89 0.74 0.68 0.52 0.49 0.22 0.18 0.14 0.11	Yellow brown to Yellow brown t	urbid nil oc urbid nil oc	dours, other) dour dour dour dour dour dour dour dour	
8:31 8:34 8:37 8:40 8:43 8:46 8:49 8:52 8:55 8:58 9:01	Cumulative Volume Removed (f) 0.1 0.6 1.1 1.6 2.1 2.6 3.1 3.6 4.1 4.6 5.1 5.6	vol required for below MP) 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590	Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 3390 3381 3371 3368 3369 3369 3361 3355 3357 3354	+/- 0.05 pH pH 6.92 6.87 6.61 6.57 6.49 6.48 6.44 6.42 6.41 6.40	+/- 10% Temp. (°C) 13.40 13.80 15.40 15.17 14.22 14.18 14.22 14.51 14.17 14.25	+/- 10mV Redox ORP (mV) 1.3 -0.8 -8.2 -21.3 -27.2 -29.1 -31.8 -34.8 -38.1 -41.8 -42.2	DO (mg/L) 4.12 2.39 0.89 0.74 0.68 0.52 0.49 0.22 0.18 0.14 0.11	Yellow brown to Yellow brown t	urbid nil oc urbid nil oc	dours, other) dour dour dour dour dour dour dour dour	
8:31 8:34 8:37 8:40 8:43 8:46 8:49 8:52 8:55 8:58	Cumulative Volume Removed () 0.1 0.6 1.1 1.6 2.1 2.6 3.1 3.6 4.1 4.6 5.1	ovol required for below MP) 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590	Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 3390 3381 3371 3368 3369 3368 3370 3361 3355 3357	+/- 0.05 pH pH 6.92 6.87 6.61 6.57 6.49 6.48 6.42 6.42 6.41 6.40	+/- 10% Temp. (°C) 13.40 13.80 15.40 15.17 14.22 14.18 14.22 14.21 14.51 14.17	+/- 10mV Redox ORP (mV) 1.3 -0.8 -8.2 -21.3 -27.2 -29.1 -31.8 -34.8 -38.1 -41.8	DO (mg/L) 4.12 2.39 0.89 0.74 0.68 0.52 0.49 0.22 0.18 0.14 0.11	Yellow brown to Yellow brown t	urbid nil oc urbid nil oc	dours, other) dour dour dour dour dour dour dour dour	
8:31 8:34 8:37 8:40 8:43 8:46 8:49 8:52 8:55 8:58 9:01	Cumulative Volume Removed (f) 0.1 0.6 1.1 1.6 2.1 2.6 3.1 3.6 4.1 4.6 5.1 5.6	vol required for below MP) 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590	Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 3390 3381 3371 3368 3369 3369 3361 3355 3357 3354	+/- 0.05 pH pH 6.92 6.87 6.61 6.57 6.49 6.48 6.44 6.42 6.41 6.40	+/- 10% Temp. (°C) 13.40 13.80 15.40 15.17 14.22 14.18 14.22 14.51 14.17 14.25	+/- 10mV Redox ORP (mV) 1.3 -0.8 -8.2 -21.3 -27.2 -29.1 -31.8 -34.8 -38.1 -41.8 -42.2	DO (mg/L) 4.12 2.39 0.89 0.74 0.68 0.52 0.49 0.22 0.18 0.14 0.11	Yellow brown to Yellow brown t	urbid nil oc urbid nil oc	dours, other) dour dour dour dour dour dour dour dour	
8:31 8:34 8:37 8:40 8:43 8:46 8:49 8:52 8:55 8:58 9:01	Cumulative Volume Removed (f) 0.1 0.6 1.1 1.6 2.1 2.6 3.1 3.6 4.1 4.6 5.1 5.6	vol required for below MP) 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590	Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 3390 3381 3371 3368 3369 3369 3361 3355 3357 3354	+/- 0.05 pH pH 6.92 6.87 6.61 6.57 6.49 6.48 6.44 6.42 6.41 6.40	+/- 10% Temp. (°C) 13.40 13.80 15.40 15.17 14.22 14.18 14.22 14.51 14.17 14.25	+/- 10mV Redox ORP (mV) 1.3 -0.8 -8.2 -21.3 -27.2 -29.1 -31.8 -34.8 -38.1 -41.8 -42.2	DO (mg/L) 4.12 2.39 0.89 0.74 0.68 0.52 0.49 0.22 0.18 0.14 0.11	Yellow brown to Yellow brown t	urbid nil oc urbid nil oc	dours, other) dour dour dour dour dour dour dour dour	
8:31 8:34 8:37 8:40 8:43 8:46 8:49 8:52 8:55 8:58 9:01	Cumulative Volume Removed (f) 0.1 0.6 1.1 1.6 2.1 2.6 3.1 3.6 4.1 4.6 5.1 5.6	vol required for below MP) 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590	Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 3390 3381 3371 3368 3369 3369 3361 3355 3357 3354	+/- 0.05 pH pH 6.92 6.87 6.61 6.57 6.49 6.48 6.44 6.42 6.41 6.40	+/- 10% Temp. (°C) 13.40 13.80 15.40 15.17 14.22 14.18 14.22 14.51 14.17 14.25	+/- 10mV Redox ORP (mV) 1.3 -0.8 -8.2 -21.3 -27.2 -29.1 -31.8 -34.8 -38.1 -41.8 -42.2	DO (mg/L) 4.12 2.39 0.89 0.74 0.68 0.52 0.49 0.22 0.18 0.14 0.11	Yellow brown to Yellow brown t	urbid nil oc urbid nil oc	dours, other) dour dour dour dour dour dour dour dour	
8:31 8:34 8:37 8:40 8:43 8:46 8:49 8:52 8:55 8:58 9:01	Cumulative Volume Removed (f) 0.1 0.6 1.1 1.6 2.1 2.6 3.1 3.6 4.1 4.6 5.1 5.6	vol required for below MP) 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590	Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 3390 3381 3371 3368 3369 3369 3361 3355 3357 3354	+/- 0.05 pH pH 6.92 6.87 6.61 6.57 6.49 6.48 6.44 6.42 6.41 6.40	+/- 10% Temp. (°C) 13.40 13.80 15.40 15.17 14.22 14.18 14.22 14.51 14.17 14.25	+/- 10mV Redox ORP (mV) 1.3 -0.8 -8.2 -21.3 -27.2 -29.1 -31.8 -34.8 -38.1 -41.8 -42.2	DO (mg/L) 4.12 2.39 0.89 0.74 0.68 0.52 0.49 0.22 0.18 0.14 0.11	Yellow brown to Yellow brown t	urbid nil oc urbid nil oc	dours, other) dour dour dour dour dour dour dour dour	
8:31 8:34 8:37 8:40 8:43 8:46 8:49 8:52 8:55 8:58 9:01	Cumulative Volume Removed (f) 0.1 0.6 1.1 1.6 2.1 2.6 3.1 3.6 4.1 4.6 5.1 5.6	vol required for below MP) 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590	Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 3390 3381 3371 3368 3369 3369 3361 3355 3357 3354	+/- 0.05 pH pH 6.92 6.87 6.61 6.57 6.49 6.48 6.44 6.42 6.41 6.40	+/- 10% Temp. (°C) 13.40 13.80 15.40 15.17 14.22 14.18 14.22 14.51 14.17 14.25	+/- 10mV Redox ORP (mV) 1.3 -0.8 -8.2 -21.3 -27.2 -29.1 -31.8 -34.8 -38.1 -41.8 -42.2	DO (mg/L) 4.12 2.39 0.89 0.74 0.68 0.52 0.49 0.22 0.18 0.14 0.11	Yellow brown to Yellow brown t	urbid nil oc urbid nil oc	dours, other) dour dour dour dour dour dour dour dour	
8:31 8:34 8:37 8:40 8:43 8:46 8:49 8:52 8:55 8:58 9:01	Cumulative Volume Removed (f) 0.1 0.6 1.1 1.6 2.1 2.6 3.1 3.6 4.1 4.6 5.1 5.6	vol required for below MP) 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590	Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 3390 3381 3371 3368 3369 3369 3361 3355 3357 3354	+/- 0.05 pH pH 6.92 6.87 6.61 6.57 6.49 6.48 6.44 6.42 6.41 6.40	+/- 10% Temp. (°C) 13.40 13.80 15.40 15.17 14.22 14.18 14.22 14.51 14.17 14.25	+/- 10mV Redox ORP (mV) 1.3 -0.8 -8.2 -21.3 -27.2 -29.1 -31.8 -34.8 -38.1 -41.8 -42.2	DO (mg/L) 4.12 2.39 0.89 0.74 0.68 0.52 0.49 0.22 0.18 0.14 0.11	Yellow brown to Yellow brown t	urbid nil oc urbid nil oc	dours, other) dour dour dour dour dour dour dour dour	
8:31 8:34 8:37 8:40 8:43 8:46 8:49 8:52 8:55 8:58 9:01	Cumulative Volume Removed (f) 0.1 0.6 1.1 1.6 2.1 2.6 3.1 3.6 4.1 4.6 5.1 5.6	vol required for below MP) 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590	Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 3390 3381 3371 3368 3369 3369 3361 3355 3357 3354	+/- 0.05 pH pH 6.92 6.87 6.61 6.57 6.49 6.48 6.44 6.42 6.41 6.40	+/- 10% Temp. (°C) 13.40 13.80 15.40 15.17 14.22 14.18 14.22 14.51 14.17 14.25	+/- 10mV Redox ORP (mV) 1.3 -0.8 -8.2 -21.3 -27.2 -29.1 -31.8 -34.8 -38.1 -41.8 -42.2	DO (mg/L) 4.12 2.39 0.89 0.74 0.68 0.52 0.49 0.22 0.18 0.14 0.11	Yellow brown to Yellow brown t	urbid nil oc urbid nil oc	dours, other) dour dour dour dour dour dour dour dour	
8:31 8:34 8:37 8:40 8:43 8:46 8:49 8:52 8:55 8:58 9:01	Cumulative Volume Removed (f) 0.1 0.6 1.1 1.6 2.1 2.6 3.1 3.6 4.1 4.6 5.1 5.6	vol required for below MP) 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590	Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 3390 3381 3371 3368 3369 3369 3361 3355 3357 3354	+/- 0.05 pH pH 6.92 6.87 6.61 6.57 6.49 6.48 6.44 6.42 6.41 6.40	+/- 10% Temp. (°C) 13.40 13.80 15.40 15.17 14.22 14.18 14.22 14.51 14.17 14.25	+/- 10mV Redox ORP (mV) 1.3 -0.8 -8.2 -21.3 -27.2 -29.1 -31.8 -34.8 -38.1 -41.8 -42.2	DO (mg/L) 4.12 2.39 0.89 0.74 0.68 0.52 0.49 0.22 0.18 0.14 0.11	Yellow brown to Yellow brown t	urbid nil oc urbid nil oc	dours, other) dour dour dour dour dour dour dour dour	
8:31 8:34 8:37 8:40 8:43 8:46 8:49 8:52 8:55 8:58 9:01	Cumulative Volume Removed (f) 0.1 0.6 1.1 1.6 2.1 2.6 3.1 3.6 4.1 4.6 5.1 5.6	vol required for below MP) 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590	Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 3390 3381 3371 3368 3369 3369 3361 3355 3357 3354	+/- 0.05 pH pH 6.92 6.87 6.61 6.57 6.49 6.48 6.44 6.42 6.41 6.40	+/- 10% Temp. (°C) 13.40 13.80 15.40 15.17 14.22 14.18 14.22 14.51 14.17 14.25	+/- 10mV Redox ORP (mV) 1.3 -0.8 -8.2 -21.3 -27.2 -29.1 -31.8 -34.8 -38.1 -41.8 -42.2	DO (mg/L) 4.12 2.39 0.89 0.74 0.68 0.52 0.49 0.22 0.18 0.14 0.11	Yellow brown to Yellow brown t	urbid nil oc urbid nil oc	dours, other) dour dour dour dour dour dour dour dour	
8:31 8:34 8:37 8:40 8:43 8:46 8:49 8:52 8:55 8:58 9:01	Cumulative Volume Removed (f) 0.1 0.6 1.1 1.6 2.1 2.6 3.1 3.6 4.1 4.6 5.1 5.6	vol required for below MP) 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590 0.590	Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 3390 3381 3371 3368 3369 3369 3361 3355 3357 3354	+/- 0.05 pH pH 6.92 6.87 6.61 6.57 6.49 6.48 6.44 6.42 6.41 6.40	+/- 10% Temp. (°C) 13.40 13.80 15.40 15.17 14.22 14.18 14.22 14.51 14.17 14.25	+/- 10mV Redox ORP (mV) 1.3 -0.8 -8.2 -21.3 -27.2 -29.1 -31.8 -34.8 -38.1 -41.8 -42.2	DO (mg/L) 4.12 2.39 0.89 0.74 0.68 0.52 0.49 0.22 0.18 0.14 0.11	Yellow brown to Yellow brown t	urbid nil oc urbid nil oc	dours, other) dour dour dour dour dour dour dour dour	

			TS Grou		rdinates in GD/		shoot -	Fny N	√onitoring	, V (entia	
Poro ID No	В	НЛ			-	_		LIIVI		_	AC	
		1114	=	Project Name				-		pling Staff		500
Project Area:								=		ter Model	Aqua troll	
Date		1/2022		Project No					WQ. Met	er Serial #	,05710	
Expe	cted Bore D	etaiis										
Internal Dia	imeter (mm)			Easting			Total [Depth (m)		Screen	Depth From (m)	
Drop Tube already in	bore? (Y/N)	N	<u>.</u>	Northing			Water	Level (m)		Scree	en Depth To (m)	
Drop Tube	e Length (m)	0.00		Zone			Set Pump in	nlet at (m)		-	Set Pump at (m)	
Additiona	I Information											-
Bore Fi	eld Measur	ements										
Time of SWL	11:41	To	otal Depth (m)	7.90	Mid-screen	accessible?	Clea	ar	Depth pump	set at (m)	7.00	
Static Water Level (m)	3.25	Во	re Diam (mm)	50	Open Scree	n Length(m)	0.00	-	Depth of pump	inlet (m)	7.00	
Wel	l Purging De	etails			Sampling D	etails			Sai	mple Bottl	les Required	
Purge Method	low flow	Pump Type	micro	Samp	oling Method	low flow			Bottle Type	Quantity	Bottle Type	Quantity
Time Pump in					Time Started		WL m (start)					
Time Started		WL m (start)			me Stopped		WL m (end)	3.25				
Time Stopped		WL m (end)	3.25		sample ID?							
Volume Removed (I)		=			sample ID?							
Discharge Rate (I/m)		· ol		Rinsate	sample ID?							
Time of removal	ump Remov 12:35		n(post-removal)	3.25	Bore Der	oth at end (m)	7.90					
	ump Setting		прозиченночан	3.23	Boic Bet	ar ar ena (m)	7.70					
Fill / Discharge used	25/5	CPM		Air/Gas	Pressure (kPa)	30						
Comments		-										
Comments												
		Field Parameters	are considered sta	ble when within the	PPΔ limits for 3 c	onsecutive mea	surements					<u>.</u>
	27	= vol required for		+/- 3%	+/- 0.05 pH	+/- 10%	+/- 10mV	+/- 10%				
Time	Cumulative Volume	Water Level (m	Stability of Field	Specific Conductance	рН	Temp.	Redox	DO		Comment	ts (colour,	
iiiie	Removed (I)	below MP)	Params	EC (uS/cm) @25°C		(°C)	ORP (mV)	(")				
11:53	0.1	3.25					ORF (IIIV)	(mg/L)		turbidity, od	lours, other)	
11:56	0.6		Keep purging	1304	6.89	11.90	1.8	1.94	Pumping delay			
11:59		3.25	Keep purging Keep purging	1304 2594	6.89				Pumping delay	ed by pum	np failure	
12:02	1.1	3.25 3.25				11.90	1.8	1.94		ed by pum bidity very	np failure slight odour	
	1.1		Keep purging	2594	6.47	11.90 12.80	1.8	1.94 1.27 0.95	yellow silver turi	ed by pum bidity very bidity very	np failure slight odour slight odour	
12:05		3.25	Keep purging Keep purging	2594 2528	6.47	11.90 12.80 12.90	1.8 -14.3 -28.7	1.94 1.27 0.95	yellow silver turi	ed by pum bidity very bidity very bidity very	np failure slight odour slight odour slight odour	
12:05 12:08	1.6	3.25 3.25	Keep purging Keep purging Keep purging	2594 2528 2521	6.47 6.19 6.19	11.90 12.80 12.90 13.30	1.8 -14.3 -28.7 -32.1	1.94 1.27 0.95 0.21	yellow silver turi yellow silver turi yellow silver turi	ed by pum bidity very bidity very bidity very	np failure slight odour slight odour slight odour	
	1.6	3.25 3.25 3.25	Keep purging Keep purging Keep purging Keep purging	2594 2528 2521 2518	6.47 6.19 6.19 6.18	11.90 12.80 12.90 13.30 13.20	1.8 -14.3 -28.7 -32.1 -39.7	1.94 1.27 0.95 0.21 0.12	yellow silver turi yellow silver turi yellow silver turi yellow silver turi	ed by pum bidity very bidity very bidity very bidity very	np failure slight odour slight odour slight odour slight odour	
12:08	1.6 2.1 2.6	3.25 3.25 3.25 3.25	Keep purging Keep purging Keep purging Keep purging Keep purging	2594 2528 2521 2518 2516	6.47 6.19 6.19 6.18 6.13	11.90 12.80 12.90 13.30 13.20	1.8 -14.3 -28.7 -32.1 -39.7 -47.2	1.94 1.27 0.95 0.21 0.12	yellow silver turl yellow silver turl yellow silver turl yellow silver turl	ed by puri bidity very bidity very bidity very bidity very bidity very	np failure slight odour slight odour slight odour slight odour slight odour	
12:08 12:11	1.6 2.1 2.6 3.1	3.25 3.25 3.25 3.25 3.25	Keep purging Keep purging Keep purging Keep purging Keep purging Keep purging	2594 2528 2521 2518 2516 2524	6.47 6.19 6.19 6.18 6.13 6.11	11.90 12.80 12.90 13.30 13.20 13.20	1.8 -14.3 -28.7 -32.1 -39.7 -47.2 -51.7	1.94 1.27 0.95 0.21 0.12 0.10	yellow silver turi yellow silver turi yellow silver turi yellow silver turi yellow silver turi	ed by purn bidity very bidity very bidity very bidity very bidity very bidity very	np failure slight odour slight odour slight odour slight odour slight odour slight odour	
12:08 12:11 12:14	1.6 2.1 2.6 3.1 3.6	3.25 3.25 3.25 3.25 3.25 3.25	Keep purging	2594 2528 2521 2518 2516 2524 2515	6.47 6.19 6.19 6.18 6.13 6.11 6.06	11.90 12.80 12.90 13.30 13.20 13.20 12.40	1.8 -14.3 -28.7 -32.1 -39.7 -47.2 -51.7	1.94 1.27 0.95 0.21 0.12 0.10 0.06	yellow silver turi yellow silver turi yellow silver turi yellow silver turi yellow silver turi yellow silver turi	ed by purn bidity very bidity very bidity very bidity very bidity very bidity very bidity very	np failure slight odour	
12:08 12:11 12:14 12:17	1.6 2.1 2.6 3.1 3.6 4.1	3.25 3.25 3.25 3.25 3.25 3.25 3.25 3.25	Keep purging	2594 2528 2521 2518 2516 2524 2515 2513	6.47 6.19 6.19 6.18 6.13 6.11 6.06	11.90 12.80 12.90 13.30 13.20 13.20 12.40 12.80	1.8 -14.3 -28.7 -32.1 -39.7 -47.2 -51.7 -71.7	1.94 1.27 0.95 0.21 0.12 0.10 0.06 0.04	yellow silver turi yellow silver turi yellow silver turi yellow silver turi yellow silver turi yellow silver turi yellow silver turi	ed by purn bidity very bidity very bidity very bidity very bidity very bidity very bidity very	np failure slight odour	
12:08 12:11 12:14 12:17	1.6 2.1 2.6 3.1 3.6 4.1	3.25 3.25 3.25 3.25 3.25 3.25 3.25 3.25	Keep purging	2594 2528 2521 2518 2516 2524 2515 2513	6.47 6.19 6.19 6.18 6.13 6.11 6.06	11.90 12.80 12.90 13.30 13.20 13.20 12.40 12.80	1.8 -14.3 -28.7 -32.1 -39.7 -47.2 -51.7 -71.7	1.94 1.27 0.95 0.21 0.12 0.10 0.06 0.04	yellow silver turi yellow silver turi yellow silver turi yellow silver turi yellow silver turi yellow silver turi yellow silver turi	ed by purn bidity very bidity very bidity very bidity very bidity very bidity very bidity very	np failure slight odour	
12:08 12:11 12:14 12:17	1.6 2.1 2.6 3.1 3.6 4.1	3.25 3.25 3.25 3.25 3.25 3.25 3.25 3.25	Keep purging	2594 2528 2521 2518 2516 2524 2515 2513	6.47 6.19 6.19 6.18 6.13 6.11 6.06	11.90 12.80 12.90 13.30 13.20 13.20 12.40 12.80	1.8 -14.3 -28.7 -32.1 -39.7 -47.2 -51.7 -71.7	1.94 1.27 0.95 0.21 0.12 0.10 0.06 0.04	yellow silver turi yellow silver turi yellow silver turi yellow silver turi yellow silver turi yellow silver turi yellow silver turi	ed by purn bidity very bidity very bidity very bidity very bidity very bidity very bidity very	np failure slight odour	
12:08 12:11 12:14 12:17	1.6 2.1 2.6 3.1 3.6 4.1	3.25 3.25 3.25 3.25 3.25 3.25 3.25 3.25	Keep purging	2594 2528 2521 2518 2516 2524 2515 2513	6.47 6.19 6.19 6.18 6.13 6.11 6.06	11.90 12.80 12.90 13.30 13.20 13.20 12.40 12.80	1.8 -14.3 -28.7 -32.1 -39.7 -47.2 -51.7 -71.7	1.94 1.27 0.95 0.21 0.12 0.10 0.06 0.04	yellow silver turi yellow silver turi yellow silver turi yellow silver turi yellow silver turi yellow silver turi yellow silver turi	ed by purn bidity very bidity very bidity very bidity very bidity very bidity very bidity very	np failure slight odour	
12:08 12:11 12:14 12:17	1.6 2.1 2.6 3.1 3.6 4.1	3.25 3.25 3.25 3.25 3.25 3.25 3.25 3.25	Keep purging	2594 2528 2521 2518 2516 2524 2515 2513	6.47 6.19 6.19 6.18 6.13 6.11 6.06	11.90 12.80 12.90 13.30 13.20 13.20 12.40 12.80	1.8 -14.3 -28.7 -32.1 -39.7 -47.2 -51.7 -71.7	1.94 1.27 0.95 0.21 0.12 0.10 0.06 0.04	yellow silver turi yellow silver turi yellow silver turi yellow silver turi yellow silver turi yellow silver turi yellow silver turi	ed by purn bidity very bidity very bidity very bidity very bidity very bidity very bidity very	np failure slight odour	
12:08 12:11 12:14 12:17	1.6 2.1 2.6 3.1 3.6 4.1	3.25 3.25 3.25 3.25 3.25 3.25 3.25 3.25	Keep purging	2594 2528 2521 2518 2516 2524 2515 2513	6.47 6.19 6.19 6.18 6.13 6.11 6.06	11.90 12.80 12.90 13.30 13.20 13.20 12.40 12.80	1.8 -14.3 -28.7 -32.1 -39.7 -47.2 -51.7 -71.7	1.94 1.27 0.95 0.21 0.12 0.10 0.06 0.04	yellow silver turi yellow silver turi yellow silver turi yellow silver turi yellow silver turi yellow silver turi yellow silver turi	ed by purn bidity very bidity very bidity very bidity very bidity very bidity very bidity very	np failure slight odour	
12:08 12:11 12:14 12:17	1.6 2.1 2.6 3.1 3.6 4.1	3.25 3.25 3.25 3.25 3.25 3.25 3.25 3.25	Keep purging	2594 2528 2521 2518 2516 2524 2515 2513	6.47 6.19 6.19 6.18 6.13 6.11 6.06	11.90 12.80 12.90 13.30 13.20 13.20 12.40 12.80	1.8 -14.3 -28.7 -32.1 -39.7 -47.2 -51.7 -71.7	1.94 1.27 0.95 0.21 0.12 0.10 0.06 0.04	yellow silver turi yellow silver turi yellow silver turi yellow silver turi yellow silver turi yellow silver turi yellow silver turi	ed by purn bidity very bidity very bidity very bidity very bidity very bidity very bidity very	np failure slight odour	
12:08 12:11 12:14 12:17	1.6 2.1 2.6 3.1 3.6 4.1	3.25 3.25 3.25 3.25 3.25 3.25 3.25 3.25	Keep purging	2594 2528 2521 2518 2516 2524 2515 2513	6.47 6.19 6.19 6.18 6.13 6.11 6.06	11.90 12.80 12.90 13.30 13.20 13.20 12.40 12.80	1.8 -14.3 -28.7 -32.1 -39.7 -47.2 -51.7 -71.7	1.94 1.27 0.95 0.21 0.12 0.10 0.06 0.04	yellow silver turi yellow silver turi yellow silver turi yellow silver turi yellow silver turi yellow silver turi yellow silver turi	ed by purn bidity very bidity very bidity very bidity very bidity very bidity very bidity very	np failure slight odour	
12:08 12:11 12:14 12:17	1.6 2.1 2.6 3.1 3.6 4.1	3.25 3.25 3.25 3.25 3.25 3.25 3.25 3.25	Keep purging	2594 2528 2521 2518 2516 2524 2515 2513	6.47 6.19 6.19 6.18 6.13 6.11 6.06	11.90 12.80 12.90 13.30 13.20 13.20 12.40 12.80	1.8 -14.3 -28.7 -32.1 -39.7 -47.2 -51.7 -71.7	1.94 1.27 0.95 0.21 0.12 0.10 0.06 0.04	yellow silver turi yellow silver turi yellow silver turi yellow silver turi yellow silver turi yellow silver turi yellow silver turi	ed by purn bidity very bidity very bidity very bidity very bidity very bidity very bidity very	np failure slight odour	
12:08 12:11 12:14 12:17	1.6 2.1 2.6 3.1 3.6 4.1	3.25 3.25 3.25 3.25 3.25 3.25 3.25 3.25	Keep purging	2594 2528 2521 2518 2516 2524 2515 2513	6.47 6.19 6.19 6.18 6.13 6.11 6.06	11.90 12.80 12.90 13.30 13.20 13.20 12.40 12.80	1.8 -14.3 -28.7 -32.1 -39.7 -47.2 -51.7 -71.7	1.94 1.27 0.95 0.21 0.12 0.10 0.06 0.04	yellow silver turi yellow silver turi yellow silver turi yellow silver turi yellow silver turi yellow silver turi yellow silver turi	ed by purn bidity very bidity very bidity very bidity very bidity very bidity very bidity very	np failure slight odour	
12:08 12:11 12:14 12:17	1.6 2.1 2.6 3.1 3.6 4.1	3.25 3.25 3.25 3.25 3.25 3.25 3.25 3.25	Keep purging	2594 2528 2521 2518 2516 2524 2515 2513	6.47 6.19 6.19 6.18 6.13 6.11 6.06	11.90 12.80 12.90 13.30 13.20 13.20 12.40 12.80	1.8 -14.3 -28.7 -32.1 -39.7 -47.2 -51.7 -71.7	1.94 1.27 0.95 0.21 0.12 0.10 0.06 0.04	yellow silver turi yellow silver turi yellow silver turi yellow silver turi yellow silver turi yellow silver turi yellow silver turi	ed by purn bidity very bidity very bidity very bidity very bidity very bidity very bidity very	np failure slight odour	
12:08 12:11 12:14 12:17	1.6 2.1 2.6 3.1 3.6 4.1	3.25 3.25 3.25 3.25 3.25 3.25 3.25 3.25	Keep purging	2594 2528 2521 2518 2516 2524 2515 2513	6.47 6.19 6.19 6.18 6.13 6.11 6.06	11.90 12.80 12.90 13.30 13.20 13.20 12.40 12.80	1.8 -14.3 -28.7 -32.1 -39.7 -47.2 -51.7 -71.7	1.94 1.27 0.95 0.21 0.12 0.10 0.06 0.04	yellow silver turi yellow silver turi yellow silver turi yellow silver turi yellow silver turi yellow silver turi yellow silver turi	ed by purn bidity very bidity very bidity very bidity very bidity very bidity very bidity very	np failure slight odour	
12:08 12:11 12:14 12:17	1.6 2.1 2.6 3.1 3.6 4.1	3.25 3.25 3.25 3.25 3.25 3.25 3.25 3.25	Keep purging	2594 2528 2521 2518 2516 2524 2515 2513	6.47 6.19 6.19 6.18 6.13 6.11 6.06	11.90 12.80 12.90 13.30 13.20 13.20 12.40 12.80	1.8 -14.3 -28.7 -32.1 -39.7 -47.2 -51.7 -71.7	1.94 1.27 0.95 0.21 0.12 0.10 0.06 0.04	yellow silver turi yellow silver turi yellow silver turi yellow silver turi yellow silver turi yellow silver turi yellow silver turi	ed by purn bidity very bidity very bidity very bidity very bidity very bidity very bidity very	np failure slight odour	


		ced to the mark		nt point. All Coo ndwater			l sheet -	· Fny N	Monitorin	, V	entia	
Bore ID No	B	H6		Project Name	•	Ü			,	9 pling Staff	AC	
Project Area:		110	-					•		ter Model		1 500
-		1 /2022						-			Aqua trol	
Date		1/2022		Project No					WQ. Met	er Serial #	,0571)
	cted Bore D											
Internal Dia	ameter (mm)		i	Easting			Total [Depth (m)		Screen	Depth From (m)
Drop Tube already in	bore? (Y/N)	N		Northing		:	Water	Level (m)		Scre	en Depth To (m)
Drop Tub	e Length (m)	0.00		Zone		:	Set Pump ir	nlet at (m)		=	Set Pump at (m)
	I Information											_
	ield Measur											
Time of SWL			otal Depth (m)			accessible?		ar				
Static Water Level (m)			re Diam (mm)	50		n Length(m)	0.00		Depth of pum)
	I Purging De		DI 11		Sampling E						les Required	
Purge Method		Pump Type			oling Method Time Started		\// m (start)	11 20	Bottle Type	Quantity	Bottle Type	Quantity
Time Pump in Time Started		Pump in' WL WL m (start)			me Stopped							
Time Stopped		WL m (end)			sample ID?		-	11.20				
Volume Removed (I)		with (end)	11.20		sample ID?		=					
Discharge Rate (I/m)		-			sample ID?		-					
	ump Remov	ıal		Misate	sumple ib.							
Time of removal	<u>'</u>		n(post-removal)	11.20	Bore Der	oth at end (m)	15.50					
	ump Setting	as .			<u> </u>	, ,						
Fill / Discharge used		CPM		Air/Gas	Pressure (kPa)	40						
Comments												
		Field Parameters	are considered sta	ble when within th	a EDA limits for 2 s	oprogutivo mon	suromonts.					_
	25	= vol required for		+/- 3%	+/- 0.05 pH	+/- 10%	+/- 10mV	+/- 10%				
-	Cumulative		ov memod (c)	Specific		17 1070	17 101111	17 1070				
Time	Volume	Water Level (m	Stability of Field		pН	Temp.	Redox	DO		Commen	ts (colour,	
16:24	Removed (I)	below MP)	Stability of Field Params	Conductance EC (uS/cm) @25°C	pН	Temp.	Redox ORP (mV)	DO (mg/L)		Commen turbidity, oc		
	0.1			Conductance EC (uS/cm)	рН 5.24				clear nil odour			
16:27		below MP)	Params	Conductance EC (uS/cm) @25°C		(°C)	ORP (mV)	(mg/L)	clear nil odour Slight white turk	turbidity, oc	dours, other)	
16:27 16:30	0.1	11.20	Params Keep purging	Conductance EC (uS/cm) @25°C 687	5.24	(°C)	ORP (mV) 29.5	(mg/L)		turbidity, oc	dours, other)	
	0.1	11.20 11.20	Params Keep purging Keep purging	Conductance EC (uS/cm) @25°C 687 669	5.24	(°C) 15.84 15.24	ORP (mV) 29.5 96.3	(mg/L) 2.17 0.96	Slight white turk	turbidity, oc	lour	
16:30	0.1 0.7 1.3	11.20 11.20 11.20	Params Keep purging Keep purging Keep purging	Conductance EC (uS/cm)	5.24 5.10 5.04	(°C) 15.84 15.24 15.36	ORP (mV) 29.5 96.3 151.3	(mg/L) 2.17 0.96 0.58	Slight white turk	bidity nil oc	dours, other)	
16:30 16:33	0.1 0.7 1.3 1.9	11.20 11.20 11.20 11.20	Reep purging Keep purging Keep purging Keep purging Keep purging	Conductance EC (uS/cm)	5.24 5.10 5.04 5.01	(°C) 15.84 15.24 15.36 15.34	ORP (mV) 29.5 96.3 151.3 168.0	(mg/L) 2.17 0.96 0.58 0.44	Slight white turk Slight white turk Slight white turk	bidity nil oc	lour lour	
16:30 16:33 16:36	0.1 0.7 1.3 1.9 2.5	11.20 11.20 11.20 11.20 11.20	Reep purging Keep purging Keep purging Keep purging Keep purging Keep purging	Conductance EC (uS/cm) #25°C 687 669 661 654	5.24 5.10 5.04 5.01 4.95	(°C) 15.84 15.24 15.36 15.34	ORP (mV) 29.5 96.3 151.3 168.0 187.0	(mg/L) 2.17 0.96 0.58 0.44 0.40	Slight white turk Slight white turk Slight white turk	bidity nil oco	lour lour	
16:30 16:33 16:36 16:39	0.1 0.7 1.3 1.9 2.5 3.1	11.20 11.20 11.20 11.20 11.20 11.20	Params Keep purging Keep purging Keep purging Keep purging Keep purging Keep purging	Conductance EC (uS/cm) @25°C 687 669 661 654 653	5.24 5.10 5.04 5.01 4.95 4.92	(°C) 15.84 15.24 15.36 15.34 15.30	ORP (mV) 29.5 96.3 151.3 168.0 187.0	(mg/L) 2.17 0.96 0.58 0.44 0.40 0.38	Slight white turk Slight white turk Slight white turk Slight white turk	bidity nil oco	lour lour lour lour lour lour lour lour	
16:30 16:33 16:36 16:39 16:42	0.1 0.7 1.3 1.9 2.5 3.1 3.7	11.20 11.20 11.20 11.20 11.20 11.20 11.20	Params Keep purging	Conductance EC (uS/cm) @25°C 687 669 661 654 653 655	5.24 5.10 5.04 5.01 4.95 4.92	(°C) 15.84 15.24 15.36 15.34 15.30 15.24 15.11	ORP (mV) 29.5 96.3 151.3 168.0 187.0 192.1 193.8	(mg/L) 2.17 0.96 0.58 0.44 0.40 0.38	Slight white turk Slight white turk Slight white turk Slight white turk Slight white turk	bidity nil oco	lour lour lour lour lour lour lour lour	
16:30 16:33 16:36 16:39 16:42	0.1 0.7 1.3 1.9 2.5 3.1 3.7	11.20 11.20 11.20 11.20 11.20 11.20 11.20	Params Keep purging	Conductance EC (uS/cm) @25°C 687 669 661 654 653 655	5.24 5.10 5.04 5.01 4.95 4.92	(°C) 15.84 15.24 15.36 15.34 15.30 15.24 15.11	ORP (mV) 29.5 96.3 151.3 168.0 187.0 192.1 193.8	(mg/L) 2.17 0.96 0.58 0.44 0.40 0.38	Slight white turk Slight white turk Slight white turk Slight white turk Slight white turk	bidity nil oco	lour lour lour lour lour lour lour lour	
16:30 16:33 16:36 16:39 16:42	0.1 0.7 1.3 1.9 2.5 3.1 3.7	11.20 11.20 11.20 11.20 11.20 11.20 11.20	Params Keep purging	Conductance EC (uS/cm) @25°C 687 669 661 654 653 655	5.24 5.10 5.04 5.01 4.95 4.92	(°C) 15.84 15.24 15.36 15.34 15.30 15.24 15.11	ORP (mV) 29.5 96.3 151.3 168.0 187.0 192.1 193.8	(mg/L) 2.17 0.96 0.58 0.44 0.40 0.38	Slight white turk Slight white turk Slight white turk Slight white turk Slight white turk	bidity nil oco	lour lour lour lour lour lour lour lour	
16:30 16:33 16:36 16:39 16:42	0.1 0.7 1.3 1.9 2.5 3.1 3.7	11.20 11.20 11.20 11.20 11.20 11.20 11.20	Params Keep purging	Conductance EC (uS/cm) @25°C 687 669 661 654 653 655	5.24 5.10 5.04 5.01 4.95 4.92	(°C) 15.84 15.24 15.36 15.34 15.30 15.24 15.11	ORP (mV) 29.5 96.3 151.3 168.0 187.0 192.1 193.8	(mg/L) 2.17 0.96 0.58 0.44 0.40 0.38	Slight white turk Slight white turk Slight white turk Slight white turk Slight white turk	bidity nil oco	lour lour lour lour lour lour lour lour	
16:30 16:33 16:36 16:39 16:42	0.1 0.7 1.3 1.9 2.5 3.1 3.7	11.20 11.20 11.20 11.20 11.20 11.20 11.20	Params Keep purging	Conductance EC (uS/cm) @25°C 687 669 661 654 653 655	5.24 5.10 5.04 5.01 4.95 4.92	(°C) 15.84 15.24 15.36 15.34 15.30 15.24 15.11	ORP (mV) 29.5 96.3 151.3 168.0 187.0 192.1 193.8	(mg/L) 2.17 0.96 0.58 0.44 0.40 0.38	Slight white turk Slight white turk Slight white turk Slight white turk Slight white turk	bidity nil oco	lour lour lour lour lour lour lour lour	
16:30 16:33 16:36 16:39 16:42	0.1 0.7 1.3 1.9 2.5 3.1 3.7	11.20 11.20 11.20 11.20 11.20 11.20 11.20	Params Keep purging	Conductance EC (uS/cm) @25°C 687 669 661 654 653 655	5.24 5.10 5.04 5.01 4.95 4.92	(°C) 15.84 15.24 15.36 15.34 15.30 15.24 15.11	ORP (mV) 29.5 96.3 151.3 168.0 187.0 192.1 193.8	(mg/L) 2.17 0.96 0.58 0.44 0.40 0.38	Slight white turk Slight white turk Slight white turk Slight white turk Slight white turk	bidity nil oco	lour lour lour lour lour lour lour lour	
16:30 16:33 16:36 16:39 16:42	0.1 0.7 1.3 1.9 2.5 3.1 3.7	11.20 11.20 11.20 11.20 11.20 11.20 11.20	Params Keep purging	Conductance EC (uS/cm) @25°C 687 669 661 654 653 655	5.24 5.10 5.04 5.01 4.95 4.92	(°C) 15.84 15.24 15.36 15.34 15.30 15.24 15.11	ORP (mV) 29.5 96.3 151.3 168.0 187.0 192.1 193.8	(mg/L) 2.17 0.96 0.58 0.44 0.40 0.38	Slight white turk Slight white turk Slight white turk Slight white turk Slight white turk	bidity nil oco	lour lour lour lour lour lour lour lour	
16:30 16:33 16:36 16:39 16:42	0.1 0.7 1.3 1.9 2.5 3.1 3.7	11.20 11.20 11.20 11.20 11.20 11.20 11.20	Params Keep purging	Conductance EC (uS/cm) @25°C 687 669 661 654 653 655	5.24 5.10 5.04 5.01 4.95 4.92	(°C) 15.84 15.24 15.36 15.34 15.30 15.24 15.11	ORP (mV) 29.5 96.3 151.3 168.0 187.0 192.1 193.8	(mg/L) 2.17 0.96 0.58 0.44 0.40 0.38	Slight white turk Slight white turk Slight white turk Slight white turk Slight white turk	bidity nil oco	lour lour lour lour lour lour lour lour	
16:30 16:33 16:36 16:39 16:42	0.1 0.7 1.3 1.9 2.5 3.1 3.7	11.20 11.20 11.20 11.20 11.20 11.20 11.20	Params Keep purging	Conductance EC (uS/cm) @25°C 687 669 661 654 653 655	5.24 5.10 5.04 5.01 4.95 4.92	(°C) 15.84 15.24 15.36 15.34 15.30 15.24 15.11	ORP (mV) 29.5 96.3 151.3 168.0 187.0 192.1 193.8	(mg/L) 2.17 0.96 0.58 0.44 0.40 0.38	Slight white turk Slight white turk Slight white turk Slight white turk Slight white turk	bidity nil oco	lour lour lour lour lour lour lour lour	
16:30 16:33 16:36 16:39 16:42	0.1 0.7 1.3 1.9 2.5 3.1 3.7	11.20 11.20 11.20 11.20 11.20 11.20 11.20	Params Keep purging	Conductance EC (uS/cm) @25°C 687 669 661 654 653 655	5.24 5.10 5.04 5.01 4.95 4.92	(°C) 15.84 15.24 15.36 15.34 15.30 15.24 15.11	ORP (mV) 29.5 96.3 151.3 168.0 187.0 192.1 193.8	(mg/L) 2.17 0.96 0.58 0.44 0.40 0.38	Slight white turk Slight white turk Slight white turk Slight white turk Slight white turk	bidity nil oco	lour lour lour lour lour lour lour lour	
16:30 16:33 16:36 16:39 16:42	0.1 0.7 1.3 1.9 2.5 3.1 3.7	11.20 11.20 11.20 11.20 11.20 11.20 11.20	Params Keep purging	Conductance EC (uS/cm) @25°C 687 669 661 654 653 655	5.24 5.10 5.04 5.01 4.95 4.92	(°C) 15.84 15.24 15.36 15.34 15.30 15.24 15.11	ORP (mV) 29.5 96.3 151.3 168.0 187.0 192.1 193.8	(mg/L) 2.17 0.96 0.58 0.44 0.40 0.38	Slight white turk Slight white turk Slight white turk Slight white turk Slight white turk	bidity nil oco	lour lour lour lour lour lour lour lour	
16:30 16:33 16:36 16:39 16:42	0.1 0.7 1.3 1.9 2.5 3.1 3.7	11.20 11.20 11.20 11.20 11.20 11.20 11.20	Params Keep purging	Conductance EC (uS/cm) @25°C 687 669 661 654 653 655	5.24 5.10 5.04 5.01 4.95 4.92	(°C) 15.84 15.24 15.36 15.34 15.30 15.24 15.11	ORP (mV) 29.5 96.3 151.3 168.0 187.0 192.1 193.8	(mg/L) 2.17 0.96 0.58 0.44 0.40 0.38	Slight white turk Slight white turk Slight white turk Slight white turk Slight white turk	bidity nil oco	lour lour lour lour lour lour lour lour	
16:30 16:33 16:36 16:39 16:42	0.1 0.7 1.3 1.9 2.5 3.1 3.7	11.20 11.20 11.20 11.20 11.20 11.20 11.20	Params Keep purging	Conductance EC (uS/cm) @25°C 687 669 661 654 653 655	5.24 5.10 5.04 5.01 4.95 4.92	(°C) 15.84 15.24 15.36 15.34 15.30 15.24 15.11	ORP (mV) 29.5 96.3 151.3 168.0 187.0 192.1 193.8	(mg/L) 2.17 0.96 0.58 0.44 0.40 0.38	Slight white turk Slight white turk Slight white turk Slight white turk Slight white turk	bidity nil oco	lour lour lour lour lour lour lour lour	
16:30 16:33 16:36 16:39 16:42	0.1 0.7 1.3 1.9 2.5 3.1 3.7	11.20 11.20 11.20 11.20 11.20 11.20 11.20	Params Keep purging	Conductance EC (uS/cm) @25°C 687 669 661 654 653 655	5.24 5.10 5.04 5.01 4.95 4.92	(°C) 15.84 15.24 15.36 15.34 15.30 15.24 15.11	ORP (mV) 29.5 96.3 151.3 168.0 187.0 192.1 193.8	(mg/L) 2.17 0.96 0.58 0.44 0.40 0.38	Slight white turk Slight white turk Slight white turk Slight white turk Slight white turk	bidity nil oco	lour lour lour lour lour lour lour lour	
16:30 16:33 16:36 16:39 16:42	0.1 0.7 1.3 1.9 2.5 3.1 3.7	11.20 11.20 11.20 11.20 11.20 11.20 11.20	Params Keep purging	Conductance EC (uS/cm) @25°C 687 669 661 654 653 655	5.24 5.10 5.04 5.01 4.95 4.92	(°C) 15.84 15.24 15.36 15.34 15.30 15.24 15.11	ORP (mV) 29.5 96.3 151.3 168.0 187.0 192.1 193.8	(mg/L) 2.17 0.96 0.58 0.44 0.40 0.38	Slight white turk Slight white turk Slight white turk Slight white turk Slight white turk	bidity nil oco	lour lour lour lour lour lour lour lour	

Notes: All bore measuremen	nts are referen	ced to the mark								V	entia	
			IS Grou	ndwater	r sampli	ng field	sheet -	· Env ľ	Monitoring			•
Bore ID No	B	BH7	-	Project Name		HEPBURN GW	/	-	Samp	oling Staff	AC	
Project Area:			i	Client	F	HEPBURN SHIR	RE	=	WQ. Met	er Model	Aqua trol	1 500
Date	17/1	1/2022		Project No					WQ. Mete	er Serial #	,05710	0
Expe	cted Bore D	Details										
Internal Dia	meter (mm)			Easting			Total [Depth (m)		Screen	Depth From (m))
Drop Tube already in	bore? (Y/N)	N		Northing			Water	Level (m)		Scre	en Depth To (m)
											Set Pump at (m)	
	e Length (m)			Zone		-	set rump ii	ilet at (III)		=	set rump at (m	/
	Information											
	ield Measur		atal Danth (m)	7.10	Midsoroon	2000ssldiss	Clar	0.5	Donth numn	ot at (m)	6.50	
Static Water Level (m)	10:22	Ī	otal Depth (m) re Diam (mm)	7.18		accessible? n Length(m)		ar	Depth pump s Depth of pump			
	I Purging De	_	ie Biairi (iliiri)	30	Sampling D		0.00	:			tles Required	
Purge Method			MicroPurge	Samp	oling Method				Bottle Type		Bottle Type	Quantity
Time Pump in					Time Started			2.42	1Ltr green	1		
Time Started	10:19	WL m (start)	2.42	Ti	ime Stopped	10:29	WL m (end)	2.42	Oml filtered meta	1		
Time Stopped		WL m (end)	2.42	Duplicate	sample ID?		=		60ml COD	1		
Volume Removed (I)	5.7	=		Triplicate	sample ID?		<u>-</u>		50ml glass	1		-
Discharge Rate (I/m)				Rinsate	sample ID?							-
	ump Remov			0.40			7.40					
Time of removal			n(post-removal)	2.43	Bore Dep	oth at end (m)	7.18					+
Fill / Discharge used	25/5	US CPM		Air/Gas	Pressure (kPa)	30						
Comments						All times EST						
001111101110					<u> </u>							
												Ī
		Field Parameters	are considered sta	ble when within the	e EPA limits for 3 c	onsecutive mea	surements					_
	28	Field Parameters		+/- 3%	e EPA limits for 3 c	onsecutive mea	surements +/- 10mV	+/- 10%				
Time	Cumulative Volume	= vol required for Water Level (m	3V method (L) Stability of Field	+/- 3% Specific Conductance		+/- 10% Temp.	+/- 10mV Redox	DO			nts (colour,	
	Cumulative Volume Removed (I)	= vol required for Water Level (m below MP)	3V method (L)	+/- 3% Specific Conductance EC (uS/cm) @25°C	+/- 0.05 pH pH	+/- 10% Temp. (°C)	+/- 10mV Redox ORP (mV)	DO (mg/L)		turbidity, o	dours, other)	
9:55	Cumulative Volume Removed (I)	= vol required for Water Level (m below MP)	3V method (L) Stability of Field	+/- 3% Specific Conductance EC (uS/cm) @25°C 995	+/- 0.05 pH pH	+/- 10% Temp. (°C)	+/- 10mV Redox ORP (mV) -58.6	DO (mg/L) 2.68	Light Yellow Bro	turbidity, oo	dours, other)	
9:55 9:58	Cumulative Volume Removed (I) 0.1	= vol required for Water Level (m below MP) 2.42 2.42	3V method (L) Stability of Field	+/- 3% Specific Conductance EC (u5/cm) @25°C 995 941	+/- 0.05 pH pH 6.61 6.48	+/- 10% Temp. (°C) 14.90 14.60	+/- 10mV Redox ORP (mV) -58.6 -45.8	DO (mg/L) 2.68 0.68	Light Yellow Bro	turbidity, oo	dours, other) Hity. No odour. Hity. No odour.	
9:55 9:58 10:01	Cumulative Volume Removed (I) 0.1 0.8 1.5	water Level (m below MP) 2.42 2.42 2.42	3V method (L) Stability of Field	+/- 3% Specific Conductance EC (uS/cm) #25°C 995 941 892	+/- 0.05 pH pH 6.61 6.48 6.45	+/- 10% Temp. (°C) 14.90 14.60	+/- 10mV Redox ORP (mV) -58.6 -45.8	DO (mg/L) 2.68 0.68 0.48	Light Yellow Bro	turbidity, od own turbic own turbic	dours, other) lity. No odour. lity. No odour.	
9:55 9:58 10:01 10:04	Cumulative Volume Removed (I) 0.1 0.8 1.5	e vol required for Water Level (m below MP) 2.42 2.42 2.42 2.44	3V method (L) Stability of Field	+/- 3% Specific Conductance EC (uS/m) #25°C 995 941 892 887	+/- 0.05 pH pH 6.61 6.48 6.45	+/- 10% Temp. (°C) 14.90 14.60 14.70	+/- 10mV Redox ORP (mV) -58.6 -45.8 -41.7	DO (mg/L) 2.68 0.68 0.48 0.36	Light Yellow Bro	turbidity, od own turbid own turbid own turbid	dours, other) lity. No odour. lity. No odour. lity. No odour. lity. No odour.	
9:55 9:58 10:01 10:04 10:07	Cumulative Volume Removed (I) 0.1 0.8 1.5 2.2	e vol required for Water Level (m below MP) 2.42 2.42 2.42 2.44 2.43	3V method (L) Stability of Field	+/- 3% Specific Conductance EC (uS/cm) #25°C 995 941 892 887	+/- 0.05 pH pH 6.61 6.48 6.45 6.44 6.42	+/- 10% Temp. (°C) 14.90 14.60 14.70 14.70 14.40	+/- 10mV Redox ORP (mV) -58.6 -45.8 -41.7 -39.5	DO (mg/L) 2.68 0.68 0.48 0.36 0.15	Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro	turbidity, or own turbid own turbid own turbid own turbid	dours, other) Hity. No odour.	
9:55 9:58 10:01 10:04 10:07 10:10	Cumulative Volume Removed (I) 0.1 0.8 1.5 2.2 2.9 3.6	- vol required for Water Level (m below MP) 2.42 2.42 2.42 2.44 2.43	3V method (L) Stability of Field	+/- 3% Specific Conductance EC (uS/cm) @25°C 995 941 892 887 874 869	+/- 0.05 pH pH 6.61 6.48 6.45 6.44 6.42 6.40	+/- 10% Temp. (°C) 14.90 14.60 14.70 14.40 14.80	+/- 10mV Redox ORP (mV) -58.6 -45.8 -41.7 -39.5 -36.9	DO (mg/L) 2.68 0.68 0.48 0.36 0.15	Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro	turbidity, or own turbid own turbid own turbid own turbid own turbid	dours, other) dity. No odour.	
9:55 9:58 10:01 10:04 10:07 10:10 10:13	Cumulative Volume Removed (I) 0.1 0.8 1.5 2.2 2.9 3.6 4.3	e vol required for Water Level (m below MP) 2.42 2.42 2.42 2.44 2.43 2.43	3V method (L) Stability of Field	+/- 3% Specific Conductance EC (uS/cm) #25°C 995 941 892 887 874 869 879	+/- 0.05 pH pH 6.61 6.48 6.45 6.44 6.42 6.40 6.36	+/- 10% Temp. (°C) 14.90 14.60 14.70 14.70 14.40 14.80	+/- 10mV Redox ORP (mV) -58.6 -45.8 -41.7 -39.5 -36.9 -35.4 -33.1	DO (mg/L) 2.68 0.68 0.48 0.36 0.15 0.11	Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro	turbidity, or wwn turbic wwn turbic wwn turbic wwn turbic wwn turbic wwn turbic	dours, other) dity. No odour.	
9:55 9:58 10:01 10:04 10:07 10:10 10:13 10:16	Cumulative Volume Removed (f) 0.1 0.8 1.5 2.2 2.9 3.6 4.3	= vol required for Water Level (m below MP) 2.42 2.42 2.42 2.44 2.43 2.43 2.43	3V method (L) Stability of Field Params	+/- 3% Specific Conductance EC (uS/cm) #25°C 995 941 892 887 874 869 879	+/- 0.05 pH pH 6.61 6.48 6.45 6.44 6.42 6.40 6.36	+/- 10% Temp. (°C) 14.90 14.60 14.70 14.40 14.80 14.50	+/- 10mV Redox ORP (mV) -58.6 -45.8 -41.7 -39.5 -36.9 -35.4 -33.1	DO (mg/L) 2.68 0.68 0.48 0.36 0.11 0.09	Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro	turbidity, or own turbic own turbic own turbic own turbic own turbic own turbic own turbic	dours, other) dity. No odour.	
9:55 9:58 10:01 10:04 10:07 10:10 10:13	Cumulative Volume Removed (I) 0.1 0.8 1.5 2.2 2.9 3.6 4.3	e vol required for Water Level (m below MP) 2.42 2.42 2.42 2.44 2.43 2.43	3V method (L) Stability of Field	+/- 3% Specific Conductance EC (uS/cm) #25°C 995 941 892 887 874 869 879	+/- 0.05 pH pH 6.61 6.48 6.45 6.44 6.42 6.40 6.36	+/- 10% Temp. (°C) 14.90 14.60 14.70 14.70 14.40 14.80	+/- 10mV Redox ORP (mV) -58.6 -45.8 -41.7 -39.5 -36.9 -35.4 -33.1	DO (mg/L) 2.68 0.68 0.48 0.36 0.15 0.11	Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro	turbidity, or own turbic own turbic own turbic own turbic own turbic own turbic own turbic	dours, other) dity. No odour.	
9:55 9:58 10:01 10:04 10:07 10:10 10:13 10:16	Cumulative Volume Removed (f) 0.1 0.8 1.5 2.2 2.9 3.6 4.3	= vol required for Water Level (m below MP) 2.42 2.42 2.42 2.44 2.43 2.43 2.43	3V method (L) Stability of Field Params	+/- 3% Specific Conductance EC (uS/cm) #25°C 995 941 892 887 874 869 879	+/- 0.05 pH pH 6.61 6.48 6.45 6.44 6.42 6.40 6.36	+/- 10% Temp. (°C) 14.90 14.60 14.70 14.40 14.80 14.50	+/- 10mV Redox ORP (mV) -58.6 -45.8 -41.7 -39.5 -36.9 -35.4 -33.1	DO (mg/L) 2.68 0.68 0.48 0.36 0.11 0.09	Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro	turbidity, or own turbic own turbic own turbic own turbic own turbic own turbic own turbic	dours, other) dity. No odour.	
9:55 9:58 10:01 10:04 10:07 10:10 10:13 10:16	Cumulative Volume Removed (f) 0.1 0.8 1.5 2.2 2.9 3.6 4.3	= vol required for Water Level (m below MP) 2.42 2.42 2.42 2.44 2.43 2.43 2.43	3V method (L) Stability of Field Params	+/- 3% Specific Conductance EC (uS/cm) #25°C 995 941 892 887 874 869 879	+/- 0.05 pH pH 6.61 6.48 6.45 6.44 6.42 6.40 6.36	+/- 10% Temp. (°C) 14.90 14.60 14.70 14.40 14.80 14.50	+/- 10mV Redox ORP (mV) -58.6 -45.8 -41.7 -39.5 -36.9 -35.4 -33.1	DO (mg/L) 2.68 0.68 0.48 0.36 0.11 0.09	Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro	turbidity, or own turbic own turbic own turbic own turbic own turbic own turbic own turbic	dours, other) dity. No odour.	
9:55 9:58 10:01 10:04 10:07 10:10 10:13 10:16	Cumulative Volume Removed (f) 0.1 0.8 1.5 2.2 2.9 3.6 4.3	= vol required for Water Level (m below MP) 2.42 2.42 2.42 2.44 2.43 2.43 2.43	3V method (L) Stability of Field Params	+/- 3% Specific Conductance EC (uS/cm) #25°C 995 941 892 887 874 869 879	+/- 0.05 pH pH 6.61 6.48 6.45 6.44 6.42 6.40 6.36	+/- 10% Temp. (°C) 14.90 14.60 14.70 14.40 14.80 14.50	+/- 10mV Redox ORP (mV) -58.6 -45.8 -41.7 -39.5 -36.9 -35.4 -33.1	DO (mg/L) 2.68 0.68 0.48 0.36 0.11 0.09	Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro	turbidity, or own turbic own turbic own turbic own turbic own turbic own turbic own turbic	dours, other) dity. No odour.	
9:55 9:58 10:01 10:04 10:07 10:10 10:13 10:16	Cumulative Volume Removed (f) 0.1 0.8 1.5 2.2 2.9 3.6 4.3	= vol required for Water Level (m below MP) 2.42 2.42 2.42 2.44 2.43 2.43 2.43	3V method (L) Stability of Field Params	+/- 3% Specific Conductance EC (uS/cm) #25°C 995 941 892 887 874 869 879	+/- 0.05 pH pH 6.61 6.48 6.45 6.44 6.42 6.40 6.36	+/- 10% Temp. (°C) 14.90 14.60 14.70 14.40 14.80 14.50	+/- 10mV Redox ORP (mV) -58.6 -45.8 -41.7 -39.5 -36.9 -35.4 -33.1	DO (mg/L) 2.68 0.68 0.48 0.36 0.11 0.09	Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro	turbidity, or own turbic own turbic own turbic own turbic own turbic own turbic own turbic	dours, other) dity. No odour.	
9:55 9:58 10:01 10:04 10:07 10:10 10:13 10:16	Cumulative Volume Removed (f) 0.1 0.8 1.5 2.2 2.9 3.6 4.3	= vol required for Water Level (m below MP) 2.42 2.42 2.42 2.44 2.43 2.43 2.43	3V method (L) Stability of Field Params	+/- 3% Specific Conductance EC (uS/cm) #25°C 995 941 892 887 874 869 879	+/- 0.05 pH pH 6.61 6.48 6.45 6.44 6.42 6.40 6.36	+/- 10% Temp. (°C) 14.90 14.60 14.70 14.40 14.80 14.50	+/- 10mV Redox ORP (mV) -58.6 -45.8 -41.7 -39.5 -36.9 -35.4 -33.1	DO (mg/L) 2.68 0.68 0.48 0.36 0.11 0.09	Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro	turbidity, or own turbic own turbic own turbic own turbic own turbic own turbic own turbic	dours, other) dity. No odour.	
9:55 9:58 10:01 10:04 10:07 10:10 10:13 10:16	Cumulative Volume Removed (f) 0.1 0.8 1.5 2.2 2.9 3.6 4.3	= vol required for Water Level (m below MP) 2.42 2.42 2.42 2.44 2.43 2.43 2.43	3V method (L) Stability of Field Params	+/- 3% Specific Conductance EC (uS/cm) #25°C 995 941 892 887 874 869 879	+/- 0.05 pH pH 6.61 6.48 6.45 6.44 6.42 6.40 6.36	+/- 10% Temp. (°C) 14.90 14.60 14.70 14.40 14.80 14.50	+/- 10mV Redox ORP (mV) -58.6 -45.8 -41.7 -39.5 -36.9 -35.4 -33.1	DO (mg/L) 2.68 0.68 0.48 0.36 0.11 0.09	Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro	turbidity, or own turbic own turbic own turbic own turbic own turbic own turbic own turbic	dours, other) dity. No odour.	
9:55 9:58 10:01 10:04 10:07 10:10 10:13 10:16	Cumulative Volume Removed (f) 0.1 0.8 1.5 2.2 2.9 3.6 4.3	= vol required for Water Level (m below MP) 2.42 2.42 2.42 2.44 2.43 2.43 2.43	3V method (L) Stability of Field Params	+/- 3% Specific Conductance EC (uS/cm) #25°C 995 941 892 887 874 869 879	+/- 0.05 pH pH 6.61 6.48 6.45 6.44 6.42 6.40 6.36	+/- 10% Temp. (°C) 14.90 14.60 14.70 14.40 14.80 14.50	+/- 10mV Redox ORP (mV) -58.6 -45.8 -41.7 -39.5 -36.9 -35.4 -33.1	DO (mg/L) 2.68 0.68 0.48 0.36 0.11 0.09	Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro	turbidity, or own turbic own turbic own turbic own turbic own turbic own turbic own turbic	dours, other) dity. No odour.	
9:55 9:58 10:01 10:04 10:07 10:10 10:13 10:16	Cumulative Volume Removed (f) 0.1 0.8 1.5 2.2 2.9 3.6 4.3	= vol required for Water Level (m below MP) 2.42 2.42 2.42 2.44 2.43 2.43 2.43	3V method (L) Stability of Field Params	+/- 3% Specific Conductance EC (uS/cm) #25°C 995 941 892 887 874 869 879	+/- 0.05 pH pH 6.61 6.48 6.45 6.44 6.42 6.40 6.36	+/- 10% Temp. (°C) 14.90 14.60 14.70 14.40 14.80 14.50	+/- 10mV Redox ORP (mV) -58.6 -45.8 -41.7 -39.5 -36.9 -35.4 -33.1	DO (mg/L) 2.68 0.68 0.48 0.36 0.11 0.09	Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro	turbidity, or own turbic own turbic own turbic own turbic own turbic own turbic own turbic	dours, other) dity. No odour.	
9:55 9:58 10:01 10:04 10:07 10:10 10:13 10:16	Cumulative Volume Removed (f) 0.1 0.8 1.5 2.2 2.9 3.6 4.3	= vol required for Water Level (m below MP) 2.42 2.42 2.42 2.44 2.43 2.43 2.43	3V method (L) Stability of Field Params	+/- 3% Specific Conductance EC (uS/cm) #25°C 995 941 892 887 874 869 879	+/- 0.05 pH pH 6.61 6.48 6.45 6.44 6.42 6.40 6.36	+/- 10% Temp. (°C) 14.90 14.60 14.70 14.40 14.80 14.50	+/- 10mV Redox ORP (mV) -58.6 -45.8 -41.7 -39.5 -36.9 -35.4 -33.1	DO (mg/L) 2.68 0.68 0.48 0.36 0.11 0.09	Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro	turbidity, or own turbic own turbic own turbic own turbic own turbic own turbic own turbic	dours, other) dity. No odour.	
9:55 9:58 10:01 10:04 10:07 10:10 10:13 10:16	Cumulative Volume Removed (f) 0.1 0.8 1.5 2.2 2.9 3.6 4.3	= vol required for Water Level (m below MP) 2.42 2.42 2.42 2.44 2.43 2.43 2.43	3V method (L) Stability of Field Params	+/- 3% Specific Conductance EC (uS/cm) #25°C 995 941 892 887 874 869 879	+/- 0.05 pH pH 6.61 6.48 6.45 6.44 6.42 6.40 6.36	+/- 10% Temp. (°C) 14.90 14.60 14.70 14.40 14.80 14.50	+/- 10mV Redox ORP (mV) -58.6 -45.8 -41.7 -39.5 -36.9 -35.4 -33.1	DO (mg/L) 2.68 0.68 0.48 0.36 0.11 0.09	Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro	turbidity, or own turbic own turbic own turbic own turbic own turbic own turbic own turbic	dours, other) dity. No odour.	
9:55 9:58 10:01 10:04 10:07 10:10 10:13 10:16	Cumulative Volume Removed (f) 0.1 0.8 1.5 2.2 2.9 3.6 4.3	= vol required for Water Level (m below MP) 2.42 2.42 2.42 2.44 2.43 2.43 2.43	3V method (L) Stability of Field Params	+/- 3% Specific Conductance EC (uS/cm) #25°C 995 941 892 887 874 869 879	+/- 0.05 pH pH 6.61 6.48 6.45 6.44 6.42 6.40 6.36	+/- 10% Temp. (°C) 14.90 14.60 14.70 14.40 14.80 14.50	+/- 10mV Redox ORP (mV) -58.6 -45.8 -41.7 -39.5 -36.9 -35.4 -33.1	DO (mg/L) 2.68 0.68 0.48 0.36 0.11 0.09	Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro	turbidity, or own turbic own turbic own turbic own turbic own turbic own turbic own turbic	dours, other) dity. No odour.	
9:55 9:58 10:01 10:04 10:07 10:10 10:13 10:16	Cumulative Volume Removed (f) 0.1 0.8 1.5 2.2 2.9 3.6 4.3	= vol required for Water Level (m below MP) 2.42 2.42 2.42 2.44 2.43 2.43 2.43	3V method (L) Stability of Field Params	+/- 3% Specific Conductance EC (uS/cm) #25°C 995 941 892 887 874 869 879	+/- 0.05 pH pH 6.61 6.48 6.45 6.44 6.42 6.40 6.36	+/- 10% Temp. (°C) 14.90 14.60 14.70 14.40 14.80 14.50	+/- 10mV Redox ORP (mV) -58.6 -45.8 -41.7 -39.5 -36.9 -35.4 -33.1	DO (mg/L) 2.68 0.68 0.48 0.36 0.11 0.09	Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro	turbidity, or own turbic own turbic own turbic own turbic own turbic own turbic own turbic	dours, other) dity. No odour.	
9:55 9:58 10:01 10:04 10:07 10:10 10:13 10:16	Cumulative Volume Removed (f) 0.1 0.8 1.5 2.2 2.9 3.6 4.3	= vol required for Water Level (m below MP) 2.42 2.42 2.42 2.44 2.43 2.43 2.43	3V method (L) Stability of Field Params	+/- 3% Specific Conductance EC (uS/cm) #25°C 995 941 892 887 874 869 879	+/- 0.05 pH pH 6.61 6.48 6.45 6.44 6.42 6.40 6.36	+/- 10% Temp. (°C) 14.90 14.60 14.70 14.40 14.80 14.50	+/- 10mV Redox ORP (mV) -58.6 -45.8 -41.7 -39.5 -36.9 -35.4 -33.1	DO (mg/L) 2.68 0.68 0.48 0.36 0.11 0.09	Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro	turbidity, or own turbic own turbic own turbic own turbic own turbic own turbic own turbic	dours, other) dity. No odour.	

Notes: All bore measuremen	nts are referen	ced to the mark					sheet -	· Fny I	Monitoring	, v	entia	
Bore ID No	B	3H8		Project Name	-	_		LIIVI) oling Staff	AC	
Project Area:		710	-					=	WQ. Met	-		1.500
Date		1/2022		Project No		IEI DONN SI III	.L	-	WQ. Mete		·	
	ected Bore D		_	Flojectivo					WQ. Mete	si senai #	,03710	<u> </u>
·										_		
Internal Dia	ameter (mm)			Easting	-		Total I	Depth (m)		Screen	Depth From (m))
Drop Tube already in	n bore? (Y/N)	N		Northing			Water	Level (m)		Scre	en Depth To (m)	
Drop Tub	e Length (m)	0.00		Zone			Set Pump ir	nlet at (m)		.	Set Pump at (m))
Additiona	l Information											_
Bore F	ield Measur	ements										
Time of SWL	12:25	To	otal Depth (m)	7.57	Mid-screen	accessible?	Cle	ar	Depth pump	et at (m)	7.00	
Static Water Level (m)	3.18	Во	re Diam (mm)	50	Open Scree	n Length(m)	0.00		Depth of pump	inlet (m)	7.00	
Wel	II Purging De	etails			Sampling D	etails			Sar	nple Bott	les Required	
Purge Method			MicroPurge		oling Method		.		Bottle Type	Quantity	Bottle Type	Quantity
Time Pump in					Time Started				1ltr	1		
Time Started		WL m (start)			ime Stopped			2.34	ml METALS filtere			
		WL m (end)	2.30		sample ID?		=		60ml COD	1		
Volume Removed (I)		_			sample ID?		-		50ml GLASS	1		
Discharge Rate (I/m)		ual.		Rinsate	sample ID?							
Time of removal	ump Remov		n(post-removal)	2.36	Rore Der	oth at end (m)	7.57					
	Pump Setting		пфозглетноват	2.50	Boile Bel	ar ar ena (iii)	7.57					
Fill / Discharge used		CPM		Air/Gas	Pressure (kPa)	30						
Comments					Dups a	and blanks ta	iken					
												Ī
		Field Parameters	are considered sta	ble when within the	e FPA limits for 3 c	onsecutive mea	surements					_
	26	= vol required for	3V method (L)	+/- 3%	+/- 0.05 pH	+/- 10%	+/- 10mV	+/- 10%	1			
Time	Cumulative Volume	Water Level (m	Stability of Field	Specific Conductance	рН	Temp.	Redox	DO		Commen	ts (colour,	
	Removed (I)	below MP)	Params	EC (uS/cm) @25°C		(°C)	ORP (mV)	(mg/L)		turbidity, od	dours, other)	
12:36	0.1	2.29	Keep purging	1184	6.75	14.20	-62.5	0.37	grey brown, thic	k turb, no	odour.	
12:39	0.6	2.30	Keep purging	1179	6.72	14.60	-69.7	0.19	grey brown, thic	k turb, no	odour.	
12:42	1.1	2.30	Keep purging	1178	6.71	14.50	-78.6	0.13	grey brown, thic	k turb, no	odour.	
12:45	1.6	2.30	Keep purging	1186	6.70	14.30	-86.8	0.08	grey brown, thic	k turb, no	odour.	
12:48	2.1	2.30	Keep purging	1174	6.69	14.40	-88.9	0.08	grey brown, thic	k turb, no	odour.	
12:51	2.6	2.30	OK to sample	1173	6.68	14.40	-90.1	0.08	grey brown, thic	k turb, no	odour.	
			<u> </u>									

Notes: All bore measuremen	nts are referen	ced to the mark								V	entia	
					•	J		- Env ľ	Monitorin	g		_
Bore ID No	Bl	H10	-	Project Name	He	epburn Land	Fill	-	Sam	pling Staff	AC	
Project Area:			i	Client				=	WQ. Me	eter Model	Aqua trol	1 500
Date	17/1	1/2022		Project No					WQ. Met	er Serial #	,0571	0
Expe	ected Bore D	Details										
Internal Dia	ameter (mm)			Easting		-	Total I	Depth (m)		Screen	Depth From (m)
Drop Tube already ir	n bore? (Y/N)	N		Northing			Water	Level (m)		Scre	en Depth To (m)
Drop lub	e Length (m)	0.00		Zone			Set Pump ir	niet at (m)		=	Set Pump at (m)
	I Information											_
	ield Measur											
	14:15	Ī	otal Depth (m)			accessible?		ar	-			
Static Water Level (m)		_	re Diam (mm)	50		n Length(m)	0.00		Depth of pum			
Purge Method	II Purging De		MicroPurge	Samr	Sampling Doling Method				Bottle Type		les Required Bottle Type	Quantity
Time Pump in					Time Started			2 35	Bottle Type	Quantity	bottle type	Quaritity
Time Started					me Stopped							
Time Stopped		_			sample ID?		-					
Volume Removed (I)		_			sample ID?		='					
Discharge Rate (I/m)		-			sample ID?		-					
Р	ump Remov	/al										
Time of removal	14:22	WLn	n(post-removal)	2.37	Bore Dep	oth at end (m)	6.70					
F	ump Setting	gs										
Fill / Discharge used	5/3	CPM		Air/Gas	Pressure (kPa)	30						
Comments					, ,	All times EST						_
												_
		Field Parameters	are considered sta	ble when within the	e EPA limits for 3 c	onsecutive mea	isurements	ı	1			
	27	Field Parameters		+/- 3%	+/- 0.05 pH	+/- 10%	+/- 10mV	+/- 10%]			
Time	Cumulative Volume			+/- 3% Specific Conductance EC (uS/cm)		+/- 10% Temp.	+/- 10mV Redox	DO			ats (colour,	
	Cumulative Volume Removed (I)	= vol required for Water Level (m below MP)	3V method (L) Stability of Field Params	+/- 3% Specific Conductance EC (uS/cm) @25°C	+/- 0.05 pH pH	+/- 10% Temp. (°C)	+/- 10mV Redox ORP (mV)	DO (mg/L)	Dump issues d	turbidity, oc	dours, other)	
13:35	Cumulative Volume Removed (I)	= vol required for Water Level (m below MP)	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) @25°C 713	+/- 0.05 pH pH 6.18	+/- 10% Temp. (°C)	+/- 10mV Redox ORP (mV) 38.6	DO (mg/L) 2.47	Pump issuses d	turbidity, od	dours, other)	
13:35 13:38	Cumulative Volume Removed (I) 0.1	= vol required for Water Level (m below MP) 2.31 2.33	3V method (L) Stability of Field Params Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) @25°C 713 759	+/- 0.05 pH pH 6.18 6.09	+/- 10% Temp. (°C) 12.80 13.30	+/- 10mV Redox ORP (mV) 38.6 44.4	DO (mg/L) 2.47 0.95	Highly turbid, y	turbidity, oc elayed pur ellow/brow	mping vn nil odour	
13:35 13:38 13:41	Cumulative Volume Removed (I) 0.1 0.5 0.9	water Level (m below MP) 2.31 2.33 2.35	3V method (L) Stability of Field Params Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) @25°C 713 759	+/- 0.05 pH pH 6.18 6.09 5.94	+/- 10% Temp. (°C) 12.80 13.30 14.80	+/-10mV Redox ORP (mV) 38.6 44.4 48.3	DO (mg/L) 2.47 0.95 0.67	Highly turbid, y	elayed purellow/brow	mping vn nil odour	
13:35 13:38 13:41 13:44	Cumulative Volume Removed (I) 0.1 0.5 0.9	e vol required for Water Level (m below MP) 2.31 2.33 2.35	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 713 759 761 764	+/- 0.05 pH pH 6.18 6.09 5.94	+/- 10% Temp. (°C) 12.80 13.30 14.80 14.70	+/- 10mV Redox ORP (mV) 38.6 44.4 48.3 51.5	DO (mg/L) 2.47 0.95 0.67 0.48	Highly turbid, y Highly turbid, y Highly turbid, y	turbidity, oc elayed pur ellow/brow ellow/brow	mping vn nil odour vn nil odour	
13:35 13:38 13:41 13:44 13:47	Cumulative Volume Removed (I) 0.1 0.5 0.9 1.3	e vol required for Water Level (m below MP) 2.31 2.33 2.35 2.35	Stability of Field Params Keep purging Keep purging Keep purging Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) @25°C 713 759 761 764 768	+/- 0.05 pH pH 6.18 6.09 5.94 5.84	+/- 10% Temp. (°C) 12.80 13.30 14.80 14.70 14.50	+/- 10mV Redox ORP (mV) 38.6 44.4 48.3 51.5	DO (mg/L) 2.47 0.95 0.67 0.48 0.31	Highly turbid, y Highly turbid, y Highly turbid, y Highly turbid, y	ellow/brow ellow/brow ellow/brow ellow/brow	dours, other) mping vn nil odour vn nil odour vn nil odour	
13:35 13:38 13:41 13:44 13:47 13:50	Cumulative Volume Removed (I) 0.1 0.5 0.9 1.3 1.7 2.1	- vol required for Water Level (m below MP) 2.31 2.33 2.35 2.35 2.35	3V method (t.) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) @25°C 713 759 761 764 768	+/- 0.05 pH pH 6.18 6.09 5.94 5.84 5.79	+/- 10% Temp. (°C) 12.80 13.30 14.80 14.70 14.50	+/- 10mV Redox ORP (mV) 38.6 44.4 48.3 51.5 58.4 61.3	0.95 0.67 0.48 0.25	Highly turbid, y Highly turbid, y Highly turbid, y Highly turbid, y	elayed pur ellow/brow ellow/brow ellow/brow ellow/brow	dours, other) mping vn nil odour	
13:35 13:38 13:41 13:44 13:47 13:50 13:53	Cumulative Volume Removed (I) 0.1 0.5 0.9 1.3 1.7 2.1 2.5	e vol required for Water Level (m below MP) 2.31 2.33 2.35 2.35 2.35 2.35 2.35	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 713 759 761 764 768 771 775	+/- 0.05 pH pH 6.18 6.09 5.94 5.84 5.79 5.76	+/- 10% Temp. (°C) 12.80 13.30 14.80 14.70 14.50 14.70	+/- 10mV Redox ORP (mV) 38.6 44.4 48.3 51.5 58.4 61.3	DO (mg/L) 2.47 0.95 0.67 0.48 0.31 0.25	Highly turbid, y Highly turbid, y Highly turbid, y Highly turbid, y Highly turbid, y	ellow/brow ellow/brow ellow/brow ellow/brow ellow/brow ellow/brow	dours, other) mping vn nil odour	
13:35 13:38 13:41 13:44 13:47 13:50 13:53 13:56	Cumulative Volume Removed (f) 0.1 0.5 0.9 1.3 1.7 2.1 2.5 2.9	- vol required for Water Level (m below MP) 2.31 2.33 2.35 2.35 2.35 2.35 2.35 2.35	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 713 759 761 764 768 771 775 779	+/- 0.05 pH pH 6.18 6.09 5.94 5.84 5.79 5.76 5.73	+/- 10% Temp. (°C) 12.80 13.30 14.80 14.70 14.50 14.70 14.30	+/- 10mV Redox ORP (mV) 38.6 44.4 48.3 51.5 58.4 61.3 66.7	DO (mg/L) 2.47 0.95 0.67 0.48 0.31 0.25 0.21	Highly turbid, y Highly turbid, y Highly turbid, y Highly turbid, y Highly turbid, y Highly turbid, y	ellow/brow ellow/brow ellow/brow ellow/brow ellow/brow ellow/brow ellow/brow	mping vn nil odour	
13:35 13:38 13:41 13:44 13:47 13:50 13:53	Cumulative Volume Removed (I) 0.1 0.5 0.9 1.3 1.7 2.1 2.5	e vol required for Water Level (m below MP) 2.31 2.33 2.35 2.35 2.35 2.35 2.35	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 713 759 761 764 768 771 775	+/- 0.05 pH pH 6.18 6.09 5.94 5.84 5.79 5.76	+/- 10% Temp. (°C) 12.80 13.30 14.80 14.70 14.50 14.70	+/- 10mV Redox ORP (mV) 38.6 44.4 48.3 51.5 58.4 61.3	DO (mg/L) 2.47 0.95 0.67 0.48 0.31 0.25	Highly turbid, y Highly turbid, y Highly turbid, y Highly turbid, y Highly turbid, y	ellow/brow ellow/brow ellow/brow ellow/brow ellow/brow ellow/brow ellow/brow	mping vn nil odour	
13:35 13:38 13:41 13:44 13:47 13:50 13:53 13:56	Cumulative Volume Removed (f) 0.1 0.5 0.9 1.3 1.7 2.1 2.5 2.9	- vol required for Water Level (m below MP) 2.31 2.33 2.35 2.35 2.35 2.35 2.35 2.35	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 713 759 761 764 768 771 775 779	+/- 0.05 pH pH 6.18 6.09 5.94 5.84 5.79 5.76 5.73	+/- 10% Temp. (°C) 12.80 13.30 14.80 14.70 14.50 14.70 14.30	+/- 10mV Redox ORP (mV) 38.6 44.4 48.3 51.5 58.4 61.3 66.7	DO (mg/L) 2.47 0.95 0.67 0.48 0.31 0.25 0.21	Highly turbid, y Highly turbid, y Highly turbid, y Highly turbid, y Highly turbid, y Highly turbid, y	ellow/brow ellow/brow ellow/brow ellow/brow ellow/brow ellow/brow ellow/brow	mping vn nil odour	
13:35 13:38 13:41 13:44 13:47 13:50 13:53 13:56	Cumulative Volume Removed (f) 0.1 0.5 0.9 1.3 1.7 2.1 2.5 2.9	- vol required for Water Level (m below MP) 2.31 2.33 2.35 2.35 2.35 2.35 2.35 2.35	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 713 759 761 764 768 771 775 779	+/- 0.05 pH pH 6.18 6.09 5.94 5.84 5.79 5.76 5.73	+/- 10% Temp. (°C) 12.80 13.30 14.80 14.70 14.50 14.70 14.30	+/- 10mV Redox ORP (mV) 38.6 44.4 48.3 51.5 58.4 61.3 66.7	DO (mg/L) 2.47 0.95 0.67 0.48 0.31 0.25 0.21	Highly turbid, y Highly turbid, y Highly turbid, y Highly turbid, y Highly turbid, y Highly turbid, y	ellow/brow ellow/brow ellow/brow ellow/brow ellow/brow ellow/brow ellow/brow	mping vn nil odour	
13:35 13:38 13:41 13:44 13:47 13:50 13:53 13:56	Cumulative Volume Removed (f) 0.1 0.5 0.9 1.3 1.7 2.1 2.5 2.9	- vol required for Water Level (m below MP) 2.31 2.33 2.35 2.35 2.35 2.35 2.35 2.35	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 713 759 761 764 768 771 775 779	+/- 0.05 pH pH 6.18 6.09 5.94 5.84 5.79 5.76 5.73	+/- 10% Temp. (°C) 12.80 13.30 14.80 14.70 14.50 14.70 14.30	+/- 10mV Redox ORP (mV) 38.6 44.4 48.3 51.5 58.4 61.3 66.7	DO (mg/L) 2.47 0.95 0.67 0.48 0.31 0.25 0.21	Highly turbid, y Highly turbid, y Highly turbid, y Highly turbid, y Highly turbid, y Highly turbid, y	ellow/brow ellow/brow ellow/brow ellow/brow ellow/brow ellow/brow ellow/brow	mping vn nil odour	
13:35 13:38 13:41 13:44 13:47 13:50 13:53 13:56	Cumulative Volume Removed (f) 0.1 0.5 0.9 1.3 1.7 2.1 2.5 2.9	- vol required for Water Level (m below MP) 2.31 2.33 2.35 2.35 2.35 2.35 2.35 2.35	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 713 759 761 764 768 771 775 779	+/- 0.05 pH pH 6.18 6.09 5.94 5.84 5.79 5.76 5.73	+/- 10% Temp. (°C) 12.80 13.30 14.80 14.70 14.50 14.70 14.30	+/- 10mV Redox ORP (mV) 38.6 44.4 48.3 51.5 58.4 61.3 66.7	DO (mg/L) 2.47 0.95 0.67 0.48 0.31 0.25 0.21	Highly turbid, y Highly turbid, y Highly turbid, y Highly turbid, y Highly turbid, y Highly turbid, y	ellow/brow ellow/brow ellow/brow ellow/brow ellow/brow ellow/brow ellow/brow	mping vn nil odour	
13:35 13:38 13:41 13:44 13:47 13:50 13:53 13:56	Cumulative Volume Removed (f) 0.1 0.5 0.9 1.3 1.7 2.1 2.5 2.9	- vol required for Water Level (m below MP) 2.31 2.33 2.35 2.35 2.35 2.35 2.35 2.35	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 713 759 761 764 768 771 775 779	+/- 0.05 pH pH 6.18 6.09 5.94 5.84 5.79 5.76 5.73	+/- 10% Temp. (°C) 12.80 13.30 14.80 14.70 14.50 14.70 14.30	+/- 10mV Redox ORP (mV) 38.6 44.4 48.3 51.5 58.4 61.3 66.7	DO (mg/L) 2.47 0.95 0.67 0.48 0.31 0.25 0.21	Highly turbid, y Highly turbid, y Highly turbid, y Highly turbid, y Highly turbid, y Highly turbid, y	ellow/brow ellow/brow ellow/brow ellow/brow ellow/brow ellow/brow ellow/brow	mping vn nil odour	
13:35 13:38 13:41 13:44 13:47 13:50 13:53 13:56	Cumulative Volume Removed (f) 0.1 0.5 0.9 1.3 1.7 2.1 2.5 2.9	- vol required for Water Level (m below MP) 2.31 2.33 2.35 2.35 2.35 2.35 2.35 2.35	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 713 759 761 764 768 771 775 779	+/- 0.05 pH pH 6.18 6.09 5.94 5.84 5.79 5.76 5.73	+/- 10% Temp. (°C) 12.80 13.30 14.80 14.70 14.50 14.70 14.30	+/- 10mV Redox ORP (mV) 38.6 44.4 48.3 51.5 58.4 61.3 66.7	DO (mg/L) 2.47 0.95 0.67 0.48 0.31 0.25 0.21	Highly turbid, y Highly turbid, y Highly turbid, y Highly turbid, y Highly turbid, y Highly turbid, y	ellow/brow ellow/brow ellow/brow ellow/brow ellow/brow ellow/brow ellow/brow	mping vn nil odour	
13:35 13:38 13:41 13:44 13:47 13:50 13:53 13:56	Cumulative Volume Removed (f) 0.1 0.5 0.9 1.3 1.7 2.1 2.5 2.9	- vol required for Water Level (m below MP) 2.31 2.33 2.35 2.35 2.35 2.35 2.35 2.35	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 713 759 761 764 768 771 775 779	+/- 0.05 pH pH 6.18 6.09 5.94 5.84 5.79 5.76 5.73	+/- 10% Temp. (°C) 12.80 13.30 14.80 14.70 14.50 14.70 14.30	+/- 10mV Redox ORP (mV) 38.6 44.4 48.3 51.5 58.4 61.3 66.7	DO (mg/L) 2.47 0.95 0.67 0.48 0.31 0.25 0.21	Highly turbid, y Highly turbid, y Highly turbid, y Highly turbid, y Highly turbid, y Highly turbid, y	ellow/brow ellow/brow ellow/brow ellow/brow ellow/brow ellow/brow ellow/brow	mping vn nil odour	
13:35 13:38 13:41 13:44 13:47 13:50 13:53 13:56	Cumulative Volume Removed (f) 0.1 0.5 0.9 1.3 1.7 2.1 2.5 2.9	- vol required for Water Level (m below MP) 2.31 2.33 2.35 2.35 2.35 2.35 2.35 2.35	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 713 759 761 764 768 771 775 779	+/- 0.05 pH pH 6.18 6.09 5.94 5.84 5.79 5.76 5.73	+/- 10% Temp. (°C) 12.80 13.30 14.80 14.70 14.50 14.70 14.30	+/- 10mV Redox ORP (mV) 38.6 44.4 48.3 51.5 58.4 61.3 66.7	DO (mg/L) 2.47 0.95 0.67 0.48 0.31 0.25 0.21	Highly turbid, y Highly turbid, y Highly turbid, y Highly turbid, y Highly turbid, y Highly turbid, y	ellow/brow ellow/brow ellow/brow ellow/brow ellow/brow ellow/brow ellow/brow	mping vn nil odour	
13:35 13:38 13:41 13:44 13:47 13:50 13:53 13:56	Cumulative Volume Removed (f) 0.1 0.5 0.9 1.3 1.7 2.1 2.5 2.9	- vol required for Water Level (m below MP) 2.31 2.33 2.35 2.35 2.35 2.35 2.35 2.35	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 713 759 761 764 768 771 775 779	+/- 0.05 pH pH 6.18 6.09 5.94 5.84 5.79 5.76 5.73	+/- 10% Temp. (°C) 12.80 13.30 14.80 14.70 14.50 14.70 14.30	+/- 10mV Redox ORP (mV) 38.6 44.4 48.3 51.5 58.4 61.3 66.7	DO (mg/L) 2.47 0.95 0.67 0.48 0.31 0.25 0.21	Highly turbid, y Highly turbid, y Highly turbid, y Highly turbid, y Highly turbid, y Highly turbid, y	ellow/brow ellow/brow ellow/brow ellow/brow ellow/brow ellow/brow ellow/brow	mping vn nil odour	
13:35 13:38 13:41 13:44 13:47 13:50 13:53 13:56	Cumulative Volume Removed (f) 0.1 0.5 0.9 1.3 1.7 2.1 2.5 2.9	- vol required for Water Level (m below MP) 2.31 2.33 2.35 2.35 2.35 2.35 2.35 2.35	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 713 759 761 764 768 771 775 779	+/- 0.05 pH pH 6.18 6.09 5.94 5.84 5.79 5.76 5.73	+/- 10% Temp. (°C) 12.80 13.30 14.80 14.70 14.50 14.70 14.30	+/- 10mV Redox ORP (mV) 38.6 44.4 48.3 51.5 58.4 61.3 66.7	DO (mg/L) 2.47 0.95 0.67 0.48 0.31 0.25 0.21	Highly turbid, y Highly turbid, y Highly turbid, y Highly turbid, y Highly turbid, y Highly turbid, y	ellow/brow ellow/brow ellow/brow ellow/brow ellow/brow ellow/brow ellow/brow	mping vn nil odour	
13:35 13:38 13:41 13:44 13:47 13:50 13:53 13:56	Cumulative Volume Removed (f) 0.1 0.5 0.9 1.3 1.7 2.1 2.5 2.9	- vol required for Water Level (m below MP) 2.31 2.33 2.35 2.35 2.35 2.35 2.35 2.35	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 713 759 761 764 768 771 775 779	+/- 0.05 pH pH 6.18 6.09 5.94 5.84 5.79 5.76 5.73	+/- 10% Temp. (°C) 12.80 13.30 14.80 14.70 14.50 14.70 14.30	+/- 10mV Redox ORP (mV) 38.6 44.4 48.3 51.5 58.4 61.3 66.7	DO (mg/L) 2.47 0.95 0.67 0.48 0.31 0.25 0.21	Highly turbid, y Highly turbid, y Highly turbid, y Highly turbid, y Highly turbid, y Highly turbid, y	ellow/brow ellow/brow ellow/brow ellow/brow ellow/brow ellow/brow ellow/brow	mping vn nil odour	
13:35 13:38 13:41 13:44 13:47 13:50 13:53 13:56	Cumulative Volume Removed (f) 0.1 0.5 0.9 1.3 1.7 2.1 2.5 2.9	- vol required for Water Level (m below MP) 2.31 2.33 2.35 2.35 2.35 2.35 2.35 2.35	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 713 759 761 764 768 771 775 779	+/- 0.05 pH pH 6.18 6.09 5.94 5.84 5.79 5.76 5.73	+/- 10% Temp. (°C) 12.80 13.30 14.80 14.70 14.50 14.70 14.30	+/- 10mV Redox ORP (mV) 38.6 44.4 48.3 51.5 58.4 61.3 66.7	DO (mg/L) 2.47 0.95 0.67 0.48 0.31 0.25 0.21	Highly turbid, y Highly turbid, y Highly turbid, y Highly turbid, y Highly turbid, y Highly turbid, y	ellow/brow ellow/brow ellow/brow ellow/brow ellow/brow ellow/brow ellow/brow	mping vn nil odour	
13:35 13:38 13:41 13:44 13:47 13:50 13:53 13:56	Cumulative Volume Removed (f) 0.1 0.5 0.9 1.3 1.7 2.1 2.5 2.9	- vol required for Water Level (m below MP) 2.31 2.33 2.35 2.35 2.35 2.35 2.35 2.35	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 713 759 761 764 768 771 775 779	+/- 0.05 pH pH 6.18 6.09 5.94 5.84 5.79 5.76 5.73	+/- 10% Temp. (°C) 12.80 13.30 14.80 14.70 14.50 14.70 14.30	+/- 10mV Redox ORP (mV) 38.6 44.4 48.3 51.5 58.4 61.3 66.7	DO (mg/L) 2.47 0.95 0.67 0.48 0.31 0.25 0.21	Highly turbid, y Highly turbid, y Highly turbid, y Highly turbid, y Highly turbid, y Highly turbid, y	ellow/brow ellow/brow ellow/brow ellow/brow ellow/brow ellow/brow ellow/brow	mping vn nil odour	

Notes: All bore measuremen	nts are referen	ced to the mark								V	entia	
					•	•		· Env ľ	Monitorin	g	CITCIG	•
Bore ID No	В	H14	-	Project Name	He	epburn Land	Fill	=	Sam	pling Staff	AC	
Project Area:				Client					WQ. Me	ter Model	Aqua trol	500
Date	16/1	1/2022		Project No					WQ. Met	er Serial #	,05710)
Expe	cted Bore [Details										
Internal Dia	ameter (mm)		_	Easting		-	Total I	Depth (m)		Screen	Depth From (m))
Drop Tube already in	n bore? (Y/N)	N		Northina			Water	Level (m)		Scre	en Depth To (m)
										_ '		
Drop lubi	e Length (m)	0.00		zone		=	set Pump ir	net at (m)		_	Set Pump at (m)	
	I Information											
	ield Measur					"			D 11		F 00	
Static Water Level (m)	8:02		otal Depth (m) re Diam (mm)	6.30		accessible? n Length(m)		ar	Depth pump Depth of pump			
	II Purging De	_	ie Diairi (iliili)	30	Sampling D		0.00				les Required	
Purge Method			MicroPurge	Samo	oling Method				Bottle Type		Bottle Type	Quantity
Time Pump in					Time Started			2.01	7,1		7,1	
Time Started					me Stopped		Ī					
Time Stopped	13:13	WL m (end)	2.01	Duplicate	sample ID?		=					
Volume Removed (I)	6.7	_		Triplicate	sample ID?		_					
Discharge Rate (I/m)	0.02			Rinsate	sample ID?							
P	ump Remov	/al										
Time of removal			n(post-removal)	2.02	Bore Dep	oth at end (m)	6.30					+
Fill / Discharge used	Pump Setting 25/5	gs CPM		Air/Gas	Pressure (kPa)	30						
		CFIVI		All/Gas	riessule (kra)	30	_					
Comments												
					gc	ood recharge	е					_
		Field Parameters	are considered sta	ble when within the	e EPA limits for 3 c	onsecutive mea	surements					
	25	Field Parameters	are considered sta	ble when within the	e EPA limits for 3 c	onsecutive mea	surements +/- 10mV	+/- 10%]			_
Time	25 Cumulative Volume	= vol required for Water Level (m	3V method (L) Stability of Field	+/- 3% Specific Conductance				+/- 10% DO		Commen	its (colour,	
Time	Cumulative	= vol required for	3V method (L)	+/- 3% Specific	+/- 0.05 pH	+/- 10%	+/- 10mV			Commen turbidity, oc		
Time 12:40	Cumulative Volume	= vol required for Water Level (m	3V method (L) Stability of Field	+/- 3% Specific Conductance EC (uS/cm)	+/- 0.05 pH	+/- 10% Temp.	+/- 10mV Redox	DO	Pump malfunc	turbidity, oc	dours, other)	
	Cumulative Volume Removed (I)	= vol required for Water Level (m below MP)	3V method (L) Stability of Field Params	+/- 3% Specific Conductance EC (uS/cm) @25°C	+/- 0.05 pH pH	+/- 10% Temp. (°C)	+/- 10mV Redox ORP (mV)	DO (mg/L)	Pump malfunc Thick brown tur	turbidity, oc	dours, other)	
12:40 12:43 12:46	Cumulative Volume Removed (I) 0.1 0.7 1.3	water Level (m below MP) 2.01 2.01 2.01	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 1596 1587	+/- 0.05 pH pH 6.87 6.55	+/- 10% Temp. (°C) 12.99 12.84 12.74	+/- 10mV Redox ORP (mV) -22.0 -19.7	DO (mg/L) 4.99 3.87 2.89	Thick brown tur	turbidity, oc tion delaye bidity nil oc bidity nil oc	ed pumping dour	
12:40 12:43 12:46 12:49	Cumulative Volume Removed (I) 0.1 0.7 1.3	e vol required for Water Level (m below MP) 2.01 2.01 2.01 2.01	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/m) =25°C 1596 1587 1572	+/- 0.05 pH pH 6.87 6.55 6.41 6.34	+/- 10% Temp. (°C) 12.99 12.84 12.74 12.69	+/- 10mV Redox ORP (mV) -22.0 -19.7 -17.6	DO (mg/L) 4.99 3.87 2.89 1.42	Thick brown tur Thick brown tur Thick brown tur	turbidity, oc tion delayer bidity nil oc bidity nil oc bidity nil oc	dours, other) ed pumping dour dour	
12:40 12:43 12:46 12:49 12:52	Cumulative Volume Removed (I) 0.1 0.7 1.3 1.9 2.5	= vol required for Water Level (m below MP) 2.01 2.01 2.01 2.01 2.01	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 1596 1587 1572 1567	+/- 0.05 pH pH 6.87 6.55 6.41 6.34 6.27	+/- 10% Temp. (°C) 12.99 12.84 12.74 12.69	+/- 10mV Redox ORP (mV) -22.0 -19.7 -17.6 -13.8 -10.8	DO (mg/L) 4.99 3.87 2.89 1.42 0.97	Thick brown tur Thick brown tur Thick brown tur Thick brown tur	turbidity, oc tion delaye bidity nil oc bidity nil oc bidity nil oc bidity nil oc	dours, other) ed pumping dour dour dour	
12:40 12:43 12:46 12:49 12:52 12:55	Cumulative Volume Removed (I) 0.1 0.7 1.3 1.9 2.5 3.1	= vol required for Water Level (m below MP) 2.01 2.01 2.01 2.01 2.01 2.01 2.01	Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (us/cm) @25°C 1596 1587 1572 1567 1559	+/- 0.05 pH pH 6.87 6.55 6.41 6.34 6.27 6.17	+/- 10% Temp. (°C) 12.99 12.84 12.74 12.69 12.68 12.57	+/- 10mV Redox ORP (mV) -22.0 -19.7 -17.6 -13.8 -10.8	DO (mg/L) 4.99 3.87 2.89 1.42 0.97 0.84	Thick brown tur	turbidity, oction delayed bidity nil oction bidity nil oction bidity nil oction bidity nil oction	dours, other) ed pumping dour dour dour dour dour	
12:40 12:43 12:46 12:49 12:52 12:55 12:58	Cumulative Volume Removed (I) 0.1 0.7 1.3 1.9 2.5 3.1 3.7	e vol required for Water Level (m below MP) 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01	Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (us/cm) @25°C 1596 1587 1572 1567 1559 1549	+/- 0.05 pH pH 6.87 6.55 6.41 6.34 6.27 6.17	+/- 10% Temp. (°C) 12.99 12.84 12.74 12.69 12.68 12.57	+/- 10mV Redox ORP (mV) -22.0 -19.7 -17.6 -13.8 -10.8 -6.2 -5.4	DO (mg/L) 4.99 3.87 2.89 1.42 0.97 0.84 0.47	Thick brown tur	turbidity, oction delayed bidity nil oction delayed bidity nil oction bidity nil oct	dours, other) ed pumping dour dour dour dour dour dour	
12:40 12:43 12:46 12:49 12:52 12:55 12:58 13:01	Cumulative Volume Removed (I) 0.1 0.7 1.3 1.9 2.5 3.1 4.3	= vol required for Water Level (m below MP) 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01	Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 1596 1587 1572 1567 1559 1554 1549	+/- 0.05 pH pH 6.87 6.55 6.41 6.34 6.27 6.17 6.16	+/- 10% Temp. (°C) 12.99 12.84 12.74 12.69 12.68 12.57 12.51	+/- 10mV Redox ORP (mV) -22.0 -19.7 -17.6 -13.8 -10.8 -6.2 -5.4 -1.2	DO (mg/L) 4.99 3.87 2.89 1.42 0.97 0.84 0.47	Thick brown tur	turbidity, oc tion delayed bidity nil oc bidity nil oc bidity nil oc bidity nil oc bidity nil oc bidity nil oc bidity nil oc	dours, other) ed pumping dour dour dour dour dour dour dour dour	
12:40 12:43 12:46 12:49 12:52 12:55 12:58 13:01 13:04	Cumulative Volume Removed () 0.1 0.7 1.3 1.9 2.5 3.1 3.7 4.3	- vol required for Water Level (m below MP) 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01	Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (us/cm) @25°C 1596 1587 1572 1567 1559 1554 1549	+/- 0.05 pH pH 6.87 6.55 6.41 6.34 6.27 6.17 6.16 6.16	+/- 10% Temp. (°C) 12.99 12.84 12.74 12.69 12.68 12.57 12.51 12.43	+/- 10mV Redox ORP (mV) -22.0 -19.7 -17.6 -13.8 -10.8 -6.2 -5.4 -1.2 0.1	DO (mg/L) 4.99 3.87 2.89 1.42 0.97 0.84 0.47 0.39	Thick brown tur	turbidity, oction delayed bidity nil octibidity nil	dours, other) ed pumping dour dour dour dour dour dour dour dour	
12:40 12:43 12:46 12:49 12:52 12:55 12:58 13:01 13:04	Cumulative Volume Removed (I) 0.1 0.7 1.3 1.9 2.5 3.1 3.7 4.3 4.9 5.5	e vol required for below MP) 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01	Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (us/cm) @25°C 1596 1587 1572 1567 1559 1549 1549 1547	+/- 0.05 pH pH 6.87 6.55 6.41 6.34 6.27 6.17 6.16 6.16 6.16	+/- 10% Temp. (°C) 12.99 12.84 12.74 12.69 12.68 12.57 12.51 12.43 12.41	+/- 10mV Redox ORP (mV) -22.0 -19.7 -17.6 -13.8 -10.8 -6.2 -5.4 -1.2 0.1 4.7	DO (mg/L) 4.99 3.87 2.89 1.42 0.97 0.84 0.47 0.39 0.31	Thick brown tur	turbidity, oction delayse bidity nil octibidity nil	dours, other) ed pumping dour dour dour dour dour dour dour dour	
12:40 12:43 12:46 12:49 12:52 12:55 12:58 13:01 13:04 13:07	Cumulative Volume Removed (I) 0.1 0.7 1.3 1.9 2.5 3.1 3.7 4.3 4.9 5.5 6.1	e vol required for Water Level (m below MP) 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01	Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 1596 1587 1572 1567 1559 1554 1549 1547 1545 1545	+/- 0.05 pH pH 6.87 6.55 6.41 6.34 6.27 6.17 6.16 6.16 6.16	+/- 10% Temp. (°C) 12.99 12.84 12.74 12.69 12.68 12.57 12.43 12.41 12.40 12.31	+/- 10mV Redox ORP (mV) -22.0 -19.7 -17.6 -13.8 -10.8 -6.2 -5.4 -1.2 0.1 4.7 5.8	DO (mg/L) 4.99 3.87 2.89 1.42 0.97 0.84 0.47 0.39 0.31 0.15	Thick brown tur	turbidity, oction delayed bidity nil octibidity nil	dours, other) ed pumping dour dour dour dour dour dour dour dour	
12:40 12:43 12:46 12:49 12:52 12:55 12:58 13:01 13:04	Cumulative Volume Removed (I) 0.1 0.7 1.3 1.9 2.5 3.1 3.7 4.3 4.9 5.5	e vol required for below MP) 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01	Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (us/cm) @25°C 1596 1587 1572 1567 1559 1549 1549 1547	+/- 0.05 pH pH 6.87 6.55 6.41 6.34 6.27 6.17 6.16 6.16 6.16	+/- 10% Temp. (°C) 12.99 12.84 12.74 12.69 12.68 12.57 12.51 12.43 12.41	+/- 10mV Redox ORP (mV) -22.0 -19.7 -17.6 -13.8 -10.8 -6.2 -5.4 -1.2 0.1 4.7	DO (mg/L) 4.99 3.87 2.89 1.42 0.97 0.84 0.47 0.39 0.31	Thick brown tur	turbidity, oction delayed bidity nil octibidity nil	dours, other) ed pumping dour dour dour dour dour dour dour dour	
12:40 12:43 12:46 12:49 12:52 12:55 12:58 13:01 13:04 13:07	Cumulative Volume Removed (I) 0.1 0.7 1.3 1.9 2.5 3.1 3.7 4.3 4.9 5.5 6.1	e vol required for Water Level (m below MP) 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01	Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 1596 1587 1572 1567 1559 1554 1549 1547 1545 1545	+/- 0.05 pH pH 6.87 6.55 6.41 6.34 6.27 6.17 6.16 6.16 6.16	+/- 10% Temp. (°C) 12.99 12.84 12.74 12.69 12.68 12.57 12.43 12.41 12.40 12.31	+/- 10mV Redox ORP (mV) -22.0 -19.7 -17.6 -13.8 -10.8 -6.2 -5.4 -1.2 0.1 4.7 5.8	DO (mg/L) 4.99 3.87 2.89 1.42 0.97 0.84 0.47 0.39 0.31 0.15	Thick brown tur	turbidity, oction delayed bidity nil octibidity nil	dours, other) ed pumping dour dour dour dour dour dour dour dour	
12:40 12:43 12:46 12:49 12:52 12:55 12:58 13:01 13:04 13:07	Cumulative Volume Removed (I) 0.1 0.7 1.3 1.9 2.5 3.1 3.7 4.3 4.9 5.5 6.1	e vol required for Water Level (m below MP) 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01	Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 1596 1587 1572 1567 1559 1554 1549 1547 1545 1545	+/- 0.05 pH pH 6.87 6.55 6.41 6.34 6.27 6.17 6.16 6.16 6.16	+/- 10% Temp. (°C) 12.99 12.84 12.74 12.69 12.68 12.57 12.43 12.41 12.40 12.31	+/- 10mV Redox ORP (mV) -22.0 -19.7 -17.6 -13.8 -10.8 -6.2 -5.4 -1.2 0.1 4.7 5.8	DO (mg/L) 4.99 3.87 2.89 1.42 0.97 0.84 0.47 0.39 0.31 0.15	Thick brown tur	turbidity, oction delayed bidity nil octibidity nil	dours, other) ed pumping dour dour dour dour dour dour dour dour	
12:40 12:43 12:46 12:49 12:52 12:55 12:58 13:01 13:04 13:07	Cumulative Volume Removed (I) 0.1 0.7 1.3 1.9 2.5 3.1 3.7 4.3 4.9 5.5 6.1	e vol required for Water Level (m below MP) 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01	Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 1596 1587 1572 1567 1559 1554 1549 1547 1545 1545	+/- 0.05 pH pH 6.87 6.55 6.41 6.34 6.27 6.17 6.16 6.16 6.16	+/- 10% Temp. (°C) 12.99 12.84 12.74 12.69 12.68 12.57 12.43 12.41 12.40 12.31	+/- 10mV Redox ORP (mV) -22.0 -19.7 -17.6 -13.8 -10.8 -6.2 -5.4 -1.2 0.1 4.7 5.8	DO (mg/L) 4.99 3.87 2.89 1.42 0.97 0.84 0.47 0.39 0.31 0.15	Thick brown tur	turbidity, oction delayed bidity nil octibidity nil	dours, other) ed pumping dour dour dour dour dour dour dour dour	
12:40 12:43 12:46 12:49 12:52 12:55 12:58 13:01 13:04 13:07	Cumulative Volume Removed (I) 0.1 0.7 1.3 1.9 2.5 3.1 3.7 4.3 4.9 5.5 6.1	e vol required for Water Level (m below MP) 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01	Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 1596 1587 1572 1567 1559 1554 1549 1547 1545 1545	+/- 0.05 pH pH 6.87 6.55 6.41 6.34 6.27 6.17 6.16 6.16 6.16	+/- 10% Temp. (°C) 12.99 12.84 12.74 12.69 12.68 12.57 12.43 12.41 12.40 12.31	+/- 10mV Redox ORP (mV) -22.0 -19.7 -17.6 -13.8 -10.8 -6.2 -5.4 -1.2 0.1 4.7 5.8	DO (mg/L) 4.99 3.87 2.89 1.42 0.97 0.84 0.47 0.39 0.31 0.15	Thick brown tur	turbidity, oction delayed bidity nil octibidity nil	dours, other) ed pumping dour dour dour dour dour dour dour dour	
12:40 12:43 12:46 12:49 12:52 12:55 12:58 13:01 13:04 13:07	Cumulative Volume Removed (I) 0.1 0.7 1.3 1.9 2.5 3.1 3.7 4.3 4.9 5.5 6.1	e vol required for Water Level (m below MP) 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01	Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 1596 1587 1572 1567 1559 1554 1549 1547 1545 1545	+/- 0.05 pH pH 6.87 6.55 6.41 6.34 6.27 6.17 6.16 6.16 6.16	+/- 10% Temp. (°C) 12.99 12.84 12.74 12.69 12.68 12.57 12.43 12.41 12.40 12.31	+/- 10mV Redox ORP (mV) -22.0 -19.7 -17.6 -13.8 -10.8 -6.2 -5.4 -1.2 0.1 4.7 5.8	DO (mg/L) 4.99 3.87 2.89 1.42 0.97 0.84 0.47 0.39 0.31 0.15	Thick brown tur	turbidity, oction delayed bidity nil octibidity nil	dours, other) ed pumping dour dour dour dour dour dour dour dour	
12:40 12:43 12:46 12:49 12:52 12:55 12:58 13:01 13:04 13:07	Cumulative Volume Removed (I) 0.1 0.7 1.3 1.9 2.5 3.1 3.7 4.3 4.9 5.5 6.1	e vol required for Water Level (m below MP) 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01	Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 1596 1587 1572 1567 1559 1554 1549 1547 1545 1545	+/- 0.05 pH pH 6.87 6.55 6.41 6.34 6.27 6.17 6.16 6.16 6.16	+/- 10% Temp. (°C) 12.99 12.84 12.74 12.69 12.68 12.57 12.43 12.41 12.40 12.31	+/- 10mV Redox ORP (mV) -22.0 -19.7 -17.6 -13.8 -10.8 -6.2 -5.4 -1.2 0.1 4.7 5.8	DO (mg/L) 4.99 3.87 2.89 1.42 0.97 0.84 0.47 0.39 0.31 0.15	Thick brown tur	turbidity, oction delayed bidity nil octibidity nil	dours, other) ed pumping dour dour dour dour dour dour dour dour	
12:40 12:43 12:46 12:49 12:52 12:55 12:58 13:01 13:04 13:07	Cumulative Volume Removed (I) 0.1 0.7 1.3 1.9 2.5 3.1 3.7 4.3 4.9 5.5 6.1	e vol required for Water Level (m below MP) 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01	Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 1596 1587 1572 1567 1559 1554 1549 1547 1545 1545	+/- 0.05 pH pH 6.87 6.55 6.41 6.34 6.27 6.17 6.16 6.16 6.16	+/- 10% Temp. (°C) 12.99 12.84 12.74 12.69 12.68 12.57 12.43 12.41 12.40 12.31	+/- 10mV Redox ORP (mV) -22.0 -19.7 -17.6 -13.8 -10.8 -6.2 -5.4 -1.2 0.1 4.7 5.8	DO (mg/L) 4.99 3.87 2.89 1.42 0.97 0.84 0.47 0.39 0.31 0.15	Thick brown tur	turbidity, oction delayed bidity nil octibidity nil	dours, other) ed pumping dour dour dour dour dour dour dour dour	
12:40 12:43 12:46 12:49 12:52 12:55 12:58 13:01 13:04 13:07	Cumulative Volume Removed (I) 0.1 0.7 1.3 1.9 2.5 3.1 3.7 4.3 4.9 5.5 6.1	e vol required for Water Level (m below MP) 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01	Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 1596 1587 1572 1567 1559 1554 1549 1547 1545 1545	+/- 0.05 pH pH 6.87 6.55 6.41 6.34 6.27 6.17 6.16 6.16 6.16	+/- 10% Temp. (°C) 12.99 12.84 12.74 12.69 12.68 12.57 12.43 12.41 12.40 12.31	+/- 10mV Redox ORP (mV) -22.0 -19.7 -17.6 -13.8 -10.8 -6.2 -5.4 -1.2 0.1 4.7 5.8	DO (mg/L) 4.99 3.87 2.89 1.42 0.97 0.84 0.47 0.39 0.31 0.15	Thick brown tur	turbidity, oction delayed bidity nil octibidity nil	dours, other) ed pumping dour dour dour dour dour dour dour dour	
12:40 12:43 12:46 12:49 12:52 12:55 12:58 13:01 13:04 13:07	Cumulative Volume Removed (I) 0.1 0.7 1.3 1.9 2.5 3.1 3.7 4.3 4.9 5.5 6.1	e vol required for Water Level (m below MP) 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01	Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 1596 1587 1572 1567 1559 1554 1549 1547 1545 1545	+/- 0.05 pH pH 6.87 6.55 6.41 6.34 6.27 6.17 6.16 6.16 6.16	+/- 10% Temp. (°C) 12.99 12.84 12.74 12.69 12.68 12.57 12.43 12.41 12.40 12.31	+/- 10mV Redox ORP (mV) -22.0 -19.7 -17.6 -13.8 -10.8 -6.2 -5.4 -1.2 0.1 4.7 5.8	DO (mg/L) 4.99 3.87 2.89 1.42 0.97 0.84 0.47 0.39 0.31 0.15	Thick brown tur	turbidity, oction delayed bidity nil octibidity nil	dours, other) ed pumping dour dour dour dour dour dour dour dour	
12:40 12:43 12:46 12:49 12:52 12:55 12:58 13:01 13:04 13:07	Cumulative Volume Removed (I) 0.1 0.7 1.3 1.9 2.5 3.1 3.7 4.3 4.9 5.5 6.1	e vol required for Water Level (m below MP) 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01	Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 1596 1587 1572 1567 1559 1554 1549 1547 1545 1545	+/- 0.05 pH pH 6.87 6.55 6.41 6.34 6.27 6.17 6.16 6.16 6.16	+/- 10% Temp. (°C) 12.99 12.84 12.74 12.69 12.68 12.57 12.43 12.41 12.40 12.31	+/- 10mV Redox ORP (mV) -22.0 -19.7 -17.6 -13.8 -10.8 -6.2 -5.4 -1.2 0.1 4.7 5.8	DO (mg/L) 4.99 3.87 2.89 1.42 0.97 0.84 0.47 0.39 0.31 0.15	Thick brown tur	turbidity, oction delayed bidity nil octibidity nil	dours, other) ed pumping dour dour dour dour dour dour dour dour	

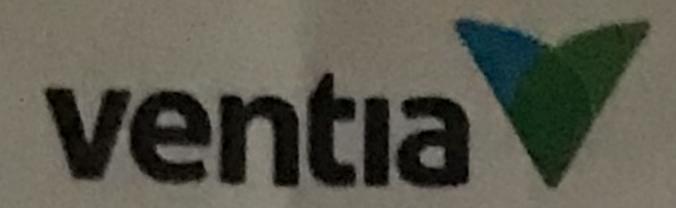
INSTRUMENTATION INTERMEDIATE VERIFICATION AND CALIBRATION

Serial no.: 07510 Centre: Burwood

Model no.: Aqua troll 500

Parameter:

(EC, DO, TU, pH, Temperature, Redox)


Date of			Res	ults			Comments	Staff
verification /calibration	Expected	Observed	Adjusted	Batch no.	Slope mV	Asy mV		initials
14/11/22	4.01	4.22			120.7		pH	AC
14/11/22	7.00	7.24			1.9		pH	AC
14/11/22	10.01	9.94					pH	AC
14/11/22	0	2	×				EC	AC
14/11/22	1413	1424	~				EC	AC
14/11/22	100%	98.3					DO	AC
1 1							REDOX	AC
1 1								
100		4.09	Y				pH	AC
16/11/22	7.00	7.08	Y				pH	AC
16/11/22	10.01	10.03	Y				pH	AC
16/11/22	0	2	Y				EC	AC
16/11/22	1413	1419	Y				EC	AC
16/11/22	100%	99.6	Y				DO	AC
16/11/22	249.3	250.8	Y				REDOX	AC
1 1								
17/11/22	4.01	4.00	Y				pH	AC
17/11/22	7.00	6.99	Ÿ				pH	AC
17/11/22	10.01	9.97	Y				pH	AC
17/11/22		1.8	Y				EC	AC
17/11/22		1416	Y				EC	AC
17/11/22	100%	99.8	Y				DO	AC
17/11/22	249.5	249.4	4				REDOX	AC

*If standards are not used to calibrate instrument - explanation required under comments

Water quality measurements where Q = 10 shall meet the following calibration limits

EC	pH	Turbidity	DO	Temperature			
Standard +/- 5%	Standard +/- 0.1	Standard +/- 3%	<+/-2% FS				
+/- 10 μS/cm < 1,000	4 3.9 - 4.1	0 - 10 = 0.10 NTU	(0-20mg/l)	+/-0.2°C			
+/- 100 µS/cm > 1,000	7 6.9 - 7.1	0 - 100 = 1.00 NTU	101	(When a temperature stabilised environment			
	10 9.9 - 10.1	0 - 1000 = 10.00 NTU	<+/- 0.4 mg/l (0-20mg/l)	can be created)			

WQ Instruments that require continual calibration from initial values outside the above tolerance ranges using the specified solutions will need to be returned to the manufacturer for assessment or repair.

INSTRUMENTATION INTERMEDIATE VERIFICATION AND CALIBRATION

Serial no.: 07510 Centre: Burwood

Model no.: Aqua troll 500

Parameter:

(EC, DO, TU, pH, Temperature, Redox)

Date of			Res	ults			Comments	Staff	
verification /calibration	Expected	Observed	Adjusted	Batch no.	Slope mV	Asy mV		initials	
18/11/22	4.01	4.05	Y				pH	AC	
16/11/22	7.00	7.01	Y				pH	AC	
16/11/22		9.97	Y				pH	AC	
18/11/22	0	2	N				EC	AC	
18/11/22	1413	1418	Y				EC	AC	
18/11/22	100%	98.9	Y				DO	AC	
18/11/22	249.6	248.9	Y				REDOX	AC	
1 1									
1 1	4.01						pH	AC	
1 1	7.00						pH	AC	
1 1	10.01						pH	AC	
11	0						EC	AC	
1 1	1413						EC	AC	
1 1	100%						DO	AC	
1 1							REDOX	AC	
1 1									
1 1	4.01						pH	AC	
1 1	7.00						pH	AC	
1 1	10.01						pH	AC	
1 1	0						EC	AC	
1 1	1413						EC	AC	
1 1	100%						DO	AC	
1 1							REDOX	AC	

*If standards are not used to calibrate instrument - explanation required under comments

Water quality measurements where Q = 10 shall meet the following calibration limits

EC		Turbidity	DO	Temperature			
Standard +/- 5%	Standard +/- 0.1	Standard +/- 3%	<+/-2% FS				
+/- 10 µS/cm < 1,000	4 3.9 - 4.1	0 - 10 = 0.10 NTU	(0-20mg/l)	+/-0.2°C			
+/- 100 µS/cm > 1,000	7 6.9 - 7.1	0 - 100 = 1.00 NTU	101	(When a temperature stabilised environment			
	10 9.9 - 10.1	0 - 1000 = 10.00 NTU	<+/- 0.4 mg/l (0-20mg/l)	can be created)			

WQ Instruments that require continual calibration from initial values outside the above tolerance ranges using the specified solutions will need to be returned to the manufacturer for assessment or repair.

Ventia Landfill Subsurface Gas Monitoring - Field Sheet

Project	Creswick Landfill
Client	Hepburn Shire
Job Location	Creswick Landfill
Sampling Staff	Andrew Callander
Instrument Type	GA 5000
Instrument Serial Number	G500274
Calibration Record Supplied (Y/N)	Υ
Weather & Temperature	16 degrees / 5 km wind
Site Ground Conditions	Moist
Barometric Pressure	964

General Comments
BH 12's J plug was not sealed properly which may have
affected readings from this bore

LFG ID	Date	Time	Peak Flow (I/hr)	Stabilised Flow (I/hr)	SWL (mBTOC)	Depth (mBTOC)	Bore & Headworks Condition	Comments
BH11	18/11/2022	10:37	0	0	DRY	10.33	Good cond	
BH12	18/11/2022	9:58	0	0	DRY	6.57	J Plug does not seal properly	J plug needs replacing
BH10	17/10/2022	13:32	0	0	2.06	6.7	Good cond	
BH9	16/11/2022	14:46	0	0	DRY	6.84	Good cond	

[#] Instrumentation Gas Readings recorded on instrument data export

Table 1: Subsurface Gas Bore Results (November 2022)

ID	ID DATE and TIME	CH4	CO2	02	PEAKCH4	PEAKCO2	MIN O2	BARO	REL.PRESSURE	TERNAL FLO	CO	H2S
ID	DATE and Thirl	%	%	%	%	%	%	mb	mb	I/h	ppm	ppm
BH12*	18/11/2022 21:58	37.3	17.4	0	37.3	17.4	0	965	-0.18	0	2	0
BH9	16/11/2022 13:32:00 PM	0	0.2	22	0	0.2	22	966	-0.26	0	0	0
BH11	18/11/2022 10:37	0	5.3	3.5	0	5.3	3.5	964	-0.18	-2.3	0	0
BH10	17/11/2022 13:32:00 PM	0	3.1	19.3	0	3.2	19.2	969	0.04	-0.5	0	0
Notes:		Exceedance of	Adopted Asses	ment Criteria								

Exceedance of Adopted Assesment Criteria

Methane 1% v/v (EPA Victoria, Best Practice Environmental Management, Siting, design, operation and rehabilitation of landfills, 2015)

Carbon Dioxide 10% v/v (Mackenzie 2016)

 $[\]ensuremath{^\star}$ not applicable due to location within waste mass

Ventia Landfill Building Gas Monitoring - Field Sheet

Project	Creswick Landfill
Client	Hepburn Shire
Job Location	Landfill Cap Workover
Sampling Staff	Andrew Callander
Instrument Type	Inspectra laser
Instrument Serial Number	34090717
Calibration Record Supplied (Y/N)	Y
Weather and Temperature	16 degrees / 5 km wind
Site Ground Conditions	Dry
Barometric Pressure	469

General Comments

Locations as per Landserv Service location map

970

Location #	Date	Time	CH ₄ Concentration (ppm)	Building and service condition	Sample Location Notes
B1	16/11/2022	13:48	1.1	Good condition	Taken at foot of office building
B2	16/11/2022	13:49	1	Good condition	-
В3	16/11/2022	13:49	0.8	Good condition	-
B4	16/11/2022	13:49	0.6	Good condition	-
B5	16/11/2022	13:50	0.5	Good condition	Taken at foot of office building
В6	16/11/2022	13:50	0.8	Good condition	-
В7	16/11/2022	13:51	0.9	Good condition	-
B8	16/11/2022	13:51	1.2	Good condition	-
В9	16/11/2022	13:53	0.8	Good condition	taken on inside edge of open shed
B10	16/11/2022	13:53	0.6	Good condition	-
B11	16/11/2022	13:55	0.4	Good condition	taken on inside edge of open shed
B12	16/11/2022	13:56	0.4	Good condition	-
B13	16/11/2022	13:56	0.4	Good condition	-
B14	16/11/2022	14:22	1.5	Good condition	could not access shed - taken at base of slab
B15	16/11/2022	14:23	1.8	Good condition	-
B16	16/11/2022	14:24	1.7	Good condition	-
B17	16/11/2022	14:06	1	Good condition	Taken under outer edge of shed / slab
B18	16/11/2022	14:06	0.9	Good condition	-
B19	16/11/2022	14:07	1	Good condition	-
B20	16/11/2022	14:07	0.9	Good condition	-

Location #	Date	Time	CH₄ Concentration (ppm)	Building and service condition	Sample Location Notes
TP1	16/11/2022	14:02	1.2	Good condition	drain / pit
TP2	16/11/2022	14:04	0.7	Good condition	-
TP3	16/11/2022	14:03	0.6	Good condition	-
TP4	16/11/2022	14:03	0.4	Good condition	-
TP5	16/11/2022	14:03	0.8	Good condition	-
TP6	16/11/2022	13:59	0.6	unknown	cannot locate taken in area
TP7	16/11/2022	13:59	1.1	Good condition	-
TP8	16/11/2022	13:59	1.2	Good condition	-
TP9	16/11/2022	13:59	0.8	Good condition	-
TP10	16/11/2022	13:59	1.1	Good condition	-
TP11 (new)	16/11/2022	14:28	1.8	Good condition	in front of green waste pile

Ventia Landfill Surface Gas Monitoring - Field Sheet ventia

Project	Creswick Landfill
Client	Hepburn Shire
Job Location	Landfill Cap Workover
Sampling Staff	Andrew Callander
Instrument Type	Inspectra laser
Instrument Serial Number	34090717
Calibration Record Supplied (Y	Y
Date	16/11/2022
Weather and Temperature	17 degrees /5 km wind
Site Ground Conditions	moist conitions
Barometric Pressure	969

D !! "	-	CH ₄ Concentration	
Reading #	Time	(ppm)	Comment i.e. batter / penetration / sump
B7	14:58	1.1	
B8	14:58	1	
C5	15:06	1	
C6	15:06	3.1	
C7	15:07	3.2	
C8	15:07	1.1	
С9	15:08	1.2	
D5	15:11	1.8	
D6	15:10	1.6	
D7	15:10	0.5	
D8	15:09	0.6	
D9	15:09	0.7	
E6	15:10	0.8	
E7	15:10	0.8	
E8	15:11	0.4	
E9	15:11	0.9	
E10	15:12	1.1	
F6	15:14	1.8	
F7	15:15	1.7	
F8	15:15	1.5	
F9	15:15	1.4	
F10	15:16	1.7	
G6	15:18	1.3	
G7	15:19	1.5	
G8	15:19	1.2	
G9	15:19	1.4	
G10	15:20	1.1	
H5	15:22	1	
H6	15:22	1.2	
H7	15:22	1.8	
H8	15:22	1.4	
H9	15:23	0.9	
H10	15:23	0.8	
15	15:26	1	
16	15:26	0.9	
17	15:26	0.7	
18	15:27	0.8	
19	15:27	0.9	
l10	15:28	0.8	
J5	15:30	1.1	
J6	15:30	1.3	
J7	15:30	0.9	
J8	15:29	0.8	
J9	15:29	2	
J10	15:29	2.1	
K5	15:33	1.5	
K6	15:33	0.9	
K7	15:32	1.1	
	15.02		
		İ	
	L	<u> </u>	

EQUIPMENT QUALITY REPORT

GA5000

Equipment Code: MLG-274	Serial Number: 9500274
--------------------------------	------------------------

The e	quipment	has been issued as follo	ws:				
\checkmark	Equipme	ent is clean	Pump and b	oattery volta	ge check		Clear Data
Calibrat	ion Result	ts				Calibra	tion Gas (Expiry Dat
Parame	ter	Standard		Result	Error Rang	ge	
CH4		Methane by Volume	60%	60% 60.0% ± 2%		Exp: 24	/8/26
CO2		Carbon Dioxide by volu	me 40%	40.0%	± 2%	Exp: 24	/8/26
H2S		Hydrogen Sulphide	25 ppm	25ppm	± 2 ppm	Exp. 13	3/01/23
02		Oxygen	18%	18.0%	± 0.2%	Exp. 13	3/01/23
СО		Carbon Monoxide	50 ppm	50ppm	± 2ppm		7/12/25
Pleaso retun	ing. A mir	Lachlan War nat the following items ar nimum \$20 service/repai	re received,	plies to any	unclean or dama	ged items.	
Photo Ref.	Checklis (See photo	t Item o at the back of this form)		HT ld No.	Sent?	Returned?	Comments
1	Blue tub	ing with an inlet barb fit	ting	N/A	✓		
2		bing with an inlet Brass E Fitting (filter attached)	х-сар	N/A	√		
3		ater trap filter(s) Qty 1		N/A	✓		
4	Yellow t	ubing with an inlet barb	fitting	N/A	✓		
5	Clear tu	bing		N/A	✓		
6	Charger	240/110V to 12V 500mA	4	N/A	✓		
7	GA5000	with a carry bag		MLG-274	✓		
8	Hard cas	se		N/A	✓		
9	Instruct	ion Manual		N/A	✓		
10	Well cap			N/A	✓		
	Test & T	ag		N/A			
☑ E Date:	quipment	voltage 14/11/2022	✓ Pre	e-delivery Ca	libration Test Co	mplete	
Check	ked by:	Lachlan Ward			_		
HT JO	B NO:	20221		CI	LIENTS REF: P/O	No: 47006454	97
RETU	RN DATE:	/ / TIM	E:	C	ONDITION ON RE	TURN:	

RETURN DATE: /

Document No: 2005 Reviewed by: IT Approved by: R&WM Issued date: 25/11/21

EQUIPMENT QUALITY REPORT

Inspectra Laser Equipment Code: MIL-1217 Serial Number: 4531217

Z Equipr	nent is clean 🗹 Pump a	nd battery voltage	check		☑ Clear Data
Calibration	Results				Calibration Gas Expiry Date
Parameter	Standard	Result	Error Ra	nge	
CH4	Methane by 500ppm	487ppm	± 25 ppn	n	WO284877-1 Exp.25/01/2026
Date:	14/11/2022 y: <u>Lachlan Ward</u>				
Please check retuning. A m	ontrol purposes HydroTerra can su that the following items are receiv inimum \$20 service/repair charge ecklist Item	ed and all items ar	e returned.		
Ref. (Se	e photo at the back of the m)				
1 Car	ry Case	N/A	✓		
	pectra Laser	MIL-1217	√		
	npling Probe joint	N/A	✓ ✓		
	npling Probe 600mm	N/A	✓		
6 Spa	escopic rod with Suction cup are Battery & charger 240/110V 12V 500mA	N/A N/A	√		
7 Spa	re filter	N/A	✓		
8 Too	ols – Screw driver	N/A	✓		
- Tes	t & Tag	N/A	✓		
Equipme	-	Pre-delivery Calib	ration Test	Complete	
Date:	14/11/2022				
Calibrated b	y: <u>Lachlan</u>				
HT JOB NO:	20221	CLIE	ENTS REF: F	P/O No: 47	700645497

CONDITION ON RETURN:

TIME:

Document No: 2005 Reviewed by: IT Approved by: R&WM Issued date: 25/11/21

SAMPLING RESULTS SUBMISSION SHEET (SAMPLING UNDERTAKEN BY VENTIA)

Client: Hepburn Shire Council

Site: Creswick Landfill

Program: Groundwater/Surface Water Sampling

Samping Period: Feb 23
Sampler: A Callander
Phone: 427529051

Bore/Sample Point	Date	Time (EST)	Depth (mbmp)	SWL m (mbtoc)	Electrical Conductivity (us/cm @ 25°C)	рН	Temp. (°C)	Redox (mV)	DO (mg/L)	Comments
LB1	13/02/2023	13:15	17.32	13.52						NO sample bore blocked
LB2	13/02/2023	12:55	15.43	14.48						NO sample bore blocked at 6.1m
LB3	13/02/2023	10:50		10.69						level only no odour, appears to be misslabled BH3
Creek U/S BH3	13/02/2023	13:15			689	6.83	19.4	20.4	4.96	see photos
Creek @ BH3	13/02/2023	12:55			799	6.04	15.6	2.5	0.69	see photos
Creek D/S BH3	13/02/2023	10:50			550	6.66	16.5	-7.7	1.12	see photos
Leachate Pond	14/02/2023	14:15			1158	7.32	23.1	-28.9	12.09	see photos
Wetland	14/02/2023	12:40			1240	7.44	21.7	14.9	8.72	see photos
Dredge hole	16/02/2023	16:15			914	6.85	22.0	63.6	7.53	No access through gate
BH1	17/02/2023	-	-	-	-	-	-	-	-	Not accesable due to road resurfacing
BH2	17/02/2023	7:30	5.00	2.98	685	5.73	19.7	122.2	2.69	Bailed sample due to resricting bend in bore casing.
внз	14/02/2023	12:06	3.88	0.87	2481	6.52	17.2	-17.2	0.2	Yellow brown slightly turbid nil odour
ВН4	13/02/2023	14:02	7.92	4.88	1840	5.77	14.4	6.5	0.4	Grey turbidity very slight odour

Bore/Sample Point	Date	Time (EST)	Depth (mbmp)	SWL m (mbtoc)	Electrical Conductivity (us/cm @ 25°C)	рН	Temp. (°C)	Redox (mV)	DO (mg/L)	Comments
вн6	14/02/2023	9:15	15.48	11.65	632	5.05	14.9	220.1	0.28	Slight white turbidity nil odour
вн7	14/02/2023	13:51	7.18	2.69	975	6.54	15.3	-8.5	0.16	Light Yellow Brown. No odour.
вн8	14/02/2023	11:06	7.57	3.02	928	6.68	16.7	-47.7	0.13	Thick brown turbidity nil odour
BH10	14/02/2023	10:24	6.70	2.44	795	5.61	16.2	114.7	0.25	Highly turbid yellow/brown nil odour
BH14	13/02/2023	11:52	6.28	3.19	1190	6.40	14.5	8.5	0.12	moderate light brown turbidity nil odour

NOTES:

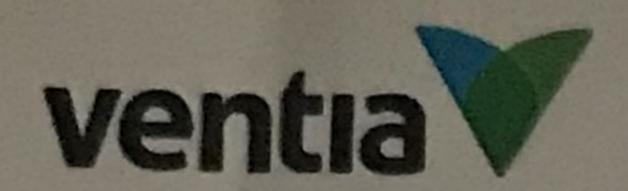
Groundwater samples taken using the low-flow method (as per EPA Publication 669) unless otherwise noted All depths measured from the top of the PVC casing

¹ 2

Notes: All bore measuremen	its are referenc						Lshoot	Env. l	Monitorin		ventia	
David ID No.	D				•	Ü		EIIVI		J	40	
	В	H3	. !	Project Name						npling Staff		
Project Area:			.							eter Model		
Date		2/2023		Project No					WQ. Me	ter Serial #	09L1002	98
Expe	cted Bore D	etails										
Internal Dia	imeter (mm)		ī	Easting			Total [epth (m)		Screen	Depth From (m)	
Drop Tube already in	bore? (Y/N)	N		Northing			Water	Level (m)		Scree	en Depth To (m)	
Drop Tube	e Length (m)	0.00		Zone			Set Pump in	let at (m)		:	Set Pump at (m)	
Additional	Information		•			•	·			_		
	Information eld Measure	aments										_
Time of SWL			otal Depth (m)	3.89	Mid-screen	accessible?	Clea	ar	Depth pump	set at (m)	2.50	
Static Water Level (m)		•	re Diam (mm)	50	•	n Length(m)			Depth of pur	•		
	l Purging De	•	. ,		Sampling D	_					les Required	
Purge Method	LF	Pump Type	Micro purge	Samp	ling Method	LF			Bottle Type	Quantity	Bottle Type	Quantity
Time Pump in	11:40	Pump in' WL	0.84		Time Started	12:06	WL m (start)	0.88				
Time Started	11:40	WL m (start)	0.86	Ti	me Stopped	12:15	WL m (end)	0.88				
Time Stopped	12:03	WL m (end)	0.88	Duplicate	sample ID?							
Volume Removed (I)	3.6			Triplicate	sample ID?							
Discharge Rate (I/m)	0.16			Rinsate	sample ID?							
Pu	ump Remov	al										
Time of removal	12:25	WL m	n(post-removal)	0.89	Bore Dep	oth at end (m)	3.88					
	ump Setting											
Fill / Discharge used	25/5	CPM		Air/Gas	Pressure (kPa)	30						
Comments					measured to	top of casing	g not cover					
			are considered sta						<u> </u>			_
	18 Cumulative	= vol required for	3V method (L)	+/- 3% Specific	+/- 0.05 pH	+/- 10%	+/- 10mV	+/- 10% DO		Commen	is (colour,	_
Time	18			+/- 3% Specific Conductance EC (uS/cm)						Commenturbidity, oc		
Time 11:42	18 Cumulative Volume	= vol required for Water Level (m	3V method (L) Stability of Field	+/- 3% Specific Conductance	+/- 0.05 pH	+/- 10% Temp.	+/- 10mV Redox	DO	Yellow brown	turbidity, oc	ours, other)	
	18 Cumulative Volume Removed (I)	= vol required for Water Level (m below MP)	3V method (L) Stability of Field Params	+/- 3% Specific Conductance EC (uS/cm) @25°C	+/- 0.05 pH pH	+/- 10% Temp. (°C)	+/- 10mV Redox ORP (mV)	DO (mg/L)	Yellow brown Yellow brown	turbidity, od	d nil odour	
11:42	18 Cumulative Volume Removed (I) 0.1	= vol required for Water Level (m below MP)	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) @25°C	+/- 0.05 pH pH	+/- 10% Temp. (°C)	+/- 10mV Redox ORP (mV)	DO (mg/L) 4.03		turbidity, oc slightly turbi	d nil odour	
11:42 11:45	18 Cumulative Volume Removed (I) 0.1 0.6	= vol required for Water Level (m below MP) 0.88	3V method (L) Stability of Field Params Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) @25°C 1941 2174	+/- 0.05 pH pH 6.49	+/- 10% Temp. (°C) 17.39 17.20	+/- 10mV Redox ORP (mV) 45.0 30.9	DO (mg/L) 4.03 1.14	Yellow brown	slightly turbi	d nil odour d nil odour d nil odour	
11:42 11:45 11:48	18 Cumulative Volume Removed (I) 0.1 0.6	= vol required for Water Level (m below MP) 0.88 0.88	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) @25°C 1941 2174 2178	+/- 0.05 pH pH 6.49 6.49 6.51	+/- 10% Temp. (°C) 17.39 17.20	+/- 10mV Redox ORP (mV) 45.0 30.9	DO (mg/L) 4.03 1.14 0.31	Yellow brown	turbidity, oc slightly turbi slightly turbi slightly turbi slightly turbi	d nil odour d nil odour d nil odour d nil odour	
11:42 11:45 11:48 11:51	18 Cumulative Volume Removed (I) 0.1 0.6 1.1	= vol required for Water Level (m below MP) 0.88 0.88 0.88	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 1941 2174 2178 2459	+/- 0.05 pH pH 6.49 6.49 6.51	+/- 10% Temp. (°C) 17.39 17.20 17.15	+/- 10mV Redox ORP (mV) 45.0 30.9 13.3 3.0	DO (mg/L) 4.03 1.14 0.31 0.24	Yellow brown Yellow brown	turbidity, oc slightly turbi slightly turbi slightly turbi slightly turbi	d nil odour	
11:42 11:45 11:48 11:51 11:54 11:57	18 Cumulative Volume Removed (I) 0.1 0.6 1.1 1.6 2.1	= vol required for Water Level (m below MP) 0.88 0.88 0.88 0.88	Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (u5/cm) #25°C 1941 2174 2178 2459 2459	+/- 0.05 pH pH 6.49 6.49 6.51 6.50 6.51	+/- 10% Temp. (°C) 17.39 17.20 17.15 17.03 17.10 17.30	+/- 10mV Redox ORP (mV) 45.0 30.9 13.3 3.0 -4.1 -16.4	DO (mg/L) 4.03 1.14 0.31 0.24 0.18	Yellow brown Yellow brown Yellow brown Yellow brown Yellow brown	turbidity, oc slightly turbi slightly turbi slightly turbi slightly turbi slightly turbi slightly turbi	d nil odour	
11:42 11:45 11:48 11:51 11:54	18 Cumulative Volume Removed (I) 0.1 0.6 1.1 1.6 2.1 2.6	= vol required for Water Level (m below MP) 0.88 0.88 0.88 0.88 0.88	Stability of Field Params Keep purging Keep purging Keep purging Keep purging Keep purging Keep purging	### 178 #### 178 ### 178 ### 178 ### 178 ### 178 ### 178 ### 178 ### 178 ### 178 ### 178 ### 178 ### 1	+/- 0.05 pH pH 6.49 6.49 6.51 6.50 6.51	+/- 10% Temp. (°C) 17.39 17.20 17.15 17.03	+/- 10mV Redox ORP (mV) 45.0 30.9 13.3 3.0 -4.1	DO (mg/L) 4.03 1.14 0.31 0.24 0.18	Yellow brown Yellow brown Yellow brown	turbidity, oc slightly turbi slightly turbi slightly turbi slightly turbi slightly turbi slightly turbi	d nil odour	
11:42 11:45 11:48 11:51 11:54 11:57 12:00	18 Cumulative Volume Removed (I) 0.1 0.6 1.1 1.6 2.1 2.6 3.1	= vol required for Water Level (m below MP) 0.88 0.88 0.88 0.88 0.88 0.88	Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (us/cm) +/- 25°C 1941 2174 2178 2459 2459 2486	+/- 0.05 pH pH 6.49 6.49 6.51 6.50 6.51 6.53	+/- 10% Temp. (°C) 17.39 17.20 17.15 17.03 17.10 17.30 17.22	+/- 10mV Redox ORP (mV) 45.0 30.9 13.3 3.0 -4.1 -16.4 -16.6	DO (mg/L) 4.03 1.14 0.31 0.24 0.18 0.17	Yellow brown Yellow brown Yellow brown Yellow brown Yellow brown Yellow brown	turbidity, oc slightly turbi slightly turbi slightly turbi slightly turbi slightly turbi slightly turbi	d nil odour	
11:42 11:45 11:48 11:51 11:54 11:57 12:00	18 Cumulative Volume Removed (I) 0.1 0.6 1.1 1.6 2.1 2.6 3.1	= vol required for Water Level (m below MP) 0.88 0.88 0.88 0.88 0.88 0.88	Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (us/cm) +/- 25°C 1941 2174 2178 2459 2459 2486	+/- 0.05 pH pH 6.49 6.49 6.51 6.50 6.51 6.53	+/- 10% Temp. (°C) 17.39 17.20 17.15 17.03 17.10 17.30 17.22	+/- 10mV Redox ORP (mV) 45.0 30.9 13.3 3.0 -4.1 -16.4 -16.6	DO (mg/L) 4.03 1.14 0.31 0.24 0.18 0.17	Yellow brown Yellow brown Yellow brown Yellow brown Yellow brown Yellow brown	turbidity, oc slightly turbi slightly turbi slightly turbi slightly turbi slightly turbi slightly turbi	d nil odour	
11:42 11:45 11:48 11:51 11:54 11:57 12:00	18 Cumulative Volume Removed (I) 0.1 0.6 1.1 1.6 2.1 2.6 3.1	= vol required for Water Level (m below MP) 0.88 0.88 0.88 0.88 0.88 0.88	Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (us/cm)	+/- 0.05 pH pH 6.49 6.49 6.51 6.50 6.51 6.53	+/- 10% Temp. (°C) 17.39 17.20 17.15 17.03 17.10 17.30 17.22	+/- 10mV Redox ORP (mV) 45.0 30.9 13.3 3.0 -4.1 -16.4 -16.6	DO (mg/L) 4.03 1.14 0.31 0.24 0.18 0.17	Yellow brown Yellow brown Yellow brown Yellow brown Yellow brown Yellow brown	turbidity, oc slightly turbi slightly turbi slightly turbi slightly turbi slightly turbi slightly turbi	d nil odour	
11:42 11:45 11:48 11:51 11:54 11:57 12:00	18 Cumulative Volume Removed (I) 0.1 0.6 1.1 1.6 2.1 2.6 3.1	= vol required for Water Level (m below MP) 0.88 0.88 0.88 0.88 0.88 0.88	Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (us/cm)	+/- 0.05 pH pH 6.49 6.49 6.51 6.50 6.51 6.53	+/- 10% Temp. (°C) 17.39 17.20 17.15 17.03 17.10 17.30 17.22	+/- 10mV Redox ORP (mV) 45.0 30.9 13.3 3.0 -4.1 -16.4 -16.6	DO (mg/L) 4.03 1.14 0.31 0.24 0.18 0.17	Yellow brown Yellow brown Yellow brown Yellow brown Yellow brown Yellow brown	turbidity, oc slightly turbi slightly turbi slightly turbi slightly turbi slightly turbi slightly turbi	d nil odour	
11:42 11:45 11:48 11:51 11:54 11:57 12:00	18 Cumulative Volume Removed (I) 0.1 0.6 1.1 1.6 2.1 2.6 3.1	= vol required for Water Level (m below MP) 0.88 0.88 0.88 0.88 0.88 0.88	Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (us/cm)	+/- 0.05 pH pH 6.49 6.49 6.51 6.50 6.51 6.53	+/- 10% Temp. (°C) 17.39 17.20 17.15 17.03 17.10 17.30 17.22	+/- 10mV Redox ORP (mV) 45.0 30.9 13.3 3.0 -4.1 -16.4 -16.6	DO (mg/L) 4.03 1.14 0.31 0.24 0.18 0.17	Yellow brown Yellow brown Yellow brown Yellow brown Yellow brown Yellow brown	turbidity, oc slightly turbi slightly turbi slightly turbi slightly turbi slightly turbi slightly turbi	d nil odour	
11:42 11:45 11:48 11:51 11:54 11:57 12:00	18 Cumulative Volume Removed (I) 0.1 0.6 1.1 1.6 2.1 2.6 3.1	= vol required for Water Level (m below MP) 0.88 0.88 0.88 0.88 0.88 0.88	Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (us/cm)	+/- 0.05 pH pH 6.49 6.49 6.51 6.50 6.51 6.53	+/- 10% Temp. (°C) 17.39 17.20 17.15 17.03 17.10 17.30 17.22	+/- 10mV Redox ORP (mV) 45.0 30.9 13.3 3.0 -4.1 -16.4 -16.6	DO (mg/L) 4.03 1.14 0.31 0.24 0.18 0.17	Yellow brown Yellow brown Yellow brown Yellow brown Yellow brown Yellow brown	turbidity, oc slightly turbi slightly turbi slightly turbi slightly turbi slightly turbi slightly turbi	d nil odour	
11:42 11:45 11:48 11:51 11:54 11:57 12:00	18 Cumulative Volume Removed (I) 0.1 0.6 1.1 1.6 2.1 2.6 3.1	= vol required for Water Level (m below MP) 0.88 0.88 0.88 0.88 0.88 0.88	Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (us/cm)	+/- 0.05 pH pH 6.49 6.49 6.51 6.50 6.51 6.53	+/- 10% Temp. (°C) 17.39 17.20 17.15 17.03 17.10 17.30 17.22	+/- 10mV Redox ORP (mV) 45.0 30.9 13.3 3.0 -4.1 -16.4 -16.6	DO (mg/L) 4.03 1.14 0.31 0.24 0.18 0.17	Yellow brown Yellow brown Yellow brown Yellow brown Yellow brown Yellow brown	turbidity, oc slightly turbi slightly turbi slightly turbi slightly turbi slightly turbi slightly turbi	d nil odour	
11:42 11:45 11:48 11:51 11:54 11:57 12:00	18 Cumulative Volume Removed (I) 0.1 0.6 1.1 1.6 2.1 2.6 3.1	= vol required for Water Level (m below MP) 0.88 0.88 0.88 0.88 0.88 0.88	Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (us/cm)	+/- 0.05 pH pH 6.49 6.49 6.51 6.50 6.51 6.53	+/- 10% Temp. (°C) 17.39 17.20 17.15 17.03 17.10 17.30 17.22	+/- 10mV Redox ORP (mV) 45.0 30.9 13.3 3.0 -4.1 -16.4 -16.6	DO (mg/L) 4.03 1.14 0.31 0.24 0.18 0.17	Yellow brown Yellow brown Yellow brown Yellow brown Yellow brown Yellow brown	turbidity, oc slightly turbi slightly turbi slightly turbi slightly turbi slightly turbi slightly turbi	d nil odour	
11:42 11:45 11:48 11:51 11:54 11:57 12:00	18 Cumulative Volume Removed (I) 0.1 0.6 1.1 1.6 2.1 2.6 3.1	= vol required for Water Level (m below MP) 0.88 0.88 0.88 0.88 0.88 0.88	Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (us/cm)	+/- 0.05 pH pH 6.49 6.49 6.51 6.50 6.51 6.53	+/- 10% Temp. (°C) 17.39 17.20 17.15 17.03 17.10 17.30 17.22	+/- 10mV Redox ORP (mV) 45.0 30.9 13.3 3.0 -4.1 -16.4 -16.6	DO (mg/L) 4.03 1.14 0.31 0.24 0.18 0.17	Yellow brown Yellow brown Yellow brown Yellow brown Yellow brown Yellow brown	turbidity, oc slightly turbi slightly turbi slightly turbi slightly turbi slightly turbi slightly turbi	d nil odour	
11:42 11:45 11:48 11:51 11:54 11:57 12:00	18 Cumulative Volume Removed (I) 0.1 0.6 1.1 1.6 2.1 2.6 3.1	= vol required for Water Level (m below MP) 0.88 0.88 0.88 0.88 0.88 0.88	Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (us/cm)	+/- 0.05 pH pH 6.49 6.49 6.51 6.50 6.51 6.53	+/- 10% Temp. (°C) 17.39 17.20 17.15 17.03 17.10 17.30 17.22	+/- 10mV Redox ORP (mV) 45.0 30.9 13.3 3.0 -4.1 -16.4 -16.6	DO (mg/L) 4.03 1.14 0.31 0.24 0.18 0.17	Yellow brown Yellow brown Yellow brown Yellow brown Yellow brown Yellow brown	turbidity, oc slightly turbi slightly turbi slightly turbi slightly turbi slightly turbi slightly turbi	d nil odour	
11:42 11:45 11:48 11:51 11:54 11:57 12:00	18 Cumulative Volume Removed (I) 0.1 0.6 1.1 1.6 2.1 2.6 3.1	= vol required for Water Level (m below MP) 0.88 0.88 0.88 0.88 0.88 0.88	Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (us/cm)	+/- 0.05 pH pH 6.49 6.49 6.51 6.50 6.51 6.53	+/- 10% Temp. (°C) 17.39 17.20 17.15 17.03 17.10 17.30 17.22	+/- 10mV Redox ORP (mV) 45.0 30.9 13.3 3.0 -4.1 -16.4 -16.6	DO (mg/L) 4.03 1.14 0.31 0.24 0.18 0.17	Yellow brown Yellow brown Yellow brown Yellow brown Yellow brown Yellow brown	turbidity, oc slightly turbi slightly turbi slightly turbi slightly turbi slightly turbi slightly turbi	d nil odour	
11:42 11:45 11:48 11:51 11:54 11:57 12:00	18 Cumulative Volume Removed (I) 0.1 0.6 1.1 1.6 2.1 2.6 3.1	= vol required for Water Level (m below MP) 0.88 0.88 0.88 0.88 0.88 0.88	Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (us/cm)	+/- 0.05 pH pH 6.49 6.49 6.51 6.50 6.51 6.53	+/- 10% Temp. (°C) 17.39 17.20 17.15 17.03 17.10 17.30 17.22	+/- 10mV Redox ORP (mV) 45.0 30.9 13.3 3.0 -4.1 -16.4 -16.6	DO (mg/L) 4.03 1.14 0.31 0.24 0.18 0.17	Yellow brown Yellow brown Yellow brown Yellow brown Yellow brown Yellow brown	turbidity, oc slightly turbi slightly turbi slightly turbi slightly turbi slightly turbi slightly turbi	d nil odour	
11:42 11:45 11:48 11:51 11:54 11:57 12:00	18 Cumulative Volume Removed (I) 0.1 0.6 1.1 1.6 2.1 2.6 3.1	= vol required for Water Level (m below MP) 0.88 0.88 0.88 0.88 0.88 0.88	Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (us/cm)	+/- 0.05 pH pH 6.49 6.49 6.51 6.50 6.51 6.53	+/- 10% Temp. (°C) 17.39 17.20 17.15 17.03 17.10 17.30 17.22	+/- 10mV Redox ORP (mV) 45.0 30.9 13.3 3.0 -4.1 -16.4 -16.6	DO (mg/L) 4.03 1.14 0.31 0.24 0.18 0.17	Yellow brown Yellow brown Yellow brown Yellow brown Yellow brown Yellow brown	turbidity, oc slightly turbi slightly turbi slightly turbi slightly turbi slightly turbi slightly turbi	d nil odour	
11:42 11:45 11:48 11:51 11:54 11:57 12:00	18 Cumulative Volume Removed (I) 0.1 0.6 1.1 1.6 2.1 2.6 3.1	= vol required for Water Level (m below MP) 0.88 0.88 0.88 0.88 0.88 0.88	Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (us/cm)	+/- 0.05 pH pH 6.49 6.49 6.51 6.50 6.51 6.53	+/- 10% Temp. (°C) 17.39 17.20 17.15 17.03 17.10 17.30 17.22	+/- 10mV Redox ORP (mV) 45.0 30.9 13.3 3.0 -4.1 -16.4 -16.6	DO (mg/L) 4.03 1.14 0.31 0.24 0.18 0.17	Yellow brown Yellow brown Yellow brown Yellow brown Yellow brown Yellow brown	turbidity, oc slightly turbi slightly turbi slightly turbi slightly turbi slightly turbi slightly turbi	d nil odour	
11:42 11:45 11:48 11:51 11:54 11:57 12:00	18 Cumulative Volume Removed (I) 0.1 0.6 1.1 1.6 2.1 2.6 3.1	= vol required for Water Level (m below MP) 0.88 0.88 0.88 0.88 0.88 0.88	Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (us/cm)	+/- 0.05 pH pH 6.49 6.49 6.51 6.50 6.51 6.53	+/- 10% Temp. (°C) 17.39 17.20 17.15 17.03 17.10 17.30 17.22	+/- 10mV Redox ORP (mV) 45.0 30.9 13.3 3.0 -4.1 -16.4 -16.6	DO (mg/L) 4.03 1.14 0.31 0.24 0.18 0.17	Yellow brown Yellow brown Yellow brown Yellow brown Yellow brown Yellow brown	turbidity, oc slightly turbi slightly turbi slightly turbi slightly turbi slightly turbi slightly turbi	d nil odour	

Notes: All bore measuremen	nts are referen	ced to the mark	ed measuremer	nt point. All Coor	rdinates in GDA	\94 .					4	
				•			l sheet .	. Fny I	Monitorin	o V	entia	
					•	J				•		
Bore ID No	BI	H14	-	Project Name	He	epburn Land	Fill		Sam	pling Staff	AC	
Project Area:			-	Client					WQ. Me	eter Model	YSI Pro)+
Date	13/0	2/2023		Project No					WQ. Met	er Serial #	09L1002	298
Expe	cted Bore D	Details										
				- :			T				D 11 E /	,
Internal Dia	ameter (mm)			Easting		-	iotaii	Jeptn (m)		_ Screen	Depth From (m)
Drop Tube already in	bore? (Y/N)	N		Northing		=	Water	Level (m)		Scre	en Depth To (m)
Drop Tube	e Length (m)	0.00		7one			Set Pump ir	ilet at (m)			Set Pump at (m)
	, J. ()		_			-		,		_		·
Additional	l Information											_
Bore Fi	ield Measur	ements										
Time of SWL	13:37	To	otal Depth (m)	7.92	Mid-screen	accessible?	Cle	ar	Depth pump	set at (m)	7.00	
Static Water Level (m)	4.88	Вс	re Diam (mm)	50	Open Scree	en Length(m)	0.00		Depth of pum	p inlet (m)	7.00	
Wel	I Purging De	etails			Sampling D	etails			Sa	mple Bott	les Required	
Purge Method	LF	Pump Type	micro	Samp	oling Method	LF			Bottle Type	Quantity	Bottle Type	Quantity
Time Pump in	13:39	Pump in' WL	4.83		Time Started	14:02	WL m (start)	4.94				
Time Started	13:40	WL m (start)	4.85	Ti	ime Stopped	14:08	WL m (end)	4.95				
Time Stopped	13:59	WL m (end)	4.95	Duplicate	sample ID?		-					
Volume Removed (I)	4.3	_		Triplicate	sample ID?		_					
Discharge Rate (I/m)	0.23	<u>-</u>		Rinsate	sample ID?		<u>-</u> .					
Pi	ump Remov	/al										
Time of removal	14:15	WLr	n(post-removal)	4.93	Bore De	pth at end (m)	7.92					
P	Pump Setting	gs										
Fill / Discharge used	25/5	CPM		Air/Gas	Pressure (kPa)	30						
Comments												
		Field Parameters	are considered sta	able when within t	he FPA limits for 3	3 consecutive me	easurements					
	10		are considered sta				1	./ 109/]			
	18 Cumulative	= vol required for	3V method (L)	+/- 3% Specific	he EPA limits for 3 +/- 0.05 pH pH	3 consecutive me +/- 10% Temp.	easurements +/- 10mV Redox	+/- 10% DO		Commen	ts (colour,	
Time				+/- 3% Specific Conductance EC (uS/cm)	+/- 0.05 pH	+/- 10%	+/- 10mV			Commen turbidity, oc		
Time 13:41	Cumulative Volume	= vol required for Water Level (m	3V method (L) Stability of Field	+/- 3% Specific Conductance	+/- 0.05 pH	+/- 10% Temp.	+/- 10mV Redox	DO	grey turbidity v	turbidity, oc	dours, other)	
13:41	Cumulative Volume Removed (I)	= vol required for Water Level (m below MP)	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) @25°C 1586	+/- 0.05 pH pH	+/- 10% Temp. (°C) 14.89	+/- 10mV Redox ORP (mV)	DO (mg/L) 0.99	grey turbidity v	turbidity, od	dours, other)	
13:41 13:44	Cumulative Volume Removed (I) 0.1	= vol required for Water Level (m below MP) 4.89 4.91	3V method (L) Stability of Field Params Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) @25°C 1586 1799	+/- 0.05 pH pH 5.74 5.71	+/- 10% Temp. (°C) 14.89 14.45	+/- 10mV Redox ORP (mV) 28.4 15.1	DO (mg/L) 0.99 0.86	grey turbidity v	turbidity, oc ery slight o ery slight o	dours, other) dour	
13:41 13:44 13:47	Cumulative Volume Removed (I) 0.1 0.8 1.5	= vol required for Water Level (m below MP) 4.89 4.91	Stability of Field Params Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) @25°C 1586 1799	+/- 0.05 pH pH 5.74 5.71 5.69	+/- 10% Temp. (°C) 14.89 14.45	+/- 10mV Redox ORP (mV) 28.4 15.1 12.9	DO (mg/L) 0.99 0.86 0.44	grey turbidity v	turbidity, oc ery slight o ery slight o ery slight o	dours, other) dour dour	
13:41 13:44 13:47 13:50	Cumulative Volume Removed (I) 0.1 0.8 1.5	= vol required for Water Level (m below MP) 4.89 4.91 4.93	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 1586 1799 1797 1860	+/- 0.05 pH pH 5.74 5.71 5.69	+/- 10% Temp. (°C) 14.89 14.45 14.38	+/- 10mV Redox ORP (mV) 28.4 15.1 12.9	DO (mg/L) 0.99 0.86 0.44 0.40	grey turbidity v grey turbidity v grey turbidity v	turbidity, oc ery slight o ery slight o ery slight o ery slight o	dour dour dour dour dour	
13:41 13:44 13:47 13:50 13:53	Cumulative Volume Removed (I) 0.1 0.8 1.5 2.2	= vol required for Water Level (m below MP) 4.89 4.91 4.93 4.94	Stability of Field Params Keep purging Keep purging Keep purging Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) @25°C 1586 1799 1797 1860 1879	+/- 0.05 pH pH 5.74 5.71 5.69 5.84 5.79	+/- 10% Temp. (°C) 14.89 14.45 14.38 14.30	+/- 10mV Redox ORP (mV) 28.4 15.1 12.9 11.2	DO (mg/L) 0.99 0.86 0.44 0.40 0.38	grey turbidity v grey turbidity v grey turbidity v grey turbidity v	ery slight o ery slight o ery slight o ery slight o ery slight o	dour dour dour dour dour dour	
13:41 13:44 13:47 13:50 13:53 13:56	Cumulative Volume Removed (I) 0.1 0.8 1.5 2.2 2.9 3.6	= vol required for Water Level (m below MP) 4.89 4.91 4.93 4.94 4.94	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 1586 1799 1797 1860 1879	+/- 0.05 pH pH 5.74 5.71 5.69 5.84 5.79 5.77	+/- 10% Temp. (°C) 14.89 14.45 14.38 14.30 14.50	+/- 10mV Redox ORP (mV) 28.4 15.1 12.9 11.2 9.1 7.3	0.99 0.86 0.44 0.40 0.38	grey turbidity v grey turbidity v grey turbidity v grey turbidity v grey turbidity v	ery slight of ery slight of ery slight of ery slight of ery slight of ery slight of ery slight of	dour dour dour dour dour dour dour dour	
13:41 13:44 13:47 13:50 13:53	Cumulative Volume Removed (I) 0.1 0.8 1.5 2.2	= vol required for Water Level (m below MP) 4.89 4.91 4.93 4.94	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) @25°C 1586 1799 1797 1860 1879	+/- 0.05 pH pH 5.74 5.71 5.69 5.84 5.79	+/- 10% Temp. (°C) 14.89 14.45 14.38 14.30	+/- 10mV Redox ORP (mV) 28.4 15.1 12.9 11.2	DO (mg/L) 0.99 0.86 0.44 0.40 0.38	grey turbidity v grey turbidity v grey turbidity v grey turbidity v	ery slight of ery slight of ery slight of ery slight of ery slight of ery slight of ery slight of	dour dour dour dour dour dour dour dour	
13:41 13:44 13:47 13:50 13:53 13:56	Cumulative Volume Removed (I) 0.1 0.8 1.5 2.2 2.9 3.6	= vol required for Water Level (m below MP) 4.89 4.91 4.93 4.94 4.94	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 1586 1799 1797 1860 1879	+/- 0.05 pH pH 5.74 5.71 5.69 5.84 5.79 5.77	+/- 10% Temp. (°C) 14.89 14.45 14.38 14.30 14.50	+/- 10mV Redox ORP (mV) 28.4 15.1 12.9 11.2 9.1 7.3	0.99 0.86 0.44 0.40 0.38	grey turbidity v grey turbidity v grey turbidity v grey turbidity v grey turbidity v	ery slight of ery slight of ery slight of ery slight of ery slight of ery slight of ery slight of	dour dour dour dour dour dour dour dour	
13:41 13:44 13:47 13:50 13:53 13:56	Cumulative Volume Removed (I) 0.1 0.8 1.5 2.2 2.9 3.6	= vol required for Water Level (m below MP) 4.89 4.91 4.93 4.94 4.94	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 1586 1799 1797 1860 1879	+/- 0.05 pH pH 5.74 5.71 5.69 5.84 5.79 5.77	+/- 10% Temp. (°C) 14.89 14.45 14.38 14.30 14.50	+/- 10mV Redox ORP (mV) 28.4 15.1 12.9 11.2 9.1 7.3	0.99 0.86 0.44 0.40 0.38	grey turbidity v grey turbidity v grey turbidity v grey turbidity v grey turbidity v	ery slight of ery slight of ery slight of ery slight of ery slight of ery slight of ery slight of	dour dour dour dour dour dour dour dour	
13:41 13:44 13:47 13:50 13:53 13:56	Cumulative Volume Removed (I) 0.1 0.8 1.5 2.2 2.9 3.6	= vol required for Water Level (m below MP) 4.89 4.91 4.93 4.94 4.94	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 1586 1799 1797 1860 1879	+/- 0.05 pH pH 5.74 5.71 5.69 5.84 5.79 5.77	+/- 10% Temp. (°C) 14.89 14.45 14.38 14.30 14.50	+/- 10mV Redox ORP (mV) 28.4 15.1 12.9 11.2 9.1 7.3	0.99 0.86 0.44 0.40 0.38	grey turbidity v grey turbidity v grey turbidity v grey turbidity v grey turbidity v	ery slight of ery slight of ery slight of ery slight of ery slight of ery slight of ery slight of	dour dour dour dour dour dour dour dour	
13:41 13:44 13:47 13:50 13:53 13:56	Cumulative Volume Removed (I) 0.1 0.8 1.5 2.2 2.9 3.6	= vol required for Water Level (m below MP) 4.89 4.91 4.93 4.94 4.94	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 1586 1799 1797 1860 1879	+/- 0.05 pH pH 5.74 5.71 5.69 5.84 5.79 5.77	+/- 10% Temp. (°C) 14.89 14.45 14.38 14.30 14.50	+/- 10mV Redox ORP (mV) 28.4 15.1 12.9 11.2 9.1 7.3	0.99 0.86 0.44 0.40 0.38	grey turbidity v grey turbidity v grey turbidity v grey turbidity v grey turbidity v	ery slight of ery slight of ery slight of ery slight of ery slight of ery slight of ery slight of	dour dour dour dour dour dour dour dour	
13:41 13:44 13:47 13:50 13:53 13:56	Cumulative Volume Removed (I) 0.1 0.8 1.5 2.2 2.9 3.6	= vol required for Water Level (m below MP) 4.89 4.91 4.93 4.94 4.94	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 1586 1799 1797 1860 1879	+/- 0.05 pH pH 5.74 5.71 5.69 5.84 5.79 5.77	+/- 10% Temp. (°C) 14.89 14.45 14.38 14.30 14.50	+/- 10mV Redox ORP (mV) 28.4 15.1 12.9 11.2 9.1 7.3	0.99 0.86 0.44 0.40 0.38	grey turbidity v grey turbidity v grey turbidity v grey turbidity v grey turbidity v	ery slight of ery slight of ery slight of ery slight of ery slight of ery slight of ery slight of	dour dour dour dour dour dour dour dour	
13:41 13:44 13:47 13:50 13:53 13:56	Cumulative Volume Removed (I) 0.1 0.8 1.5 2.2 2.9 3.6	= vol required for Water Level (m below MP) 4.89 4.91 4.93 4.94 4.94	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 1586 1799 1797 1860 1879	+/- 0.05 pH pH 5.74 5.71 5.69 5.84 5.79 5.77	+/- 10% Temp. (°C) 14.89 14.45 14.38 14.30 14.50	+/- 10mV Redox ORP (mV) 28.4 15.1 12.9 11.2 9.1 7.3	0.99 0.86 0.44 0.40 0.38	grey turbidity v grey turbidity v grey turbidity v grey turbidity v grey turbidity v	ery slight of ery slight of ery slight of ery slight of ery slight of ery slight of ery slight of	dour dour dour dour dour dour dour dour	
13:41 13:44 13:47 13:50 13:53 13:56	Cumulative Volume Removed (I) 0.1 0.8 1.5 2.2 2.9 3.6	= vol required for Water Level (m below MP) 4.89 4.91 4.93 4.94 4.94	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 1586 1799 1797 1860 1879	+/- 0.05 pH pH 5.74 5.71 5.69 5.84 5.79 5.77	+/- 10% Temp. (°C) 14.89 14.45 14.38 14.30 14.50	+/- 10mV Redox ORP (mV) 28.4 15.1 12.9 11.2 9.1 7.3	0.99 0.86 0.44 0.40 0.38	grey turbidity v grey turbidity v grey turbidity v grey turbidity v grey turbidity v	ery slight of ery slight of ery slight of ery slight of ery slight of ery slight of ery slight of	dour dour dour dour dour dour dour dour	
13:41 13:44 13:47 13:50 13:53 13:56	Cumulative Volume Removed (I) 0.1 0.8 1.5 2.2 2.9 3.6	= vol required for Water Level (m below MP) 4.89 4.91 4.93 4.94 4.94	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 1586 1799 1797 1860 1879	+/- 0.05 pH pH 5.74 5.71 5.69 5.84 5.79 5.77	+/- 10% Temp. (°C) 14.89 14.45 14.38 14.30 14.50	+/- 10mV Redox ORP (mV) 28.4 15.1 12.9 11.2 9.1 7.3	0.99 0.86 0.44 0.40 0.38	grey turbidity v grey turbidity v grey turbidity v grey turbidity v grey turbidity v	ery slight of ery slight of ery slight of ery slight of ery slight of ery slight of ery slight of	dour dour dour dour dour dour dour dour	
13:41 13:44 13:47 13:50 13:53 13:56	Cumulative Volume Removed (I) 0.1 0.8 1.5 2.2 2.9 3.6	= vol required for Water Level (m below MP) 4.89 4.91 4.93 4.94 4.94	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 1586 1799 1797 1860 1879	+/- 0.05 pH pH 5.74 5.71 5.69 5.84 5.79 5.77	+/- 10% Temp. (°C) 14.89 14.45 14.38 14.30 14.50	+/- 10mV Redox ORP (mV) 28.4 15.1 12.9 11.2 9.1 7.3	0.99 0.86 0.44 0.40 0.38	grey turbidity v grey turbidity v grey turbidity v grey turbidity v grey turbidity v	ery slight of ery slight of ery slight of ery slight of ery slight of ery slight of ery slight of	dour dour dour dour dour dour dour dour	
13:41 13:44 13:47 13:50 13:53 13:56	Cumulative Volume Removed (I) 0.1 0.8 1.5 2.2 2.9 3.6	= vol required for Water Level (m below MP) 4.89 4.91 4.93 4.94 4.94	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 1586 1799 1797 1860 1879	+/- 0.05 pH pH 5.74 5.71 5.69 5.84 5.79 5.77	+/- 10% Temp. (°C) 14.89 14.45 14.38 14.30 14.50	+/- 10mV Redox ORP (mV) 28.4 15.1 12.9 11.2 9.1 7.3	0.99 0.86 0.44 0.40 0.38	grey turbidity v grey turbidity v grey turbidity v grey turbidity v grey turbidity v	ery slight of ery slight of ery slight of ery slight of ery slight of ery slight of ery slight of	dour dour dour dour dour dour dour dour	
13:41 13:44 13:47 13:50 13:53 13:56	Cumulative Volume Removed (I) 0.1 0.8 1.5 2.2 2.9 3.6	= vol required for Water Level (m below MP) 4.89 4.91 4.93 4.94 4.94	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 1586 1799 1797 1860 1879	+/- 0.05 pH pH 5.74 5.71 5.69 5.84 5.79 5.77	+/- 10% Temp. (°C) 14.89 14.45 14.38 14.30 14.50	+/- 10mV Redox ORP (mV) 28.4 15.1 12.9 11.2 9.1 7.3	0.99 0.86 0.44 0.40 0.38	grey turbidity v grey turbidity v grey turbidity v grey turbidity v grey turbidity v	ery slight of ery slight of ery slight of ery slight of ery slight of ery slight of ery slight of	dour dour dour dour dour dour dour dour	
13:41 13:44 13:47 13:50 13:53 13:56	Cumulative Volume Removed (I) 0.1 0.8 1.5 2.2 2.9 3.6	= vol required for Water Level (m below MP) 4.89 4.91 4.93 4.94 4.94	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 1586 1799 1797 1860 1879	+/- 0.05 pH pH 5.74 5.71 5.69 5.84 5.79 5.77	+/- 10% Temp. (°C) 14.89 14.45 14.38 14.30 14.50	+/- 10mV Redox ORP (mV) 28.4 15.1 12.9 11.2 9.1 7.3	0.99 0.86 0.44 0.40 0.38	grey turbidity v grey turbidity v grey turbidity v grey turbidity v grey turbidity v	ery slight of ery slight of ery slight of ery slight of ery slight of ery slight of ery slight of	dour dour dour dour dour dour dour dour	
13:41 13:44 13:47 13:50 13:53 13:56	Cumulative Volume Removed (I) 0.1 0.8 1.5 2.2 2.9 3.6	= vol required for Water Level (m below MP) 4.89 4.91 4.93 4.94 4.94	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 1586 1799 1797 1860 1879	+/- 0.05 pH pH 5.74 5.71 5.69 5.84 5.79 5.77	+/- 10% Temp. (°C) 14.89 14.45 14.38 14.30 14.50	+/- 10mV Redox ORP (mV) 28.4 15.1 12.9 11.2 9.1 7.3	0.99 0.86 0.44 0.40 0.38	grey turbidity v grey turbidity v grey turbidity v grey turbidity v grey turbidity v	ery slight of ery slight of ery slight of ery slight of ery slight of ery slight of ery slight of	dour dour dour dour dour dour dour dour	
13:41 13:44 13:47 13:50 13:53 13:56	Cumulative Volume Removed (I) 0.1 0.8 1.5 2.2 2.9 3.6	= vol required for Water Level (m below MP) 4.89 4.91 4.93 4.94 4.94	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 1586 1799 1797 1860 1879	+/- 0.05 pH pH 5.74 5.71 5.69 5.84 5.79 5.77	+/- 10% Temp. (°C) 14.89 14.45 14.38 14.30 14.50	+/- 10mV Redox ORP (mV) 28.4 15.1 12.9 11.2 9.1 7.3	0.99 0.86 0.44 0.40 0.38	grey turbidity v grey turbidity v grey turbidity v grey turbidity v grey turbidity v	ery slight of ery slight of ery slight of ery slight of ery slight of ery slight of ery slight of	dour dour dour dour dour dour dour dour	
13:41 13:44 13:47 13:50 13:53 13:56	Cumulative Volume Removed (I) 0.1 0.8 1.5 2.2 2.9 3.6	= vol required for Water Level (m below MP) 4.89 4.91 4.93 4.94 4.94	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 1586 1799 1797 1860 1879	+/- 0.05 pH pH 5.74 5.71 5.69 5.84 5.79 5.77	+/- 10% Temp. (°C) 14.89 14.45 14.38 14.30 14.50	+/- 10mV Redox ORP (mV) 28.4 15.1 12.9 11.2 9.1 7.3	0.99 0.86 0.44 0.40 0.38	grey turbidity v grey turbidity v grey turbidity v grey turbidity v grey turbidity v	ery slight of ery slight of ery slight of ery slight of ery slight of ery slight of ery slight of	dour dour dour dour dour dour dour dour	
13:41 13:44 13:47 13:50 13:53 13:56	Cumulative Volume Removed (I) 0.1 0.8 1.5 2.2 2.9 3.6	= vol required for Water Level (m below MP) 4.89 4.91 4.93 4.94 4.94	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 1586 1799 1797 1860 1879	+/- 0.05 pH pH 5.74 5.71 5.69 5.84 5.79 5.77	+/- 10% Temp. (°C) 14.89 14.45 14.38 14.30 14.50	+/- 10mV Redox ORP (mV) 28.4 15.1 12.9 11.2 9.1 7.3	0.99 0.86 0.44 0.40 0.38	grey turbidity v grey turbidity v grey turbidity v grey turbidity v grey turbidity v	ery slight of ery slight of ery slight of ery slight of ery slight of ery slight of ery slight of	dour dour dour dour dour dour dour dour	
13:41 13:44 13:47 13:50 13:53 13:56	Cumulative Volume Removed (I) 0.1 0.8 1.5 2.2 2.9 3.6	= vol required for Water Level (m below MP) 4.89 4.91 4.93 4.94 4.94	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 1586 1799 1797 1860 1879	+/- 0.05 pH pH 5.74 5.71 5.69 5.84 5.79 5.77	+/- 10% Temp. (°C) 14.89 14.45 14.38 14.30 14.50	+/- 10mV Redox ORP (mV) 28.4 15.1 12.9 11.2 9.1 7.3	0.99 0.86 0.44 0.40 0.38	grey turbidity v grey turbidity v grey turbidity v grey turbidity v grey turbidity v	ery slight of ery slight of ery slight of ery slight of ery slight of ery slight of ery slight of	dour dour dour dour dour dour dour dour	

Notes: All bore measuremen	its are reference	ced to the marke								W	entia	
			TS Grou	ndwater	sampli	ng field	l sheet -	Env I	Monitorin	g	ciilla	•
Bore ID No	В	H6		Project Name	Не	epburn Land	Fill		Sam	pling Staff	AC	
Project Area:				Client					WQ. Me	eter Model	YSI Pro-	+
Date		2/2023	-	Project No						ter Serial #	09L1002	
	cted Bore D		<u>l</u>	110,0001140					WQ. We	ter seriai #	0721002	70
•												
Internal Dia	ımeter (mm)			Easting			Total E	epth (m)		Screen	Depth From (m)	
Drop Tube already in	bore? (Y/N)	N		Northing			Water	Level (m)		Scre	en Depth To (m)	
Drop Tube	e Length (m)	0.00		Zone			Set Pump in	let at (m)			Set Pump at (m)	
·						-		,		_	,	
	Information											_
	eld Measure			15.10		"	01		D ::		45.00	
Time of SWL		•	otal Depth (m)		•	accessible?		ar				
Static Water Level (m)			re Diam (mm)	50		n Length(m)	0.00		Depth of pum	<u> </u>		
	l Purging De				Sampling D						les Required	0
Purge Method				,	ling Method		\.	44./5	Bottle Type	Quantity	Bottle Type	Quantity
Time Pump in		Pump in' WL					WL m (start)					
•		WL m (start)					WL m (end)	11.65				
Time Stopped		WL m (end)	11.65	·	sample ID?		-					
Volume Removed (I)		=			sample ID?		=					
Discharge Rate (I/m)				Rinsate	sample ID?							
	ump Remov			11 / 5			15.50					
Time of removal	9:35		n(post-removal)	11.65	Bore Dep	oth at end (m)	15.50					
	ump Setting			Al- (C	Danas (LDa)	40						
Fill / Discharge used		СРМ		All/Gas	Pressure (kPa)	40						
Comments												
		Field Parameters	are considered sta	ble when within th	ne EPA limits for 3	consecutive me	easurements		1			_
	23	Field Parameters		+/- 3%	+/- 0.05 pH	+/- 10%	+/- 10mV	+/- 10%				
Time	23 Cumulative Volume			+/- 3% Specific Conductance EC (uS/cm)		+/- 10% Temp.	+/- 10mV Redox	DO		Commen		
	23 Cumulative Volume Removed (I)	= vol required for Water Level (m below MP)	3V method (L) Stability of Field Params	+/- 3% Specific Conductance EC (uS/cm) @25°C	+/- 0.05 pH pH	+/- 10% Temp. (°C)	+/- 10mV Redox ORP (mV)	DO (mg/L)		turbidity, oc		
8:54	23 Cumulative Volume Removed (I)	= vol required for Water Level (m below MP)	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) @25°C 613	+/- 0.05 pH pH 5.19	+/- 10% Temp. (°C) 14.68	+/- 10mV Redox ORP (mV)	DO (mg/L) 3.13	slight white gre	turbidity, oc		
8:54 8:57	23 Cumulative Volume Removed (I) 0.1 0.7	= vol required for Water Level (m below MP) 11.65 11.65	3V method (L) Stability of Field Params Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) @25°C 613 625	+/- 0.05 pH pH 5.19 5.12	+/- 10% Temp. (°C) 14.68 14.85	+/- 10mV Redox ORP (mV) 177.5	DO (mg/L) 3.13 1.07	slight white gre	turbidity, ocey turbidity ey turbidity		
8:54 8:57 9:00	23 Cumulative Volume Removed (I) 0.1 0.7	= vol required for Water Level (m below MP) 11.65 11.65	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) @25°C 613	+/- 0.05 pH pH 5.19 5.12 5.11	+/- 10% Temp. (°C) 14.68 14.85	+/- 10mV Redox ORP (mV) 177.5 192.4 202.9	DO (mg/L) 3.13	slight white gre	turbidity, ocean turbidity, ocean turbidity, ocean turbidity by turbidity by turbidity		
8:54 8:57	23 Cumulative Volume Removed (I) 0.1 0.7	= vol required for Water Level (m below MP) 11.65 11.65	3V method (L) Stability of Field Params Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) @25°C 613 625	+/- 0.05 pH pH 5.19 5.12	+/- 10% Temp. (°C) 14.68 14.85	+/- 10mV Redox ORP (mV) 177.5	DO (mg/L) 3.13 1.07	slight white gre	turbidity, ocean turbidity, ocean turbidity, ocean turbidity by turbidity by turbidity		
8:54 8:57 9:00	23 Cumulative Volume Removed (I) 0.1 0.7	= vol required for Water Level (m below MP) 11.65 11.65	3V method (L) Stability of Field Params Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) @25°C 613 625	+/- 0.05 pH pH 5.19 5.12 5.11	+/- 10% Temp. (°C) 14.68 14.85	+/- 10mV Redox ORP (mV) 177.5 192.4 202.9	DO (mg/L) 3.13 1.07 0.51	slight white gre	turbidity, oc ey turbidity ey turbidity ey turbidity ey turbidity		
8:54 8:57 9:00 9:03	23 Cumulative Volume Removed (I) 0.1 0.7 1.3	= vol required for Water Level (m below MP) 11.65 11.65 11.65	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (u5/cm) #25°C 613 625 630	+/- 0.05 pH pH 5.19 5.12 5.11 5.11	+/- 10% Temp. (°C) 14.68 14.85 14.89	+/- 10mV Redox ORP (mV) 177.5 192.4 202.9 205.7	DO (mg/L) 3.13 1.07 0.51 0.38	slight white gre slight white gre slight white gre	turbidity, oc ey turbidity ey turbidity ey turbidity ey turbidity ey turbidity		
8:54 8:57 9:00 9:03	23 Cumulative Volume Removed (I) 0.1 0.7 1.3 1.9 2.5	= vol required for Water Level (m below MP) 11.65 11.65 11.65 11.65	Stability of Field Params Keep purging Keep purging Keep purging Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (u5/cm) @25°C 613 625 630 635	+/- 0.05 pH pH 5.19 5.12 5.11 5.11	+/- 10% Temp. (°C) 14.68 14.85 14.89 14.83	+/- 10mV Redox ORP (mV) 177.5 192.4 202.9 205.7 212.1	DO (mg/L) 3.13 1.07 0.51 0.38 0.30	slight white gre slight white gre slight white gre slight white gre	turbidity, oc ey turbidity ey turbidity ey turbidity ey turbidity ey turbidity ey turbidity		
8:54 8:57 9:00 9:03 9:06 9:09	23 Cumulative Volume Removed (I) 0.1 0.7 1.3 1.9 2.5 3.1	= vol required for Water Level (m below MP) 11.65 11.65 11.65 11.65 11.65	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 613 625 630 635 634 631	+/- 0.05 pH pH 5.19 5.12 5.11 5.11 5.10 5.06	+/- 10% Temp. (°C) 14.68 14.85 14.89 14.83 14.82	+/- 10mV Redox ORP (mV) 177.5 192.4 202.9 205.7 212.1 218.0	DO (mg/L) 3.13 1.07 0.51 0.38 0.30 0.29	slight white gre slight white gre slight white gre slight white gre slight white gre	turbidity, oc ey turbidity ey turbidity ey turbidity ey turbidity ey turbidity ey turbidity		
8:54 8:57 9:00 9:03 9:06 9:09	23 Cumulative Volume Removed (I) 0.1 0.7 1.3 1.9 2.5 3.1	= vol required for Water Level (m below MP) 11.65 11.65 11.65 11.65 11.65	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 613 625 630 635 634 631	+/- 0.05 pH pH 5.19 5.12 5.11 5.11 5.10 5.06	+/- 10% Temp. (°C) 14.68 14.85 14.89 14.83 14.82	+/- 10mV Redox ORP (mV) 177.5 192.4 202.9 205.7 212.1 218.0	DO (mg/L) 3.13 1.07 0.51 0.38 0.30 0.29	slight white gre slight white gre slight white gre slight white gre slight white gre	turbidity, oc ey turbidity ey turbidity ey turbidity ey turbidity ey turbidity ey turbidity		
8:54 8:57 9:00 9:03 9:06 9:09	23 Cumulative Volume Removed (I) 0.1 0.7 1.3 1.9 2.5 3.1	= vol required for Water Level (m below MP) 11.65 11.65 11.65 11.65 11.65	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 613 625 630 635 634 631	+/- 0.05 pH pH 5.19 5.12 5.11 5.11 5.10 5.06	+/- 10% Temp. (°C) 14.68 14.85 14.89 14.83 14.82	+/- 10mV Redox ORP (mV) 177.5 192.4 202.9 205.7 212.1 218.0	DO (mg/L) 3.13 1.07 0.51 0.38 0.30 0.29	slight white gre slight white gre slight white gre slight white gre slight white gre	turbidity, oc ey turbidity ey turbidity ey turbidity ey turbidity ey turbidity ey turbidity		
8:54 8:57 9:00 9:03 9:06 9:09	23 Cumulative Volume Removed (I) 0.1 0.7 1.3 1.9 2.5 3.1	= vol required for Water Level (m below MP) 11.65 11.65 11.65 11.65 11.65	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 613 625 630 635 634 631	+/- 0.05 pH pH 5.19 5.12 5.11 5.11 5.10 5.06	+/- 10% Temp. (°C) 14.68 14.85 14.89 14.83 14.82	+/- 10mV Redox ORP (mV) 177.5 192.4 202.9 205.7 212.1 218.0	DO (mg/L) 3.13 1.07 0.51 0.38 0.30 0.29	slight white gre slight white gre slight white gre slight white gre slight white gre	turbidity, oc ey turbidity ey turbidity ey turbidity ey turbidity ey turbidity ey turbidity		
8:54 8:57 9:00 9:03 9:06 9:09	23 Cumulative Volume Removed (I) 0.1 0.7 1.3 1.9 2.5 3.1	= vol required for Water Level (m below MP) 11.65 11.65 11.65 11.65 11.65	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 613 625 630 635 634 631	+/- 0.05 pH pH 5.19 5.12 5.11 5.11 5.10 5.06	+/- 10% Temp. (°C) 14.68 14.85 14.89 14.83 14.82	+/- 10mV Redox ORP (mV) 177.5 192.4 202.9 205.7 212.1 218.0	DO (mg/L) 3.13 1.07 0.51 0.38 0.30 0.29	slight white gre slight white gre slight white gre slight white gre slight white gre	turbidity, oc ey turbidity ey turbidity ey turbidity ey turbidity ey turbidity ey turbidity		
8:54 8:57 9:00 9:03 9:06 9:09	23 Cumulative Volume Removed (I) 0.1 0.7 1.3 1.9 2.5 3.1	= vol required for Water Level (m below MP) 11.65 11.65 11.65 11.65 11.65	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 613 625 630 635 634 631	+/- 0.05 pH pH 5.19 5.12 5.11 5.11 5.10 5.06	+/- 10% Temp. (°C) 14.68 14.85 14.89 14.83 14.82	+/- 10mV Redox ORP (mV) 177.5 192.4 202.9 205.7 212.1 218.0	DO (mg/L) 3.13 1.07 0.51 0.38 0.30 0.29	slight white gre slight white gre slight white gre slight white gre slight white gre	turbidity, oc ey turbidity ey turbidity ey turbidity ey turbidity ey turbidity ey turbidity		
8:54 8:57 9:00 9:03 9:06 9:09	23 Cumulative Volume Removed (I) 0.1 0.7 1.3 1.9 2.5 3.1	= vol required for Water Level (m below MP) 11.65 11.65 11.65 11.65 11.65	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 613 625 630 635 634 631	+/- 0.05 pH pH 5.19 5.12 5.11 5.11 5.10 5.06	+/- 10% Temp. (°C) 14.68 14.85 14.89 14.83 14.82	+/- 10mV Redox ORP (mV) 177.5 192.4 202.9 205.7 212.1 218.0	DO (mg/L) 3.13 1.07 0.51 0.38 0.30 0.29	slight white gre slight white gre slight white gre slight white gre slight white gre	turbidity, oc ey turbidity ey turbidity ey turbidity ey turbidity ey turbidity ey turbidity		
8:54 8:57 9:00 9:03 9:06 9:09	23 Cumulative Volume Removed (I) 0.1 0.7 1.3 1.9 2.5 3.1	= vol required for Water Level (m below MP) 11.65 11.65 11.65 11.65 11.65	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 613 625 630 635 634 631	+/- 0.05 pH pH 5.19 5.12 5.11 5.11 5.10 5.06	+/- 10% Temp. (°C) 14.68 14.85 14.89 14.83 14.82	+/- 10mV Redox ORP (mV) 177.5 192.4 202.9 205.7 212.1 218.0	DO (mg/L) 3.13 1.07 0.51 0.38 0.30 0.29	slight white gre slight white gre slight white gre slight white gre slight white gre	turbidity, oc ey turbidity ey turbidity ey turbidity ey turbidity ey turbidity ey turbidity		
8:54 8:57 9:00 9:03 9:06 9:09	23 Cumulative Volume Removed (I) 0.1 0.7 1.3 1.9 2.5 3.1	= vol required for Water Level (m below MP) 11.65 11.65 11.65 11.65 11.65	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 613 625 630 635 634 631	+/- 0.05 pH pH 5.19 5.12 5.11 5.11 5.10 5.06	+/- 10% Temp. (°C) 14.68 14.85 14.89 14.83 14.82	+/- 10mV Redox ORP (mV) 177.5 192.4 202.9 205.7 212.1 218.0	DO (mg/L) 3.13 1.07 0.51 0.38 0.30 0.29	slight white gre slight white gre slight white gre slight white gre slight white gre	turbidity, oc ey turbidity ey turbidity ey turbidity ey turbidity ey turbidity ey turbidity		
8:54 8:57 9:00 9:03 9:06 9:09	23 Cumulative Volume Removed (I) 0.1 0.7 1.3 1.9 2.5 3.1	= vol required for Water Level (m below MP) 11.65 11.65 11.65 11.65 11.65	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 613 625 630 635 634 631	+/- 0.05 pH pH 5.19 5.12 5.11 5.11 5.10 5.06	+/- 10% Temp. (°C) 14.68 14.85 14.89 14.83 14.82	+/- 10mV Redox ORP (mV) 177.5 192.4 202.9 205.7 212.1 218.0	DO (mg/L) 3.13 1.07 0.51 0.38 0.30 0.29	slight white gre slight white gre slight white gre slight white gre slight white gre	turbidity, oc ey turbidity ey turbidity ey turbidity ey turbidity ey turbidity ey turbidity		
8:54 8:57 9:00 9:03 9:06 9:09	23 Cumulative Volume Removed (I) 0.1 0.7 1.3 1.9 2.5 3.1	= vol required for Water Level (m below MP) 11.65 11.65 11.65 11.65 11.65	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 613 625 630 635 634 631	+/- 0.05 pH pH 5.19 5.12 5.11 5.11 5.10 5.06	+/- 10% Temp. (°C) 14.68 14.85 14.89 14.83 14.82	+/- 10mV Redox ORP (mV) 177.5 192.4 202.9 205.7 212.1 218.0	DO (mg/L) 3.13 1.07 0.51 0.38 0.30 0.29	slight white gre slight white gre slight white gre slight white gre slight white gre	turbidity, oc ey turbidity ey turbidity ey turbidity ey turbidity ey turbidity ey turbidity		
8:54 8:57 9:00 9:03 9:06 9:09	23 Cumulative Volume Removed (I) 0.1 0.7 1.3 1.9 2.5 3.1	= vol required for Water Level (m below MP) 11.65 11.65 11.65 11.65 11.65	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 613 625 630 635 634 631	+/- 0.05 pH pH 5.19 5.12 5.11 5.11 5.10 5.06	+/- 10% Temp. (°C) 14.68 14.85 14.89 14.83 14.82	+/- 10mV Redox ORP (mV) 177.5 192.4 202.9 205.7 212.1 218.0	DO (mg/L) 3.13 1.07 0.51 0.38 0.30 0.29	slight white gre slight white gre slight white gre slight white gre slight white gre	turbidity, oc ey turbidity ey turbidity ey turbidity ey turbidity ey turbidity ey turbidity		
8:54 8:57 9:00 9:03 9:06 9:09	23 Cumulative Volume Removed (I) 0.1 0.7 1.3 1.9 2.5 3.1	= vol required for Water Level (m below MP) 11.65 11.65 11.65 11.65 11.65	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 613 625 630 635 634 631	+/- 0.05 pH pH 5.19 5.12 5.11 5.11 5.10 5.06	+/- 10% Temp. (°C) 14.68 14.85 14.89 14.83 14.82	+/- 10mV Redox ORP (mV) 177.5 192.4 202.9 205.7 212.1 218.0	DO (mg/L) 3.13 1.07 0.51 0.38 0.30 0.29	slight white gre slight white gre slight white gre slight white gre slight white gre	turbidity, oc ey turbidity ey turbidity ey turbidity ey turbidity ey turbidity ey turbidity		
8:54 8:57 9:00 9:03 9:06 9:09	23 Cumulative Volume Removed (I) 0.1 0.7 1.3 1.9 2.5 3.1	= vol required for Water Level (m below MP) 11.65 11.65 11.65 11.65 11.65	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 613 625 630 635 634 631	+/- 0.05 pH pH 5.19 5.12 5.11 5.11 5.10 5.06	+/- 10% Temp. (°C) 14.68 14.85 14.89 14.83 14.82	+/- 10mV Redox ORP (mV) 177.5 192.4 202.9 205.7 212.1 218.0	DO (mg/L) 3.13 1.07 0.51 0.38 0.30 0.29	slight white gre slight white gre slight white gre slight white gre slight white gre	turbidity, oc ey turbidity ey turbidity ey turbidity ey turbidity ey turbidity ey turbidity		
8:54 8:57 9:00 9:03 9:06 9:09	23 Cumulative Volume Removed (I) 0.1 0.7 1.3 1.9 2.5 3.1	= vol required for Water Level (m below MP) 11.65 11.65 11.65 11.65 11.65	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 613 625 630 635 634 631	+/- 0.05 pH pH 5.19 5.12 5.11 5.11 5.10 5.06	+/- 10% Temp. (°C) 14.68 14.85 14.89 14.83 14.82	+/- 10mV Redox ORP (mV) 177.5 192.4 202.9 205.7 212.1 218.0	DO (mg/L) 3.13 1.07 0.51 0.38 0.30 0.29	slight white gre slight white gre slight white gre slight white gre slight white gre	turbidity, oc ey turbidity ey turbidity ey turbidity ey turbidity ey turbidity ey turbidity		
8:54 8:57 9:00 9:03 9:06 9:09	23 Cumulative Volume Removed (I) 0.1 0.7 1.3 1.9 2.5 3.1	= vol required for Water Level (m below MP) 11.65 11.65 11.65 11.65 11.65	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 613 625 630 635 634 631	+/- 0.05 pH pH 5.19 5.12 5.11 5.11 5.10 5.06	+/- 10% Temp. (°C) 14.68 14.85 14.89 14.83 14.82	+/- 10mV Redox ORP (mV) 177.5 192.4 202.9 205.7 212.1 218.0	DO (mg/L) 3.13 1.07 0.51 0.38 0.30 0.29	slight white gre slight white gre slight white gre slight white gre slight white gre	turbidity, oc ey turbidity ey turbidity ey turbidity ey turbidity ey turbidity ey turbidity		
8:54 8:57 9:00 9:03 9:06 9:09	23 Cumulative Volume Removed (I) 0.1 0.7 1.3 1.9 2.5 3.1	= vol required for Water Level (m below MP) 11.65 11.65 11.65 11.65 11.65	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 613 625 630 635 634 631	+/- 0.05 pH pH 5.19 5.12 5.11 5.11 5.10 5.06	+/- 10% Temp. (°C) 14.68 14.85 14.89 14.83 14.82	+/- 10mV Redox ORP (mV) 177.5 192.4 202.9 205.7 212.1 218.0	DO (mg/L) 3.13 1.07 0.51 0.38 0.30 0.29	slight white gre slight white gre slight white gre slight white gre slight white gre	turbidity, oc ey turbidity ey turbidity ey turbidity ey turbidity ey turbidity ey turbidity		


Notes: All bore measuremen	nts are referen	ced to the mark	ed measuremer	nt point. All Coor	rdinates in GDA	194.						
			TS Grou	ndwate	r sampli	na field	l sheet -	- Fnv l	Monitoring	, V	entia	
David ID No		.U.7			•	Ü					4.0	
		SH7	_	Project Name						-	AC AC	
Project Area:			Ī	Client	F	IEPBURN SHIF	RE		WQ. Met	er Model	YSI Pro	1+
Date	14/0	2/2023		Project No					WQ. Mete	er Serial #	09L1002	198
Expe	cted Bore D)etails										
Internal Dia	ameter (mm)			Easting			Total [Depth (m)		Screen	Depth From (m)
Drop Tube already in	i bore? (Y/N)	IN	_	Northing		-	water	Levei (m)		SCIE	en Depth 10 (m	
Drop Tube	e Length (m)	0.00		Zone			Set Pump in	ilet at (m)			Set Pump at (m	
Additional	l Information											
	ield Measur											
Time of SWL			otal Depth (m)	7.18	Mid-screen	accessible?	Clea	ar	Depth pump s	et at (m)	6.50	
Static Water Level (m)			re Diam (mm)	50	Open Scree				Depth of pump			
	l Purging De				Sampling D	_					tles Required	
Purge Method			MicroPurge	Samu	oling Method				Bottle Type		Bottle Type	Quantit
Time Pump in				•	_		WL m (start)	2.69	1Ltr green	1		
		WL m (start)					WL m (end)		Oml filtered meta			
Time Stopped					e sample ID?			2.07	60ml COD	1		
Volume Removed (I)			2.07		e sample ID?				50ml glass	1		
Discharge Rate (I/m)		-			sample ID?		=		John Glass	,		
	ump Remov	- (a)		Kilisate	sample iD:		_					
Time of removal			n(post-removal)	2.69	Rore Der	oth at end (m)	7.18					
		_	п(розг-теппочаг)	2.07	Bole Del	otir at end (iii)	7.10					
	Pump Setting	JS CPM		Δir/Gas	Pressure (kPa)	30						
				7417 043	ricssaic (ki a)	30						
Fill / Discharge used				-								
Fill / Discharge used				-	,	All times EST						
Fill / Discharge used				-	,	All times EST						
Fill / Discharge used					,	All times EST						
Fill / Discharge used		-					easurements		1			
Fill / Discharge used	26	-	are considered sta	able when within to	he EPA limits for 3	consecutive me	+/- 10mV	+/- 10%				
Fill / Discharge used	26 Cumulative Volume	Field Parameters	are considered sta	uble when within to +/- 3% Specific Conductance	he EPA limits for 3	consecutive me +/- 10% Temp.	+/- 10mV Redox	DO			nts (colour,	
Fill / Discharge used Comments	26 Cumulative Volume Removed (I)	Field Parameters = vol required for Water Level (m below MP)	are considered sta 3V method (L) Stability of Field	+/- 3% Specific Conductance EC (uS/cm) #25°C	he EPA limits for 3 +/- 0.05 pH pH	consecutive m +/- 10% Temp.	+/- 10mV Redox ORP (mV)	DO (mg/L)		turbidity, o	dours, other)	
Fill / Discharge used Comments Time 13:30	26 Cupulative Removed (i)	Field Parameters = vol required for Water Level (m below MP) 2.69	are considered sta 3V method (L) Stability of Field	sible when within t +/- 3% Specific Conductance EC (uS/cm) #25°C 876	he EPA limits for 3 +/- 0.05 pH pH 6.47	+/- 10% Temp. (°C)	+/- 10mV Redox ORP (mV)	DO (mg/L) 0.67	Light Yellow Bro	turbidity, o	dours, other)	
Fill / Discharge used Comments	26 Cumulative Volume Removed (I)	Field Parameters = vol required for Water Level (m below MP)	are considered sta 3V method (L) Stability of Field	+/- 3% Specific Conductance EC (uS/cm) #25°C	he EPA limits for 3 +/- 0.05 pH pH	consecutive m +/- 10% Temp.	+/- 10mV Redox ORP (mV)	DO (mg/L)	Light Yellow Bro	turbidity, o	dours, other)	
Fill / Discharge used Comments Time 13:30	26 Cupulative Removed (I)	Field Parameters = vol required for Water Level (m below MP) 2.69	are considered sta 3V method (L) Stability of Field	sible when within t +/- 3% Specific Conductance EC (uS/cm) #25°C 876	he EPA limits for 3 +/- 0.05 pH pH 6.47	+/- 10% Temp. (°C)	+/- 10mV Redox ORP (mV)	DO (mg/L) 0.67		turbidity, o	dours, other) dity. No odour. dity. No odour.	
Fill / Discharge used Comments Time 13:30 13:33	26 Cumulative Volume Removed (I) 0.1 0.8	Field Parameters = vol required for Water Level (m below MP) 2.69 2.69	are considered sta 3V method (L) Stability of Field	bble when within t +/- 3% Specific Conductance EC (uS/cm) @25°C 876 949	he EPA limits for 3 +/- 0.05 pH pH 6.47	+/- 10% Temp. (°C) 16.55 15.68	+/- 10mV Redox ORP (mV) 18.6 16.1	DO (mg/L) 0.67 0.23	Light Yellow Bro	turbidity, o own turbic own turbic	dours, other) dity. No odour. dity. No odour. dity. No odour.	
Time 13:30 13:33 13:36	26 Cumulative Volume Removed (I) 0.1 0.8 1.5	Field Parameters = vol required for Water Level (m below MP) 2.69 2.69 2.69	are considered sta 3V method (L) Stability of Field	sble when within t +/- 3% Specific Conductance EC (uS/cm) #25°C 876 949 958	he EPA limits for 3 +/- 0.05 pH pH 6.47 6.40 6.43	+/- 10% Temp. (°C) 16.55 15.68	+/- 10mV Redox ORP (mV) 18.6 16.1	DO (mg/L) 0.67 0.23 0.20	Light Yellow Bro	turbidity, o own turbid own turbid own turbid	dours, other) dity. No odour. dity. No odour. dity. No odour. dity. No odour.	
Fill / Discharge used Comments Time 13:30 13:33 13:36 13:39	26 Cumulative Volume Removed (I) 0.1 0.8 1.5	Field Parameters = vol required for Water Level (m below MP) 2.69 2.69 2.69 2.69	are considered sta 3V method (L) Stability of Field	### hble when within to ### ### ### ### #### #### ##########	+/- 0.05 pH pH 6.47 6.40 6.43	+/- 10% Temp. (°C) 16.55 15.68 15.40	+/- 10mV Redox ORP (mV) 18.6 16.1 9.9	DO (mg/L) 0.67 0.23 0.20 0.19	Light Yellow Bro	turbidity, o own turbic own turbic own turbic	dours, other) dity. No odour.	
Time 13:30 13:33 13:36 13:39 13:42	26 Cumulative Volume Removed (I) 0.1 0.8 1.5 2.2 2.9	Field Parameters = vol required for Water Level (m below MP) 2.69 2.69 2.69 2.69	are considered sta 3V method (L) Stability of Field	### ### ##############################	he EPA limits for 3 +/- 0.05 pH pH 6.47 6.40 6.43 6.48	+/- 10% Temp. (°C) 16.55 15.68 15.40 15.37	+/- 10mV Redox ORP (mV) 18.6 16.1 9.9 6.1	DO (mg/L) 0.67 0.23 0.20 0.19 0.17	Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro	turbidity, o wn turbid	dours, other) dity. No odour.	
Time 13:30 13:33 13:36 13:39 13:42 13:45	26 Cumulative Volume Removed (f) 0.1 0.8 1.5 2.2 2.9 3.6	Field Parameters = vol required for Water Level (m below MP) 2.69 2.69 2.69 2.69 2.69 2.69	are considered sta 3V method (L) Stability of Field	### specific Conductance EC (uS/cm) ### 958 ### 960 ### 973 ### 973	6.47 6.40 6.43 6.52	+/- 10% Temp. (°C) 16.55 15.68 15.40 15.37 15.36	+/- 10mV Redox ORP (mV) 18.6 16.1 9.9 6.1 1.0	0.67 0.23 0.20 0.19 0.17	Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro	turbidity, o wn turbid	dours, other) dity. No odour.	
Time 13:30 13:33 13:36 13:39 13:42 13:45	26 Cumulative Volume Removed (f) 0.1 0.8 1.5 2.2 2.9 3.6	Field Parameters = vol required for Water Level (m below MP) 2.69 2.69 2.69 2.69 2.69 2.69	are considered sta 3V method (L) Stability of Field	### specific Conductance EC (uS/cm) ### 958 ### 960 ### 973 ### 973	6.47 6.40 6.43 6.52	+/- 10% Temp. (°C) 16.55 15.68 15.40 15.37 15.36	+/- 10mV Redox ORP (mV) 18.6 16.1 9.9 6.1 1.0	0.67 0.23 0.20 0.19 0.17	Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro	turbidity, o wn turbid	dours, other) dity. No odour.	
Time 13:30 13:33 13:36 13:39 13:42 13:45	26 Cumulative Volume Removed (f) 0.1 0.8 1.5 2.2 2.9 3.6	Field Parameters = vol required for Water Level (m below MP) 2.69 2.69 2.69 2.69 2.69 2.69	are considered sta 3V method (L) Stability of Field	### specific Conductance EC (uS/cm) ### 958 ### 960 ### 973 ### 973	6.47 6.40 6.43 6.52	+/- 10% Temp. (°C) 16.55 15.68 15.40 15.37 15.36	+/- 10mV Redox ORP (mV) 18.6 16.1 9.9 6.1 1.0	0.67 0.23 0.20 0.19 0.17	Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro	turbidity, o wn turbid	dours, other) dity. No odour.	
Time 13:30 13:33 13:36 13:39 13:42 13:45	26 Cumulative Volume Removed (f) 0.1 0.8 1.5 2.2 2.9 3.6	Field Parameters = vol required for Water Level (m below MP) 2.69 2.69 2.69 2.69 2.69 2.69	are considered sta 3V method (L) Stability of Field	### specific Conductance EC (uS/cm) ### 958 ### 960 ### 973 ### 973	6.47 6.40 6.43 6.52	+/- 10% Temp. (°C) 16.55 15.68 15.40 15.37 15.36	+/- 10mV Redox ORP (mV) 18.6 16.1 9.9 6.1 1.0	0.67 0.23 0.20 0.19 0.17	Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro	turbidity, o wn turbid	dours, other) dity. No odour.	
Time 13:30 13:33 13:36 13:39 13:42 13:45	26 Cumulative Volume Removed (f) 0.1 0.8 1.5 2.2 2.9 3.6	Field Parameters = vol required for Water Level (m below MP) 2.69 2.69 2.69 2.69 2.69 2.69	are considered sta 3V method (L) Stability of Field	### specific Conductance EC (uS/cm) ### 958 ### 960 ### 973 ### 973	6.47 6.40 6.43 6.52	+/- 10% Temp. (°C) 16.55 15.68 15.40 15.37 15.36	+/- 10mV Redox ORP (mV) 18.6 16.1 9.9 6.1 1.0	0.67 0.23 0.20 0.19 0.17	Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro	turbidity, o wn turbid	dours, other) dity. No odour.	
Time 13:30 13:33 13:36 13:39 13:42 13:45	26 Cumulative Volume Removed (f) 0.1 0.8 1.5 2.2 2.9 3.6	Field Parameters = vol required for Water Level (m below MP) 2.69 2.69 2.69 2.69 2.69 2.69	are considered sta 3V method (L) Stability of Field	### specific Conductance EC (uS/cm) ### 958 ### 960 ### 973 ### 973	6.47 6.40 6.43 6.52	+/- 10% Temp. (°C) 16.55 15.68 15.40 15.37 15.36	+/- 10mV Redox ORP (mV) 18.6 16.1 9.9 6.1 1.0	0.67 0.23 0.20 0.19 0.17	Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro	turbidity, o wn turbid	dours, other) dity. No odour.	
Time 13:30 13:33 13:36 13:39 13:42 13:45	26 Cumulative Volume Removed (f) 0.1 0.8 1.5 2.2 2.9 3.6	Field Parameters = vol required for Water Level (m below MP) 2.69 2.69 2.69 2.69 2.69 2.69	are considered sta 3V method (L) Stability of Field	### specific Conductance EC (uS/cm) ### 958 ### 960 ### 973 ### 973	6.47 6.40 6.43 6.52	+/- 10% Temp. (°C) 16.55 15.68 15.40 15.37 15.36	+/- 10mV Redox ORP (mV) 18.6 16.1 9.9 6.1 1.0	0.67 0.23 0.20 0.19 0.17	Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro	turbidity, o wn turbid	dours, other) dity. No odour.	
Time 13:30 13:33 13:36 13:39 13:42 13:45	26 Cumulative Volume Removed (f) 0.1 0.8 1.5 2.2 2.9 3.6	Field Parameters = vol required for Water Level (m below MP) 2.69 2.69 2.69 2.69 2.69 2.69	are considered sta 3V method (L) Stability of Field	### specific Conductance EC (uS/cm) ### 958 ### 960 ### 973 ### 973	6.47 6.40 6.43 6.52	+/- 10% Temp. (°C) 16.55 15.68 15.40 15.37 15.36	+/- 10mV Redox ORP (mV) 18.6 16.1 9.9 6.1 1.0	0.67 0.23 0.20 0.19 0.17	Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro	turbidity, o wn turbid	dours, other) dity. No odour.	
Time 13:30 13:33 13:36 13:39 13:42 13:45	26 Cumulative Volume Removed (f) 0.1 0.8 1.5 2.2 2.9 3.6	Field Parameters = vol required for Water Level (m below MP) 2.69 2.69 2.69 2.69 2.69 2.69	are considered sta 3V method (L) Stability of Field	### specific Conductance EC (uS/cm) ### 958 ### 960 ### 973 ### 973	6.47 6.40 6.43 6.52	+/- 10% Temp. (°C) 16.55 15.68 15.40 15.37 15.36	+/- 10mV Redox ORP (mV) 18.6 16.1 9.9 6.1 1.0	0.67 0.23 0.20 0.19 0.17	Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro	turbidity, o wn turbid	dours, other) dity. No odour.	
Time 13:30 13:33 13:36 13:39 13:42 13:45	26 Cumulative Volume Removed (f) 0.1 0.8 1.5 2.2 2.9 3.6	Field Parameters = vol required for Water Level (m below MP) 2.69 2.69 2.69 2.69 2.69 2.69	are considered sta 3V method (L) Stability of Field	### specific Conductance EC (uS/cm) ### 958 ### 960 ### 973 ### 973	6.47 6.40 6.43 6.52	+/- 10% Temp. (°C) 16.55 15.68 15.40 15.37 15.36	+/- 10mV Redox ORP (mV) 18.6 16.1 9.9 6.1 1.0	0.67 0.23 0.20 0.19 0.17	Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro	turbidity, o wn turbid	dours, other) dity. No odour.	
Time 13:30 13:33 13:36 13:39 13:42 13:45	26 Cumulative Volume Removed (f) 0.1 0.8 1.5 2.2 2.9 3.6	Field Parameters = vol required for Water Level (m below MP) 2.69 2.69 2.69 2.69 2.69 2.69	are considered sta 3V method (L) Stability of Field	### specific Conductance EC (uS/cm) ### 958 ### 960 ### 973 ### 973	6.47 6.40 6.43 6.52	+/- 10% Temp. (°C) 16.55 15.68 15.40 15.37 15.36	+/- 10mV Redox ORP (mV) 18.6 16.1 9.9 6.1 1.0	0.67 0.23 0.20 0.19 0.17	Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro	turbidity, o wn turbid	dours, other) dity. No odour.	
Time 13:30 13:33 13:36 13:39 13:42 13:45	26 Cumulative Volume Removed (f) 0.1 0.8 1.5 2.2 2.9 3.6	Field Parameters = vol required for Water Level (m below MP) 2.69 2.69 2.69 2.69 2.69 2.69	are considered sta 3V method (L) Stability of Field	### specific Conductance EC (uS/cm) ### 958 ### 960 ### 973 ### 973	6.47 6.40 6.43 6.52	+/- 10% Temp. (°C) 16.55 15.68 15.40 15.37 15.36	+/- 10mV Redox ORP (mV) 18.6 16.1 9.9 6.1 1.0	0.67 0.23 0.20 0.19 0.17	Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro	turbidity, o wn turbid	dours, other) dity. No odour.	
Time 13:30 13:33 13:36 13:39 13:42 13:45	26 Cumulative Volume Removed (f) 0.1 0.8 1.5 2.2 2.9 3.6	Field Parameters = vol required for Water Level (m below MP) 2.69 2.69 2.69 2.69 2.69 2.69	are considered sta 3V method (L) Stability of Field	### specific Conductance EC (uS/cm) ### 958 ### 960 ### 973 ### 973	6.47 6.40 6.43 6.52	+/- 10% Temp. (°C) 16.55 15.68 15.40 15.37 15.36	+/- 10mV Redox ORP (mV) 18.6 16.1 9.9 6.1 1.0	0.67 0.23 0.20 0.19 0.17	Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro	turbidity, o wn turbid	dours, other) dity. No odour.	
Time 13:30 13:33 13:36 13:39 13:42 13:45	26 Cumulative Volume Removed (f) 0.1 0.8 1.5 2.2 2.9 3.6	Field Parameters = vol required for Water Level (m below MP) 2.69 2.69 2.69 2.69 2.69 2.69	are considered sta 3V method (L) Stability of Field	### specific Conductance EC (uS/cm) ### 958 ### 960 ### 973 ### 973	6.47 6.40 6.43 6.52	+/- 10% Temp. (°C) 16.55 15.68 15.40 15.37 15.36	+/- 10mV Redox ORP (mV) 18.6 16.1 9.9 6.1 1.0	0.67 0.23 0.20 0.19 0.17	Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro	turbidity, o wn turbid	dours, other) dity. No odour.	
Time 13:30 13:33 13:36 13:39 13:42 13:45	26 Cumulative Volume Removed (f) 0.1 0.8 1.5 2.2 2.9 3.6	Field Parameters = vol required for Water Level (m below MP) 2.69 2.69 2.69 2.69 2.69 2.69	are considered sta 3V method (L) Stability of Field	### specific Conductance EC (uS/cm) ### 958 ### 960 ### 973 ### 973	6.47 6.40 6.43 6.52	+/- 10% Temp. (°C) 16.55 15.68 15.40 15.37 15.36	+/- 10mV Redox ORP (mV) 18.6 16.1 9.9 6.1 1.0	0.67 0.23 0.20 0.19 0.17	Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro	turbidity, o wn turbid	dours, other) dity. No odour.	
Time 13:30 13:33 13:36 13:39 13:42 13:45	26 Cumulative Volume Removed (f) 0.1 0.8 1.5 2.2 2.9 3.6	Field Parameters = vol required for Water Level (m below MP) 2.69 2.69 2.69 2.69 2.69 2.69	are considered sta 3V method (L) Stability of Field	### specific Conductance EC (uS/cm) ### 958 ### 960 ### 973 ### 973	6.47 6.40 6.43 6.52	+/- 10% Temp. (°C) 16.55 15.68 15.40 15.37 15.36	+/- 10mV Redox ORP (mV) 18.6 16.1 9.9 6.1 1.0	0.67 0.23 0.20 0.19 0.17	Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro	turbidity, o wn turbid	dours, other) dity. No odour.	
Time 13:30 13:33 13:36 13:39 13:42 13:45	26 Cumulative Volume Removed (f) 0.1 0.8 1.5 2.2 2.9 3.6	Field Parameters = vol required for Water Level (m below MP) 2.69 2.69 2.69 2.69 2.69 2.69	are considered sta 3V method (L) Stability of Field	### specific Conductance EC (uS/cm) ### 958 ### 960 ### 973 ### 973	6.47 6.40 6.43 6.52	+/- 10% Temp. (°C) 16.55 15.68 15.40 15.37 15.36	+/- 10mV Redox ORP (mV) 18.6 16.1 9.9 6.1 1.0	0.67 0.23 0.20 0.19 0.17	Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro	turbidity, o wn turbid	dours, other) dity. No odour.	
Time 13:30 13:33 13:36 13:39 13:42 13:45	26 Cumulative Volume Removed (f) 0.1 0.8 1.5 2.2 2.9 3.6	Field Parameters = vol required for Water Level (m below MP) 2.69 2.69 2.69 2.69 2.69 2.69	are considered sta 3V method (L) Stability of Field	### specific Conductance EC (uS/cm) ### 958 ### 960 ### 973 ### 973	6.47 6.40 6.43 6.52	+/- 10% Temp. (°C) 16.55 15.68 15.40 15.37 15.36	+/- 10mV Redox ORP (mV) 18.6 16.1 9.9 6.1 1.0	0.67 0.23 0.20 0.19 0.17	Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro	turbidity, o wn turbid	dours, other) dity. No odour.	

Notes: All bore measuremen	nts are referen	ced to the mark	ed measuremer	nt point. All Coo	dinates in GDA	.94.						
			TS Grou	ndwate	r sampli	ng field	l sheet -	- Env I	Monitoring	, V	entia	
Roro ID No	E	NH8		Project Name	•	O					AC	
		0110	-					:		-		
Project Area:				Client	F	IEPBURN SHIF	RE	:	WQ. Met	er Model	YSI Pro	1+
Date	14/0	2/2023		Project No					WQ. Mete	r Serial #	09L1002	198
Expe	cted Bore D	Details										
Internal Dia	ameter (mm)			Easting			Total [Depth (m)		Screen	Depth From (m)
Drop Tube already in	i bore? (Y/N)	N		Northing	-		Water	Level (m)		Scre	en Depth To (m)
Drop Tube	e Length (m)	0.00		Zone			Set Pump ir	ilet at (m)			Set Pump at (m)
Additiona	l Information											
	ield Measur											_
Time of SWL			otal Depth (m)	7.57	Mid-screen	accersible?	Clar	ar	Depth pump s	ot at (m)	7.00	
Static Water Level (m)			ore Diam (mm)	50	Open Scree			21	Depth of pump			
			ne Diam (mm)	30		-	0.00					
	I Purging De		NAI Division	6	Sampling D						tles Required	0
Purge Method			MicroPurge	•	oling Method		\A# (-++)	2.04	7.		Bottle Type	Quantity
Time Pump in		·			Time Started				1ltr	1		
Time Started		• ` ′			ime Stopped		-	3.03	ml METALS filtere			
Time Stopped	-	WL m (end)	3.05		sample ID?				60ml COD	1		
Volume Removed (I)		=			sample ID?		-		50ml GLASS	1		
Discharge Rate (I/m)	0.20	-		Rinsate	sample ID?		_					
	ump Remov											
Time of removal		_	n(post-removal)	3.05	Bore Dep	oth at end (m)	7.57					
	Pump Setting											
Fill / Discharge used	50/10	CPM		Air/Gas	Pressure (kPa)	30						
Comments												
		Field Parameters	are considered sta	able when within t	he EPA limits for 3	consecutive me	easurements		1			
	27	Field Parameters = vol required for		+/- 3%	he EPA limits for 3	consecutive me	easurements +/- 10mV	+/- 10%]			
Time	27 Cumulative Volume	= vol required for Water Level (m	3V method (L) Stability of Field	+/- 3% Specific Conductance				+/- 10% DO		Commer	nts (colour,	
Time	Cumulative	= vol required for	3V method (L)	+/- 3% Specific	+/- 0.05 pH	+/- 10%	+/- 10mV				nts (colour, dours, other)	
Time 10:45	Cumulative Volume	= vol required for Water Level (m	3V method (L) Stability of Field	+/- 3% Specific Conductance EC (uS/cm)	+/- 0.05 pH	+/- 10% Temp.	+/- 10mV Redox	DO	grey brown, thic	turbidity, o	dours, other)	
	Cumulative Volume Removed (I)	= vol required for Water Level (m below MP)	3V method (L) Stability of Field Params	+/- 3% Specific Conductance EC (uS/cm) @25°C	+/- 0.05 pH pH	+/- 10% Temp. (°C)	+/- 10mV Redox ORP (mV)	DO (mg/L)		turbidity, o	dours, other)	
10:45	Cumulative Volume Removed (I)	= vol required for Water Level (m below MP)	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) @25°C 956	+/- 0.05 pH pH	+/- 10% Temp. (°C)	+/- 10mV Redox ORP (mV)	DO (mg/L) 0.24	grey brown, thic	turbidity, on k turb, no k turb, no	dours, other) o odour. o odour.	
10:45 10:48	Cumulative Volume Removed (I) 0.1	= vol required for Water Level (m below MP) 3.04 3.04	3V method (L) Stability of Field Params Keep purging Keep purging	+/- 3% Specific Conductance EC (us/cm) @25°C 956 969	+/- 0.05 pH pH 6.55 6.60	+/- 10% Temp. (°C) 17.20 17.00	+/- 10mV Redox ORP (mV) -6.1 -23.3	DO (mg/L) 0.24 0.23	grey brown, thic	k turb, no	dours, other) o odour. o odour. o odour.	
10:45 10:48 10:51	Cumulative Volume Removed (I) 0.1 0.8 1.5	= vol required for Water Level (m below MP) 3.04 3.04 3.05	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) @25°C 956 969	+/- 0.05 pH pH 6.55 6.60 6.65	+/- 10% Temp. (°C) 17.20 17.00 16.88	+/- 10mV Redox ORP (mV) -6.1 -23.3 -29.3	DO (mg/L) 0.24 0.23 0.20	grey brown, thic grey brown, thic grey brown, thic	turbidity, or k turb, no k turb, no k turb, no k turb, no	o odour. o odour. o odour. o odour.	
10:45 10:48 10:51 10:54 10:57	Cumulative Volume Removed (I) 0.1 0.8 1.5 2.2 2.9	= vol required for Water Level (m below MP) 3.04 3.04 3.05 3.06	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) @25°C 956 969 970 954	+/- 0.05 pH pH 6.55 6.60 6.65 6.64 6.67	+/- 10% Temp. (°C) 17.20 17.00 16.88 16.74	+/- 10mV Redox ORP (mV) -6.1 -23.3 -29.3 -34.8 -40.9	DO (mg/L) 0.24 0.23 0.20 0.17 0.14	grey brown, thic grey brown, thic grey brown, thic grey brown, thic	k turb, no k turb, no k turb, no k turb, no k turb, no k turb, no	o odour. o odour. o odour. o odour. o odour.	
10:45 10:48 10:51 10:54 10:57 11:00	Cumulative Volume Removed (I) 0.1 0.8 1.5 2.2 2.9 3.6	= vol required for Water Level (m below MP) 3.04 3.04 3.05 3.06 3.06	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 956 969 970 954 947	+/- 0.05 pH pH 6.55 6.60 6.65 6.64 6.67 6.67	+/- 10% Temp. (°C) 17.20 17.00 16.88 16.74 16.84	+/- 10mV Redox ORP (mV) -6.1 -23.3 -29.3 -34.8 -40.9 -43.9	0.24 0.23 0.20 0.17 0.14	grey brown, thic grey brown, thic grey brown, thic grey brown, thic grey brown, thic grey brown, thic	k turb, no k turb, no	o odour.	
10:45 10:48 10:51 10:54 10:57	Cumulative Volume Removed (I) 0.1 0.8 1.5 2.2 2.9	= vol required for Water Level (m below MP) 3.04 3.04 3.05 3.06	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) @25°C 956 969 970 954	+/- 0.05 pH pH 6.55 6.60 6.65 6.64 6.67	+/- 10% Temp. (°C) 17.20 17.00 16.88 16.74	+/- 10mV Redox ORP (mV) -6.1 -23.3 -29.3 -34.8 -40.9	DO (mg/L) 0.24 0.23 0.20 0.17 0.14	grey brown, thic grey brown, thic grey brown, thic grey brown, thic	k turb, no k turb, no	o odour.	
10:45 10:48 10:51 10:54 10:57 11:00	Cumulative Volume Removed (I) 0.1 0.8 1.5 2.2 2.9 3.6	= vol required for Water Level (m below MP) 3.04 3.04 3.05 3.06 3.06	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 956 969 970 954 947	+/- 0.05 pH pH 6.55 6.60 6.65 6.64 6.67 6.67	+/- 10% Temp. (°C) 17.20 17.00 16.88 16.74 16.84	+/- 10mV Redox ORP (mV) -6.1 -23.3 -29.3 -34.8 -40.9 -43.9	0.24 0.23 0.20 0.17 0.14	grey brown, thic grey brown, thic grey brown, thic grey brown, thic grey brown, thic grey brown, thic	k turb, no k turb, no	o odour.	
10:45 10:48 10:51 10:54 10:57 11:00	Cumulative Volume Removed (I) 0.1 0.8 1.5 2.2 2.9 3.6	= vol required for Water Level (m below MP) 3.04 3.04 3.05 3.06 3.06	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 956 969 970 954 947	+/- 0.05 pH pH 6.55 6.60 6.65 6.64 6.67 6.67	+/- 10% Temp. (°C) 17.20 17.00 16.88 16.74 16.84	+/- 10mV Redox ORP (mV) -6.1 -23.3 -29.3 -34.8 -40.9 -43.9	0.24 0.23 0.20 0.17 0.14	grey brown, thic grey brown, thic grey brown, thic grey brown, thic grey brown, thic grey brown, thic	k turb, no k turb, no	o odour.	
10:45 10:48 10:51 10:54 10:57 11:00	Cumulative Volume Removed (I) 0.1 0.8 1.5 2.2 2.9 3.6	= vol required for Water Level (m below MP) 3.04 3.04 3.05 3.06 3.06	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 956 969 970 954 947	+/- 0.05 pH pH 6.55 6.60 6.65 6.64 6.67 6.67	+/- 10% Temp. (°C) 17.20 17.00 16.88 16.74 16.84	+/- 10mV Redox ORP (mV) -6.1 -23.3 -29.3 -34.8 -40.9 -43.9	0.24 0.23 0.20 0.17 0.14	grey brown, thic grey brown, thic grey brown, thic grey brown, thic grey brown, thic grey brown, thic	k turb, no k turb, no	o odour.	
10:45 10:48 10:51 10:54 10:57 11:00	Cumulative Volume Removed (I) 0.1 0.8 1.5 2.2 2.9 3.6	= vol required for Water Level (m below MP) 3.04 3.04 3.05 3.06 3.06	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 956 969 970 954 947	+/- 0.05 pH pH 6.55 6.60 6.65 6.64 6.67 6.67	+/- 10% Temp. (°C) 17.20 17.00 16.88 16.74 16.84	+/- 10mV Redox ORP (mV) -6.1 -23.3 -29.3 -34.8 -40.9 -43.9	0.24 0.23 0.20 0.17 0.14	grey brown, thic grey brown, thic grey brown, thic grey brown, thic grey brown, thic grey brown, thic	k turb, no k turb, no	o odour.	
10:45 10:48 10:51 10:54 10:57 11:00	Cumulative Volume Removed (I) 0.1 0.8 1.5 2.2 2.9 3.6	= vol required for Water Level (m below MP) 3.04 3.04 3.05 3.06 3.06	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 956 969 970 954 947	+/- 0.05 pH pH 6.55 6.60 6.65 6.64 6.67 6.67	+/- 10% Temp. (°C) 17.20 17.00 16.88 16.74 16.84	+/- 10mV Redox ORP (mV) -6.1 -23.3 -29.3 -34.8 -40.9 -43.9	0.24 0.23 0.20 0.17 0.14	grey brown, thic grey brown, thic grey brown, thic grey brown, thic grey brown, thic grey brown, thic	k turb, no k turb, no	o odour.	
10:45 10:48 10:51 10:54 10:57 11:00	Cumulative Volume Removed (I) 0.1 0.8 1.5 2.2 2.9 3.6	= vol required for Water Level (m below MP) 3.04 3.04 3.05 3.06 3.06	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 956 969 970 954 947	+/- 0.05 pH pH 6.55 6.60 6.65 6.64 6.67 6.67	+/- 10% Temp. (°C) 17.20 17.00 16.88 16.74 16.84	+/- 10mV Redox ORP (mV) -6.1 -23.3 -29.3 -34.8 -40.9 -43.9	0.24 0.23 0.20 0.17 0.14	grey brown, thic grey brown, thic grey brown, thic grey brown, thic grey brown, thic grey brown, thic	k turb, no k turb, no	o odour.	
10:45 10:48 10:51 10:54 10:57 11:00	Cumulative Volume Removed (I) 0.1 0.8 1.5 2.2 2.9 3.6	= vol required for Water Level (m below MP) 3.04 3.04 3.05 3.06 3.06	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 956 969 970 954 947	+/- 0.05 pH pH 6.55 6.60 6.65 6.64 6.67 6.67	+/- 10% Temp. (°C) 17.20 17.00 16.88 16.74 16.84	+/- 10mV Redox ORP (mV) -6.1 -23.3 -29.3 -34.8 -40.9 -43.9	0.24 0.23 0.20 0.17 0.14	grey brown, thic grey brown, thic grey brown, thic grey brown, thic grey brown, thic grey brown, thic	k turb, no k turb, no	o odour.	
10:45 10:48 10:51 10:54 10:57 11:00	Cumulative Volume Removed (I) 0.1 0.8 1.5 2.2 2.9 3.6	= vol required for Water Level (m below MP) 3.04 3.04 3.05 3.06 3.06	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 956 969 970 954 947	+/- 0.05 pH pH 6.55 6.60 6.65 6.64 6.67 6.67	+/- 10% Temp. (°C) 17.20 17.00 16.88 16.74 16.84	+/- 10mV Redox ORP (mV) -6.1 -23.3 -29.3 -34.8 -40.9 -43.9	0.24 0.23 0.20 0.17 0.14	grey brown, thic grey brown, thic grey brown, thic grey brown, thic grey brown, thic grey brown, thic	k turb, no k turb, no	o odour.	
10:45 10:48 10:51 10:54 10:57 11:00	Cumulative Volume Removed (I) 0.1 0.8 1.5 2.2 2.9 3.6	= vol required for Water Level (m below MP) 3.04 3.04 3.05 3.06 3.06	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 956 969 970 954 947	+/- 0.05 pH pH 6.55 6.60 6.65 6.64 6.67 6.67	+/- 10% Temp. (°C) 17.20 17.00 16.88 16.74 16.84	+/- 10mV Redox ORP (mV) -6.1 -23.3 -29.3 -34.8 -40.9 -43.9	0.24 0.23 0.20 0.17 0.14	grey brown, thic grey brown, thic grey brown, thic grey brown, thic grey brown, thic grey brown, thic	k turb, no k turb, no	o odour.	
10:45 10:48 10:51 10:54 10:57 11:00	Cumulative Volume Removed (I) 0.1 0.8 1.5 2.2 2.9 3.6	= vol required for Water Level (m below MP) 3.04 3.04 3.05 3.06 3.06	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 956 969 970 954 947	+/- 0.05 pH pH 6.55 6.60 6.65 6.64 6.67 6.67	+/- 10% Temp. (°C) 17.20 17.00 16.88 16.74 16.84	+/- 10mV Redox ORP (mV) -6.1 -23.3 -29.3 -34.8 -40.9 -43.9	0.24 0.23 0.20 0.17 0.14	grey brown, thic grey brown, thic grey brown, thic grey brown, thic grey brown, thic grey brown, thic	k turb, no k turb, no	o odour.	
10:45 10:48 10:51 10:54 10:57 11:00	Cumulative Volume Removed (I) 0.1 0.8 1.5 2.2 2.9 3.6	= vol required for Water Level (m below MP) 3.04 3.04 3.05 3.06 3.06	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 956 969 970 954 947	+/- 0.05 pH pH 6.55 6.60 6.65 6.64 6.67 6.67	+/- 10% Temp. (°C) 17.20 17.00 16.88 16.74 16.84	+/- 10mV Redox ORP (mV) -6.1 -23.3 -29.3 -34.8 -40.9 -43.9	0.24 0.23 0.20 0.17 0.14	grey brown, thic grey brown, thic grey brown, thic grey brown, thic grey brown, thic grey brown, thic	k turb, no k turb, no	o odour.	
10:45 10:48 10:51 10:54 10:57 11:00	Cumulative Volume Removed (I) 0.1 0.8 1.5 2.2 2.9 3.6	= vol required for Water Level (m below MP) 3.04 3.04 3.05 3.06 3.06	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 956 969 970 954 947	+/- 0.05 pH pH 6.55 6.60 6.65 6.64 6.67 6.67	+/- 10% Temp. (°C) 17.20 17.00 16.88 16.74 16.84	+/- 10mV Redox ORP (mV) -6.1 -23.3 -29.3 -34.8 -40.9 -43.9	0.24 0.23 0.20 0.17 0.14	grey brown, thic grey brown, thic grey brown, thic grey brown, thic grey brown, thic grey brown, thic	k turb, no k turb, no	o odour.	
10:45 10:48 10:51 10:54 10:57 11:00	Cumulative Volume Removed (I) 0.1 0.8 1.5 2.2 2.9 3.6	= vol required for Water Level (m below MP) 3.04 3.04 3.05 3.06 3.06	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 956 969 970 954 947	+/- 0.05 pH pH 6.55 6.60 6.65 6.64 6.67 6.67	+/- 10% Temp. (°C) 17.20 17.00 16.88 16.74 16.84	+/- 10mV Redox ORP (mV) -6.1 -23.3 -29.3 -34.8 -40.9 -43.9	0.24 0.23 0.20 0.17 0.14	grey brown, thic grey brown, thic grey brown, thic grey brown, thic grey brown, thic grey brown, thic	k turb, no k turb, no	o odour.	
10:45 10:48 10:51 10:54 10:57 11:00	Cumulative Volume Removed (I) 0.1 0.8 1.5 2.2 2.9 3.6	= vol required for Water Level (m below MP) 3.04 3.04 3.05 3.06 3.06	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 956 969 970 954 947	+/- 0.05 pH pH 6.55 6.60 6.65 6.64 6.67 6.67	+/- 10% Temp. (°C) 17.20 17.00 16.88 16.74 16.84	+/- 10mV Redox ORP (mV) -6.1 -23.3 -29.3 -34.8 -40.9 -43.9	0.24 0.23 0.20 0.17 0.14	grey brown, thic grey brown, thic grey brown, thic grey brown, thic grey brown, thic grey brown, thic	k turb, no k turb, no	o odour.	
10:45 10:48 10:51 10:54 10:57 11:00	Cumulative Volume Removed (I) 0.1 0.8 1.5 2.2 2.9 3.6	= vol required for Water Level (m below MP) 3.04 3.04 3.05 3.06 3.06	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 956 969 970 954 947	+/- 0.05 pH pH 6.55 6.60 6.65 6.64 6.67 6.67	+/- 10% Temp. (°C) 17.20 17.00 16.88 16.74 16.84	+/- 10mV Redox ORP (mV) -6.1 -23.3 -29.3 -34.8 -40.9 -43.9	0.24 0.23 0.20 0.17 0.14	grey brown, thic grey brown, thic grey brown, thic grey brown, thic grey brown, thic grey brown, thic	k turb, no k turb, no	o odour.	
10:45 10:48 10:51 10:54 10:57 11:00	Cumulative Volume Removed (I) 0.1 0.8 1.5 2.2 2.9 3.6	= vol required for Water Level (m below MP) 3.04 3.04 3.05 3.06 3.06	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 956 969 970 954 947	+/- 0.05 pH pH 6.55 6.60 6.65 6.64 6.67 6.67	+/- 10% Temp. (°C) 17.20 17.00 16.88 16.74 16.84	+/- 10mV Redox ORP (mV) -6.1 -23.3 -29.3 -34.8 -40.9 -43.9	0.24 0.23 0.20 0.17 0.14	grey brown, thic grey brown, thic grey brown, thic grey brown, thic grey brown, thic grey brown, thic	k turb, no k turb, no	o odour.	
10:45 10:48 10:51 10:54 10:57 11:00	Cumulative Volume Removed (I) 0.1 0.8 1.5 2.2 2.9 3.6	= vol required for Water Level (m below MP) 3.04 3.04 3.05 3.06 3.06	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 956 969 970 954 947	+/- 0.05 pH pH 6.55 6.60 6.65 6.64 6.67 6.67	+/- 10% Temp. (°C) 17.20 17.00 16.88 16.74 16.84	+/- 10mV Redox ORP (mV) -6.1 -23.3 -29.3 -34.8 -40.9 -43.9	0.24 0.23 0.20 0.17 0.14	grey brown, thic grey brown, thic grey brown, thic grey brown, thic grey brown, thic grey brown, thic	k turb, no k turb, no	o odour.	

Notes: All bore measuremen	nts are reference	ced to the mark	ed measuremer	nt point. All Coo	rdinates in GDA	N94.				3.5		
			TS Grou	ndwate	r sampli	ing field	d sheet -	Env I	Monitorin	g V	entia	
Roro ID No	ВІ	H10		Project Name	•	Ü				pling Staff	AC	
		110	-									
Project Area:				Client					WQ. Me	eter Model	YSI Pro	1+
Date	14/0	2/2023		Project No					WQ. Met	er Serial #	09L1002	198
Expe	cted Bore D	etails										
Internal Dia	ameter (mm)			Easting			Total [Depth (m)		Screen	Depth From (m)
Drop Tube already in	bore? (Y/N)	N		Northing	-	-	Water	Level (m)		_ Scre	en Depth To (m)
Drop Tube	e Length (m)	0.00		Zone		<u> </u>	Set Pump in	let at (m)		_	Set Pump at (m)
Additiona	l Information											
	I Information											_
	ield Measur			4.70		"	01		- · · ·		5.70	
Time of SWL			otal Depth (m)			accessible?		ar				
Static Water Level (m)			ore Diam (mm)	50		en Length(m)	0.00		Depth of pum			
	l Purging De				Sampling D						les Required	
Purge Method			MicroPurge	•	oling Method				Bottle Type	Quantity	Bottle Type	Quantit
Time Pump in		Pump in' WL					WL m (start)					
Time Started	9:56	WL m (start)	2.43				WL m (end)	2.50				
Time Stopped	10:21	WL m (end)	2.47		sample ID?							
Volume Removed (I)	4.9	-		Triplicate	sample ID?		-					
Discharge Rate (I/m)	0.20			Rinsate	sample ID?							
Pi	ump Remov	/al										
Time of removal	10:40	WL n	n(post-removal)	2.53	Bore De	oth at end (m)	6.73					
P	ump Setting	gs										
Fill / Discharge used	5/3	CPM		Air/Gas	Pressure (kPa)	30						
Comments						All times EST						
		Field Parameters	are considered sta	able when within t	he EPA limits for 3	consecutive me	easurements					
	25	Field Parameters = vol required for		able when within to	he EPA limits for 3	consecutive me	easurements +/- 10mV	+/- 10%]			_
Time	Cumulative			+/- 3% Specific				+/- 10% DO		Commen	ts (colour,	
Time		= vol required for	3V method (L)	+/- 3%	+/- 0.05 pH	+/- 10%	+/- 10mV			Commen turbidity, oc		
Time 9:57	Cumulative Volume	= vol required for Water Level (m	3V method (L) Stability of Field	+/- 3% Specific Conductance EC (uS/cm)	+/- 0.05 pH	+/- 10% Temp.	+/- 10mV Redox	DO	Highly turbid, yo	turbidity, oc	dours, other)	
	Cumulative Volume Removed (I)	= vol required for Water Level (m below MP)	3V method (L) Stability of Field Params	+/- 3% Specific Conductance EC (uS/cm) @25°C	+/- 0.05 pH pH	+/- 10% Temp. (°C)	+/- 10mV Redox ORP (mV)	DO (mg/L)	Highly turbid, y	turbidity, oo	dours, other)	
9:57	Cumulative Volume Removed (I)	= vol required for Water Level (m below MP)	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) @25°C 791	+/- 0.05 pH pH	+/- 10% Temp. (°C)	+/- 10mV Redox ORP (mV)	DO (mg/L) 2.76		turbidity, oc ellow/brow ellow/brow	dours, other) vn nil odour vn nil odour	
9:57 10:00 10:03	Cumulative Volume Removed (I) 0.1 0.7 1.3	= vol required for Water Level (m below MP) 2.42 2.43 2.43	Stability of Field Params Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) @25°C 791 804	+/- 0.05 pH pH 5.40 5.50 5.48	+/- 10% Temp. (°C) 16.45 16.33	+/- 10mV Redox ORP (mV) 156.4 146.8 138.9	DO (mg/L) 2.76 1.99 1.85	Highly turbid, yo	turbidity, oc ellow/brow ellow/brow ellow/brow	vn nil odour vn nil odour	
9:57 10:00 10:03 10:06	Cumulative Volume Removed (I) 0.1 0.7 1.3	= vol required for Water Level (m below MP) 2.42 2.43 2.43	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) =25°C 791 804 799 803	+/- 0.05 pH pH 5.40 5.50 5.48	+/- 10% Temp. (°C) 16.45 16.33 16.31	+/- 10mV Redox ORP (mV) 156.4 146.8 138.9	DO (mg/L) 2.76 1.99 1.85 0.97	Highly turbid, you Highly turbid, you Highly turbid, you	turbidity, oc ellow/brow ellow/brow ellow/brow	vn nil odour vn nil odour vn nil odour vn nil odour	
9:57 10:00 10:03 10:06 10:09	Cumulative Volume Removed (I) 0.1 0.7 1.3 1.9	= vol required for Water Level (m below MP) 2.42 2.43 2.43 2.44 2.46	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) @25°C 791 804 799 803 789	+/- 0.05 pH pH 5.40 5.50 5.48 5.54	+/- 10% Temp. (°C) 16.45 16.33 16.31 16.18	+/- 10mV Redox ORP (mV) 156.4 146.8 138.9 129.4	DO (mg/L) 2.76 1.99 1.85 0.97 0.50	Highly turbid, you Highly turbid, you Highly turbid, you Highly turbid, you	turbidity, oc ellow/brow ellow/brow ellow/brow ellow/brow	vn nil odour	
9:57 10:00 10:03 10:06 10:09	Cumulative Volume Removed (I) 0.1 0.7 1.3 1.9 2.5 3.1	= vol required for Water Level (m below MP) 2.42 2.43 2.43 2.44 2.46 2.45	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 791 804 799 803 789 795	+/- 0.05 pH pH 5.40 5.50 5.48 5.54 5.51 5.54	+/- 10% Temp. (°C) 16.45 16.33 16.31 16.18 16.22 16.19	+/- 10mV Redox ORP (mV) 156.4 146.8 138.9 129.4 127.8	DO (mg/L) 2.76 1.99 1.85 0.97 0.50 0.29	Highly turbid, you Highly turbid, you Highly turbid, you Highly turbid, you	turbidity, oc ellow/brow ellow/brow ellow/brow ellow/brow ellow/brow	vn nil odour	
9:57 10:00 10:03 10:06 10:09 10:12	Cumulative Volume Removed (I) 0.1 0.7 1.3 1.9 2.5 3.1 3.7	= vol required for Water Level (m below MP) 2.42 2.43 2.43 2.44 2.46 2.45	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/m) #25°C 791 804 799 803 789 795 802	+/- 0.05 pH pH 5.40 5.50 5.48 5.54 5.51 5.54 5.60	+/- 10% Temp. (°C) 16.45 16.33 16.31 16.18 16.22 16.19	+/- 10mV Redox ORP (mV) 156.4 146.8 138.9 129.4 127.8 124.5	00 (mg/L) 2.76 1.99 1.85 0.97 0.50 0.29	Highly turbid, you Highly turbid, you Highly turbid, you Highly turbid, you Highly turbid, you	turbidity, oc ellow/brow ellow/brow ellow/brow ellow/brow ellow/brow ellow/brow	vn nil odour	
9:57 10:00 10:03 10:06 10:09	Cumulative Volume Removed (I) 0.1 0.7 1.3 1.9 2.5 3.1	= vol required for Water Level (m below MP) 2.42 2.43 2.43 2.44 2.46 2.45	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 791 804 799 803 789 795	+/- 0.05 pH pH 5.40 5.50 5.48 5.54 5.51 5.54	+/- 10% Temp. (°C) 16.45 16.33 16.31 16.18 16.22 16.19	+/- 10mV Redox ORP (mV) 156.4 146.8 138.9 129.4 127.8	DO (mg/L) 2.76 1.99 1.85 0.97 0.50 0.29	Highly turbid, you Highly turbid, you Highly turbid, you Highly turbid, you Highly turbid, you Highly turbid, you Highly turbid, you	turbidity, oc ellow/brow ellow/brow ellow/brow ellow/brow ellow/brow ellow/brow	vn nil odour	
9:57 10:00 10:03 10:06 10:09 10:12	Cumulative Volume Removed (I) 0.1 0.7 1.3 1.9 2.5 3.1 3.7	= vol required for Water Level (m below MP) 2.42 2.43 2.43 2.44 2.46 2.45	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/m) #25°C 791 804 799 803 789 795 802	+/- 0.05 pH pH 5.40 5.50 5.48 5.54 5.51 5.54 5.60	+/- 10% Temp. (°C) 16.45 16.33 16.31 16.18 16.22 16.19	+/- 10mV Redox ORP (mV) 156.4 146.8 138.9 129.4 127.8 124.5	00 (mg/L) 2.76 1.99 1.85 0.97 0.50 0.29	Highly turbid, you Highly turbid, you Highly turbid, you Highly turbid, you Highly turbid, you	turbidity, oc ellow/brow ellow/brow ellow/brow ellow/brow ellow/brow ellow/brow	vn nil odour	
9:57 10:00 10:03 10:06 10:09 10:12 10:15 10:18	Cumulative Volume Removed (f) 0.1 0.7 1.3 1.9 2.5 3.1 3.7 4.3	= vol required for Water Level (m below MP) 2.42 2.43 2.43 2.44 2.46 2.45 2.46 2.47	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 791 804 799 803 789 795 802 791	+/- 0.05 pH pH 5.40 5.50 5.48 5.54 5.51 5.54 5.60	+/- 10% Temp. (°C) 16.45 16.33 16.31 16.18 16.22 16.19 16.15	+/- 10mV Redox ORP (mV) 156.4 146.8 138.9 129.4 127.8 124.5 119.3 116.7	DO (mg/L) 2.76 1.99 1.85 0.97 0.50 0.29 0.26 0.25	Highly turbid, you Highly turbid, you Highly turbid, you Highly turbid, you Highly turbid, you Highly turbid, you Highly turbid, you	turbidity, oc ellow/brow ellow/brow ellow/brow ellow/brow ellow/brow ellow/brow	vn nil odour	
9:57 10:00 10:03 10:06 10:09 10:12 10:15 10:18	Cumulative Volume Removed (f) 0.1 0.7 1.3 1.9 2.5 3.1 3.7 4.3	= vol required for Water Level (m below MP) 2.42 2.43 2.43 2.44 2.46 2.45 2.46 2.47	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 791 804 799 803 789 795 802 791	+/- 0.05 pH pH 5.40 5.50 5.48 5.54 5.51 5.54 5.60	+/- 10% Temp. (°C) 16.45 16.33 16.31 16.18 16.22 16.19 16.15	+/- 10mV Redox ORP (mV) 156.4 146.8 138.9 129.4 127.8 124.5 119.3 116.7	DO (mg/L) 2.76 1.99 1.85 0.97 0.50 0.29 0.26 0.25	Highly turbid, you Highly turbid, you Highly turbid, you Highly turbid, you Highly turbid, you Highly turbid, you Highly turbid, you	turbidity, oc ellow/brow ellow/brow ellow/brow ellow/brow ellow/brow ellow/brow	vn nil odour	
9:57 10:00 10:03 10:06 10:09 10:12 10:15 10:18	Cumulative Volume Removed (f) 0.1 0.7 1.3 1.9 2.5 3.1 3.7 4.3	= vol required for Water Level (m below MP) 2.42 2.43 2.43 2.44 2.46 2.45 2.46 2.47	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 791 804 799 803 789 795 802 791	+/- 0.05 pH pH 5.40 5.50 5.48 5.54 5.51 5.54 5.60	+/- 10% Temp. (°C) 16.45 16.33 16.31 16.18 16.22 16.19 16.15	+/- 10mV Redox ORP (mV) 156.4 146.8 138.9 129.4 127.8 124.5 119.3 116.7	DO (mg/L) 2.76 1.99 1.85 0.97 0.50 0.29 0.26 0.25	Highly turbid, you Highly turbid, you Highly turbid, you Highly turbid, you Highly turbid, you Highly turbid, you Highly turbid, you	turbidity, oc ellow/brow ellow/brow ellow/brow ellow/brow ellow/brow ellow/brow	vn nil odour	
9:57 10:00 10:03 10:06 10:09 10:12 10:15 10:18	Cumulative Volume Removed (f) 0.1 0.7 1.3 1.9 2.5 3.1 3.7 4.3	= vol required for Water Level (m below MP) 2.42 2.43 2.43 2.44 2.46 2.45 2.46 2.47	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 791 804 799 803 789 795 802 791	+/- 0.05 pH pH 5.40 5.50 5.48 5.54 5.51 5.54 5.60	+/- 10% Temp. (°C) 16.45 16.33 16.31 16.18 16.22 16.19 16.15	+/- 10mV Redox ORP (mV) 156.4 146.8 138.9 129.4 127.8 124.5 119.3 116.7	DO (mg/L) 2.76 1.99 1.85 0.97 0.50 0.29 0.26 0.25	Highly turbid, you Highly turbid, you Highly turbid, you Highly turbid, you Highly turbid, you Highly turbid, you Highly turbid, you	turbidity, oc ellow/brow ellow/brow ellow/brow ellow/brow ellow/brow ellow/brow	vn nil odour	
9:57 10:00 10:03 10:06 10:09 10:12 10:15 10:18	Cumulative Volume Removed (f) 0.1 0.7 1.3 1.9 2.5 3.1 3.7 4.3	= vol required for Water Level (m below MP) 2.42 2.43 2.43 2.44 2.46 2.45 2.46 2.47	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 791 804 799 803 789 795 802 791	+/- 0.05 pH pH 5.40 5.50 5.48 5.54 5.51 5.54 5.60	+/- 10% Temp. (°C) 16.45 16.33 16.31 16.18 16.22 16.19 16.15	+/- 10mV Redox ORP (mV) 156.4 146.8 138.9 129.4 127.8 124.5 119.3 116.7	DO (mg/L) 2.76 1.99 1.85 0.97 0.50 0.29 0.26 0.25	Highly turbid, you Highly turbid, you Highly turbid, you Highly turbid, you Highly turbid, you Highly turbid, you Highly turbid, you	turbidity, oc ellow/brow ellow/brow ellow/brow ellow/brow ellow/brow ellow/brow	vn nil odour	
9:57 10:00 10:03 10:06 10:09 10:12 10:15 10:18	Cumulative Volume Removed (f) 0.1 0.7 1.3 1.9 2.5 3.1 3.7 4.3	= vol required for Water Level (m below MP) 2.42 2.43 2.43 2.44 2.46 2.45 2.46 2.47	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 791 804 799 803 789 795 802 791	+/- 0.05 pH pH 5.40 5.50 5.48 5.54 5.51 5.54 5.60	+/- 10% Temp. (°C) 16.45 16.33 16.31 16.18 16.22 16.19 16.15	+/- 10mV Redox ORP (mV) 156.4 146.8 138.9 129.4 127.8 124.5 119.3 116.7	DO (mg/L) 2.76 1.99 1.85 0.97 0.50 0.29 0.26 0.25	Highly turbid, you Highly turbid, you Highly turbid, you Highly turbid, you Highly turbid, you Highly turbid, you Highly turbid, you	turbidity, oc ellow/brow ellow/brow ellow/brow ellow/brow ellow/brow ellow/brow	vn nil odour	
9:57 10:00 10:03 10:06 10:09 10:12 10:15 10:18	Cumulative Volume Removed (f) 0.1 0.7 1.3 1.9 2.5 3.1 3.7 4.3	= vol required for Water Level (m below MP) 2.42 2.43 2.43 2.44 2.46 2.45 2.46 2.47	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 791 804 799 803 789 795 802 791	+/- 0.05 pH pH 5.40 5.50 5.48 5.54 5.51 5.54 5.60	+/- 10% Temp. (°C) 16.45 16.33 16.31 16.18 16.22 16.19 16.15	+/- 10mV Redox ORP (mV) 156.4 146.8 138.9 129.4 127.8 124.5 119.3 116.7	DO (mg/L) 2.76 1.99 1.85 0.97 0.50 0.29 0.26 0.25	Highly turbid, you Highly turbid, you Highly turbid, you Highly turbid, you Highly turbid, you Highly turbid, you Highly turbid, you	turbidity, oc ellow/brow ellow/brow ellow/brow ellow/brow ellow/brow ellow/brow	vn nil odour	
9:57 10:00 10:03 10:06 10:09 10:12 10:15 10:18	Cumulative Volume Removed (f) 0.1 0.7 1.3 1.9 2.5 3.1 3.7 4.3	= vol required for Water Level (m below MP) 2.42 2.43 2.43 2.44 2.46 2.45 2.46 2.47	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 791 804 799 803 789 795 802 791	+/- 0.05 pH pH 5.40 5.50 5.48 5.54 5.51 5.54 5.60	+/- 10% Temp. (°C) 16.45 16.33 16.31 16.18 16.22 16.19 16.15	+/- 10mV Redox ORP (mV) 156.4 146.8 138.9 129.4 127.8 124.5 119.3 116.7	DO (mg/L) 2.76 1.99 1.85 0.97 0.50 0.29 0.26 0.25	Highly turbid, you Highly turbid, you Highly turbid, you Highly turbid, you Highly turbid, you Highly turbid, you Highly turbid, you	turbidity, oc ellow/brow ellow/brow ellow/brow ellow/brow ellow/brow ellow/brow	vn nil odour	
9:57 10:00 10:03 10:06 10:09 10:12 10:15 10:18	Cumulative Volume Removed (f) 0.1 0.7 1.3 1.9 2.5 3.1 3.7 4.3	= vol required for Water Level (m below MP) 2.42 2.43 2.43 2.44 2.46 2.45 2.46 2.47	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 791 804 799 803 789 795 802 791	+/- 0.05 pH pH 5.40 5.50 5.48 5.54 5.51 5.54 5.60	+/- 10% Temp. (°C) 16.45 16.33 16.31 16.18 16.22 16.19 16.15	+/- 10mV Redox ORP (mV) 156.4 146.8 138.9 129.4 127.8 124.5 119.3 116.7	DO (mg/L) 2.76 1.99 1.85 0.97 0.50 0.29 0.26 0.25	Highly turbid, you Highly turbid, you Highly turbid, you Highly turbid, you Highly turbid, you Highly turbid, you Highly turbid, you	turbidity, oc ellow/brow ellow/brow ellow/brow ellow/brow ellow/brow ellow/brow	vn nil odour	
9:57 10:00 10:03 10:06 10:09 10:12 10:15 10:18	Cumulative Volume Removed (f) 0.1 0.7 1.3 1.9 2.5 3.1 3.7 4.3	= vol required for Water Level (m below MP) 2.42 2.43 2.43 2.44 2.46 2.45 2.46 2.47	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 791 804 799 803 789 795 802 791	+/- 0.05 pH pH 5.40 5.50 5.48 5.54 5.51 5.54 5.60	+/- 10% Temp. (°C) 16.45 16.33 16.31 16.18 16.22 16.19 16.15	+/- 10mV Redox ORP (mV) 156.4 146.8 138.9 129.4 127.8 124.5 119.3 116.7	DO (mg/L) 2.76 1.99 1.85 0.97 0.50 0.29 0.26 0.25	Highly turbid, you Highly turbid, you Highly turbid, you Highly turbid, you Highly turbid, you Highly turbid, you Highly turbid, you	turbidity, oc ellow/brow ellow/brow ellow/brow ellow/brow ellow/brow ellow/brow	vn nil odour	
9:57 10:00 10:03 10:06 10:09 10:12 10:15 10:18	Cumulative Volume Removed (f) 0.1 0.7 1.3 1.9 2.5 3.1 3.7 4.3	= vol required for Water Level (m below MP) 2.42 2.43 2.43 2.44 2.46 2.45 2.46 2.47	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 791 804 799 803 789 795 802 791	+/- 0.05 pH pH 5.40 5.50 5.48 5.54 5.51 5.54 5.60	+/- 10% Temp. (°C) 16.45 16.33 16.31 16.18 16.22 16.19 16.15	+/- 10mV Redox ORP (mV) 156.4 146.8 138.9 129.4 127.8 124.5 119.3 116.7	DO (mg/L) 2.76 1.99 1.85 0.97 0.50 0.29 0.26 0.25	Highly turbid, you Highly turbid, you Highly turbid, you Highly turbid, you Highly turbid, you Highly turbid, you Highly turbid, you	turbidity, oc ellow/brow ellow/brow ellow/brow ellow/brow ellow/brow ellow/brow	vn nil odour	
9:57 10:00 10:03 10:06 10:09 10:12 10:15 10:18	Cumulative Volume Removed (f) 0.1 0.7 1.3 1.9 2.5 3.1 3.7 4.3	= vol required for Water Level (m below MP) 2.42 2.43 2.43 2.44 2.46 2.45 2.46 2.47	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 791 804 799 803 789 795 802 791	+/- 0.05 pH pH 5.40 5.50 5.48 5.54 5.51 5.54 5.60	+/- 10% Temp. (°C) 16.45 16.33 16.31 16.18 16.22 16.19 16.15	+/- 10mV Redox ORP (mV) 156.4 146.8 138.9 129.4 127.8 124.5 119.3 116.7	DO (mg/L) 2.76 1.99 1.85 0.97 0.50 0.29 0.26 0.25	Highly turbid, you Highly turbid, you Highly turbid, you Highly turbid, you Highly turbid, you Highly turbid, you Highly turbid, you	turbidity, oc ellow/brow ellow/brow ellow/brow ellow/brow ellow/brow ellow/brow	vn nil odour	
9:57 10:00 10:03 10:06 10:09 10:12 10:15 10:18	Cumulative Volume Removed (f) 0.1 0.7 1.3 1.9 2.5 3.1 3.7 4.3	= vol required for Water Level (m below MP) 2.42 2.43 2.43 2.44 2.46 2.45 2.46 2.47	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 791 804 799 803 789 795 802 791	+/- 0.05 pH pH 5.40 5.50 5.48 5.54 5.51 5.54 5.60	+/- 10% Temp. (°C) 16.45 16.33 16.31 16.18 16.22 16.19 16.15	+/- 10mV Redox ORP (mV) 156.4 146.8 138.9 129.4 127.8 124.5 119.3 116.7	DO (mg/L) 2.76 1.99 1.85 0.97 0.50 0.29 0.26 0.25	Highly turbid, you Highly turbid, you Highly turbid, you Highly turbid, you Highly turbid, you Highly turbid, you Highly turbid, you	turbidity, oc ellow/brow ellow/brow ellow/brow ellow/brow ellow/brow ellow/brow	vn nil odour	
9:57 10:00 10:03 10:06 10:09 10:12 10:15 10:18	Cumulative Volume Removed (f) 0.1 0.7 1.3 1.9 2.5 3.1 3.7 4.3	= vol required for Water Level (m below MP) 2.42 2.43 2.43 2.44 2.46 2.45 2.46 2.47	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 791 804 799 803 789 795 802 791	+/- 0.05 pH pH 5.40 5.50 5.48 5.54 5.51 5.54 5.60	+/- 10% Temp. (°C) 16.45 16.33 16.31 16.18 16.22 16.19 16.15	+/- 10mV Redox ORP (mV) 156.4 146.8 138.9 129.4 127.8 124.5 119.3 116.7	DO (mg/L) 2.76 1.99 1.85 0.97 0.50 0.29 0.26 0.25	Highly turbid, you Highly turbid, you Highly turbid, you Highly turbid, you Highly turbid, you Highly turbid, you Highly turbid, you	turbidity, oc ellow/brow ellow/brow ellow/brow ellow/brow ellow/brow ellow/brow	vn nil odour	
9:57 10:00 10:03 10:06 10:09 10:12 10:15 10:18	Cumulative Volume Removed (f) 0.1 0.7 1.3 1.9 2.5 3.1 3.7 4.3	= vol required for Water Level (m below MP) 2.42 2.43 2.43 2.44 2.46 2.45 2.46 2.47	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 791 804 799 803 789 795 802 791	+/- 0.05 pH pH 5.40 5.50 5.48 5.54 5.51 5.54 5.60	+/- 10% Temp. (°C) 16.45 16.33 16.31 16.18 16.22 16.19 16.15	+/- 10mV Redox ORP (mV) 156.4 146.8 138.9 129.4 127.8 124.5 119.3 116.7	DO (mg/L) 2.76 1.99 1.85 0.97 0.50 0.29 0.26 0.25	Highly turbid, you Highly turbid, you Highly turbid, you Highly turbid, you Highly turbid, you Highly turbid, you Highly turbid, you	turbidity, oc ellow/brow ellow/brow ellow/brow ellow/brow ellow/brow ellow/brow	vn nil odour	

Notes: All bore measuremen	its are reference	ed to the marke	ed measuremen	t point. All Coor	dinates in GDA	94.				3.0	antia	
			TS Grou	ndwater	sampli	ng field	l sheet -	- Env I	Monitorin	g V	entia	
Bore ID No	Bł	H14		Project Name	He	epburn Land	Fill		Sam	npling Staff	AC	
Project Area:			.							eter Model		
Date		2/2023		Project No					WQ. Me	ter Serial #	0/01/190	00
Expe	cted Bore D	etails										
Internal Dia	meter (mm)			Easting			Total [Depth (m)		Screen	Depth From (m)	
Drop Tube already in	bore? (Y/N)	٧		Northina			Water	Level (m)		Scre	en Depth To (m)	
brop rabe alleday in	DOIC: (1714)	<u> </u>									en bepui io (iii)	
Drop Tube	e Length (m)	0.00		Zone			Set Pump in	ılet at (m)		- :	Set Pump at (m)	
Additional	Information											_
Bore Fi	eld Measure	ements										
Time of SWL	11:20	To	tal Depth (m)	6.28	Mid-screen	accessible?	Clea	ar	Depth pump	set at (m)	5.90	
Static Water Level (m)	3.19	Во	re Diam (mm)	50	Open Scree	n Length(m)	0.00		Depth of pum	np inlet (m)	5.90	
Well	l Purging De	tails			Sampling D	etails			Sa	ample Bott	les Required	
Purge Method			MicroPurge		ling Method				Bottle Type		Bottle Type	Quantity
Time Pump in		Pump in' WL			_		WL m (start)	3.25	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		71	,
Time Started		· ·					WL m (end)					
Time Stopped					sample ID?		-	0.27				
Volume Removed (I)		· ···· (cnd)	5.25	-	sample ID?		=					
Discharge Rate (I/m)	0.20	-			sample ID?		_					
				Kilisate	sample iD:		-					
Time of removal	ump Remov 12:15		n(post-removal)	3.24	Rore Der	oth at end (m)	6.29					
			прозиненноман	3.24	Bole Del	otil at end (iii)	0.27					
Fill / Discharge used	ump Setting 25/5	JS CPM		Air/Gas	Pressure (kPa)	30						
-		CIW		All/Gas								
Comments						Dups taken						_
					go	ood recharge	9					
												_
		Field Parameters	are considered sta	ble when within th	ne EPA limits for 3	consecutive me	easurements		1			
	18	Field Parameters a		+/- 3%	+/- 0.05 pH	+/- 10%	+/- 10mV	+/- 10%				
Time	18 Cumulative Volume	= vol required for Water Level (m	3V method (L) Stability of Field	+/- 3% Specific Conductance		+/- 10% Temp.	+/- 10mV Redox	DO		Commen		
	18 Cumulative Volume Removed (I)	= vol required for Water Level (m below MP)	3V method (L)	+/- 3% Specific Conductance EC (uS/cm) @25°C	+/- 0.05 pH pH	+/- 10% Temp. (°C)	+/- 10mV Redox ORP (mV)	DO (mg/L)		turbidity, oc	lours, other)	
Time 11:28	18 Cumulative Volume	= vol required for Water Level (m	3V method (L) Stability of Field	+/- 3% Specific Conductance EC (uS/cm)	+/- 0.05 pH	+/- 10% Temp.	+/- 10mV Redox	DO	moderate light	turbidity, oc	lours, other)	
	18 Cumulative Volume Removed (I)	= vol required for Water Level (m below MP)	3V method (L) Stability of Field Params	+/- 3% Specific Conductance EC (uS/cm) @25°C	+/- 0.05 pH pH	+/- 10% Temp. (°C)	+/- 10mV Redox ORP (mV)	DO (mg/L)	moderate light	turbidity, oc	oidity nil odour	
11:28	18 Cumulative Volume Removed (I) 0.1	= vol required for Water Level (m below MP)	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) @25°C 1170	+/- 0.05 pH pH 6.53	+/- 10% Temp. (°C)	+/- 10mV Redox ORP (mV)	DO (mg/L) 1.86		turbidity, oc t brown turb t brown turb	oidity nil odour	
11:28 11:31	18 Cumulative Volume Removed (I) 0.1 0.7	= vol required for Water Level (m below MP) 3.24 3.24	3V method (L) Stability of Field Params Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) @25°C 1170 1225	+/- 0.05 pH pH 6.53 6.53	+/- 10% Temp. (°C) 14.68 14.46	+/- 10mV Redox ORP (mV) -15.7 -12.7	DO (mg/L) 1.86 0.98	moderate light	turbidity, oc t brown turk t brown turk t brown turk	oidity nil odour	
11:28 11:31 11:34	18 Cumulative Volume Removed (i) 0.1 0.7	= vol required for Water Level (m below MP) 3.24 3.24 3.24	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) @25°C 1170 1225	+/- 0.05 pH pH 6.53 6.53 6.51	+/- 10% Temp. (°C) 14.68 14.46	+/- 10mV Redox ORP (mV) -15.7 -12.7 -8.7	DO (mg/L) 1.86 0.98 0.31	moderate light	turbidity, oc t brown turk t brown turk t brown turk t brown turk	lours, other) Didity nil odour Didity nil odour Didity nil odour Didity nil odour	
11:28 11:31 11:34 11:37	18 Cumulative Volume Removed (I) 0.1 0.7 1.3	= vol required for Water Level (m below MP) 3.24 3.24 3.24 3.24	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (u5/cm)	+/- 0.05 pH pH 6.53 6.53 6.51 6.47	+/- 10% Temp. (°C) 14.68 14.46 14.45	+/- 10mV Redox ORP (mV) -15.7 -12.7 -8.7 -6.8	DO (mg/L) 1.86 0.98 0.31 0.18	moderate light	turbidity, oc t brown turk t brown turk t brown turk t brown turk t brown turk	lours, other) Didity nil odour	
11:28 11:31 11:34 11:37 11:40 11:43	18 Cumulative Volume Removed (I) 0.1 0.7 1.3 1.9	= vol required for Water Level (m below MP) 3.24 3.24 3.24 3.24 3.24 3.24 3.24	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) @25°C 1170 1225 1193 1191 1190 1189	+/- 0.05 pH pH 6.53 6.53 6.51 6.47 6.45	+/- 10% Temp. (°C) 14.68 14.46 14.45 14.52 14.49	+/- 10mV Redox ORP (mV) -15.7 -12.7 -8.7 -6.8 -5.4	DO (mg/L) 1.86 0.98 0.31 0.18 0.15	moderate light moderate light moderate light moderate light	turbidity, oc t brown turk t brown turk t brown turk t brown turk t brown turk t brown turk	lours, other) Didity nil odour	
11:28 11:31 11:34 11:37 11:40 11:43 11:46	18 Cumulative Volume Removed (I) 0.1 0.7 1.3 1.9 2.5 3.1 3.7	= vol required for Water Level (m below MP) 3.24 3.24 3.24 3.24 3.24 3.24 3.24 3.24	Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm)	+/- 0.05 pH pH 6.53 6.53 6.51 6.47 6.45 6.41 6.40	+/- 10% Temp. (°C) 14.68 14.46 14.45 14.52 14.49 14.48	+/- 10mV Redox ORP (mV) -15.7 -12.7 -8.7 -6.8 -5.4 6.4 7.1	DO (mg/L) 1.86 0.98 0.31 0.18 0.15 0.13	moderate light moderate light moderate light moderate light moderate light	turbidity, oc t brown turk t brown turk t brown turk t brown turk t brown turk t brown turk t brown turk	lours, other) Didity nil odour	
11:28 11:31 11:34 11:37 11:40 11:43	18 Cumulative Volume Removed (I) 0.1 0.7 1.3 1.9 2.5 3.1	= vol required for Water Level (m below MP) 3.24 3.24 3.24 3.24 3.24 3.24 3.24	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) @25°C 1170 1225 1193 1191 1190 1189	+/- 0.05 pH pH 6.53 6.53 6.51 6.47 6.45	+/- 10% Temp. (°C) 14.68 14.46 14.45 14.52 14.49	+/- 10mV Redox ORP (mV) -15.7 -12.7 -8.7 -6.8 -5.4 6.4	0.15 0.13	moderate light moderate light moderate light moderate light	turbidity, oc t brown turk t brown turk t brown turk t brown turk t brown turk t brown turk t brown turk	lours, other) Didity nil odour	
11:28 11:31 11:34 11:37 11:40 11:43 11:46	18 Cumulative Volume Removed (I) 0.1 0.7 1.3 1.9 2.5 3.1 3.7	= vol required for Water Level (m below MP) 3.24 3.24 3.24 3.24 3.24 3.24 3.24 3.24	Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm)	+/- 0.05 pH pH 6.53 6.53 6.51 6.47 6.45 6.41 6.40	+/- 10% Temp. (°C) 14.68 14.46 14.45 14.52 14.49 14.48	+/- 10mV Redox ORP (mV) -15.7 -12.7 -8.7 -6.8 -5.4 6.4 7.1	DO (mg/L) 1.86 0.98 0.31 0.18 0.15 0.13	moderate light moderate light moderate light moderate light moderate light	turbidity, oc t brown turk t brown turk t brown turk t brown turk t brown turk t brown turk t brown turk	lours, other) Didity nil odour	
11:28 11:31 11:34 11:37 11:40 11:43 11:46	18 Cumulative Volume Removed (I) 0.1 0.7 1.3 1.9 2.5 3.1 3.7	= vol required for Water Level (m below MP) 3.24 3.24 3.24 3.24 3.24 3.24 3.24 3.24	Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm)	+/- 0.05 pH pH 6.53 6.53 6.51 6.47 6.45 6.41 6.40	+/- 10% Temp. (°C) 14.68 14.46 14.45 14.52 14.49 14.48	+/- 10mV Redox ORP (mV) -15.7 -12.7 -8.7 -6.8 -5.4 6.4 7.1	DO (mg/L) 1.86 0.98 0.31 0.18 0.15 0.13	moderate light moderate light moderate light moderate light moderate light	turbidity, oc t brown turk t brown turk t brown turk t brown turk t brown turk t brown turk t brown turk	lours, other) Didity nil odour	
11:28 11:31 11:34 11:37 11:40 11:43 11:46	18 Cumulative Volume Removed (I) 0.1 0.7 1.3 1.9 2.5 3.1 3.7	= vol required for Water Level (m below MP) 3.24 3.24 3.24 3.24 3.24 3.24 3.24 3.24	Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm)	+/- 0.05 pH pH 6.53 6.53 6.51 6.47 6.45 6.41 6.40	+/- 10% Temp. (°C) 14.68 14.46 14.45 14.52 14.49 14.48	+/- 10mV Redox ORP (mV) -15.7 -12.7 -8.7 -6.8 -5.4 6.4 7.1	DO (mg/L) 1.86 0.98 0.31 0.18 0.15 0.13	moderate light moderate light moderate light moderate light moderate light	turbidity, oc t brown turk t brown turk t brown turk t brown turk t brown turk t brown turk t brown turk	lours, other) Didity nil odour	
11:28 11:31 11:34 11:37 11:40 11:43 11:46	18 Cumulative Volume Removed (I) 0.1 0.7 1.3 1.9 2.5 3.1 3.7	= vol required for Water Level (m below MP) 3.24 3.24 3.24 3.24 3.24 3.24 3.24 3.24	Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm)	+/- 0.05 pH pH 6.53 6.53 6.51 6.47 6.45 6.41 6.40	+/- 10% Temp. (°C) 14.68 14.46 14.45 14.52 14.49 14.48	+/- 10mV Redox ORP (mV) -15.7 -12.7 -8.7 -6.8 -5.4 6.4 7.1	DO (mg/L) 1.86 0.98 0.31 0.18 0.15 0.13	moderate light moderate light moderate light moderate light moderate light	turbidity, oc t brown turk t brown turk t brown turk t brown turk t brown turk t brown turk t brown turk	lours, other) Didity nil odour	
11:28 11:31 11:34 11:37 11:40 11:43 11:46	18 Cumulative Volume Removed (I) 0.1 0.7 1.3 1.9 2.5 3.1 3.7	= vol required for Water Level (m below MP) 3.24 3.24 3.24 3.24 3.24 3.24 3.24 3.24	Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm)	+/- 0.05 pH pH 6.53 6.53 6.51 6.47 6.45 6.41 6.40	+/- 10% Temp. (°C) 14.68 14.46 14.45 14.52 14.49 14.48	+/- 10mV Redox ORP (mV) -15.7 -12.7 -8.7 -6.8 -5.4 6.4 7.1	DO (mg/L) 1.86 0.98 0.31 0.18 0.15 0.13	moderate light moderate light moderate light moderate light moderate light	turbidity, oc t brown turk t brown turk t brown turk t brown turk t brown turk t brown turk t brown turk	lours, other) Didity nil odour	
11:28 11:31 11:34 11:37 11:40 11:43 11:46	18 Cumulative Volume Removed (I) 0.1 0.7 1.3 1.9 2.5 3.1 3.7	= vol required for Water Level (m below MP) 3.24 3.24 3.24 3.24 3.24 3.24 3.24 3.24	Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm)	+/- 0.05 pH pH 6.53 6.53 6.51 6.47 6.45 6.41 6.40	+/- 10% Temp. (°C) 14.68 14.46 14.45 14.52 14.49 14.48	+/- 10mV Redox ORP (mV) -15.7 -12.7 -8.7 -6.8 -5.4 6.4 7.1	DO (mg/L) 1.86 0.98 0.31 0.18 0.15 0.13	moderate light moderate light moderate light moderate light moderate light	turbidity, oc t brown turk t brown turk t brown turk t brown turk t brown turk t brown turk t brown turk	lours, other) Didity nil odour	
11:28 11:31 11:34 11:37 11:40 11:43 11:46	18 Cumulative Volume Removed (I) 0.1 0.7 1.3 1.9 2.5 3.1 3.7	= vol required for Water Level (m below MP) 3.24 3.24 3.24 3.24 3.24 3.24 3.24 3.24	Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm)	+/- 0.05 pH pH 6.53 6.53 6.51 6.47 6.45 6.41 6.40	+/- 10% Temp. (°C) 14.68 14.46 14.45 14.52 14.49 14.48	+/- 10mV Redox ORP (mV) -15.7 -12.7 -8.7 -6.8 -5.4 6.4 7.1	DO (mg/L) 1.86 0.98 0.31 0.18 0.15 0.13	moderate light moderate light moderate light moderate light moderate light	turbidity, oc t brown turk t brown turk t brown turk t brown turk t brown turk t brown turk t brown turk	lours, other) Didity nil odour	
11:28 11:31 11:34 11:37 11:40 11:43 11:46	18 Cumulative Volume Removed (I) 0.1 0.7 1.3 1.9 2.5 3.1 3.7	= vol required for Water Level (m below MP) 3.24 3.24 3.24 3.24 3.24 3.24 3.24 3.24	Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm)	+/- 0.05 pH pH 6.53 6.53 6.51 6.47 6.45 6.41 6.40	+/- 10% Temp. (°C) 14.68 14.46 14.45 14.52 14.49 14.48	+/- 10mV Redox ORP (mV) -15.7 -12.7 -8.7 -6.8 -5.4 6.4 7.1	DO (mg/L) 1.86 0.98 0.31 0.18 0.15 0.13	moderate light moderate light moderate light moderate light moderate light	turbidity, oc t brown turk t brown turk t brown turk t brown turk t brown turk t brown turk t brown turk	lours, other) Didity nil odour	
11:28 11:31 11:34 11:37 11:40 11:43 11:46	18 Cumulative Volume Removed (I) 0.1 0.7 1.3 1.9 2.5 3.1 3.7	= vol required for Water Level (m below MP) 3.24 3.24 3.24 3.24 3.24 3.24 3.24 3.24	Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm)	+/- 0.05 pH pH 6.53 6.53 6.51 6.47 6.45 6.41 6.40	+/- 10% Temp. (°C) 14.68 14.46 14.45 14.52 14.49 14.48	+/- 10mV Redox ORP (mV) -15.7 -12.7 -8.7 -6.8 -5.4 6.4 7.1	DO (mg/L) 1.86 0.98 0.31 0.18 0.15 0.13	moderate light moderate light moderate light moderate light moderate light	turbidity, oc t brown turk t brown turk t brown turk t brown turk t brown turk t brown turk t brown turk	lours, other) Didity nil odour	
11:28 11:31 11:34 11:37 11:40 11:43 11:46	18 Cumulative Volume Removed (I) 0.1 0.7 1.3 1.9 2.5 3.1 3.7	= vol required for Water Level (m below MP) 3.24 3.24 3.24 3.24 3.24 3.24 3.24 3.24	Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm)	+/- 0.05 pH pH 6.53 6.53 6.51 6.47 6.45 6.41 6.40	+/- 10% Temp. (°C) 14.68 14.46 14.45 14.52 14.49 14.48	+/- 10mV Redox ORP (mV) -15.7 -12.7 -8.7 -6.8 -5.4 6.4 7.1	DO (mg/L) 1.86 0.98 0.31 0.18 0.15 0.13	moderate light moderate light moderate light moderate light moderate light	turbidity, oc t brown turk t brown turk t brown turk t brown turk t brown turk t brown turk t brown turk	lours, other) Didity nil odour	
11:28 11:31 11:34 11:37 11:40 11:43 11:46	18 Cumulative Volume Removed (I) 0.1 0.7 1.3 1.9 2.5 3.1 3.7	= vol required for Water Level (m below MP) 3.24 3.24 3.24 3.24 3.24 3.24 3.24 3.24	Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm)	+/- 0.05 pH pH 6.53 6.53 6.51 6.47 6.45 6.41 6.40	+/- 10% Temp. (°C) 14.68 14.46 14.45 14.52 14.49 14.48	+/- 10mV Redox ORP (mV) -15.7 -12.7 -8.7 -6.8 -5.4 6.4 7.1	DO (mg/L) 1.86 0.98 0.31 0.18 0.15 0.13	moderate light moderate light moderate light moderate light moderate light	turbidity, oc t brown turk t brown turk t brown turk t brown turk t brown turk t brown turk t brown turk	lours, other) Didity nil odour	
11:28 11:31 11:34 11:37 11:40 11:43 11:46	18 Cumulative Volume Removed (I) 0.1 0.7 1.3 1.9 2.5 3.1 3.7	= vol required for Water Level (m below MP) 3.24 3.24 3.24 3.24 3.24 3.24 3.24 3.24	Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm)	+/- 0.05 pH pH 6.53 6.53 6.51 6.47 6.45 6.41 6.40	+/- 10% Temp. (°C) 14.68 14.46 14.45 14.52 14.49 14.48	+/- 10mV Redox ORP (mV) -15.7 -12.7 -8.7 -6.8 -5.4 6.4 7.1	DO (mg/L) 1.86 0.98 0.31 0.18 0.15 0.13	moderate light moderate light moderate light moderate light moderate light	turbidity, oc t brown turk t brown turk t brown turk t brown turk t brown turk t brown turk t brown turk	lours, other) Didity nil odour	
11:28 11:31 11:34 11:37 11:40 11:43 11:46	18 Cumulative Volume Removed (I) 0.1 0.7 1.3 1.9 2.5 3.1 3.7	= vol required for Water Level (m below MP) 3.24 3.24 3.24 3.24 3.24 3.24 3.24 3.24	Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm)	+/- 0.05 pH pH 6.53 6.53 6.51 6.47 6.45 6.41 6.40	+/- 10% Temp. (°C) 14.68 14.46 14.45 14.52 14.49 14.48	+/- 10mV Redox ORP (mV) -15.7 -12.7 -8.7 -6.8 -5.4 6.4 7.1	DO (mg/L) 1.86 0.98 0.31 0.18 0.15 0.13	moderate light moderate light moderate light moderate light moderate light	turbidity, oc t brown turk t brown turk t brown turk t brown turk t brown turk t brown turk t brown turk	lours, other) Didity nil odour	
11:28 11:31 11:34 11:37 11:40 11:43 11:46	18 Cumulative Volume Removed (I) 0.1 0.7 1.3 1.9 2.5 3.1 3.7	= vol required for Water Level (m below MP) 3.24 3.24 3.24 3.24 3.24 3.24 3.24 3.24	Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm)	+/- 0.05 pH pH 6.53 6.53 6.51 6.47 6.45 6.41 6.40	+/- 10% Temp. (°C) 14.68 14.46 14.45 14.52 14.49 14.48	+/- 10mV Redox ORP (mV) -15.7 -12.7 -8.7 -6.8 -5.4 6.4 7.1	DO (mg/L) 1.86 0.98 0.31 0.18 0.15 0.13	moderate light moderate light moderate light moderate light moderate light	turbidity, oc t brown turk t brown turk t brown turk t brown turk t brown turk t brown turk t brown turk	lours, other) Didity nil odour	
11:28 11:31 11:34 11:37 11:40 11:43 11:46	18 Cumulative Volume Removed (I) 0.1 0.7 1.3 1.9 2.5 3.1 3.7	= vol required for Water Level (m below MP) 3.24 3.24 3.24 3.24 3.24 3.24 3.24 3.24	Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm)	+/- 0.05 pH pH 6.53 6.53 6.51 6.47 6.45 6.41 6.40	+/- 10% Temp. (°C) 14.68 14.46 14.45 14.52 14.49 14.48	+/- 10mV Redox ORP (mV) -15.7 -12.7 -8.7 -6.8 -5.4 6.4 7.1	DO (mg/L) 1.86 0.98 0.31 0.18 0.15 0.13	moderate light moderate light moderate light moderate light moderate light	turbidity, oc t brown turk t brown turk t brown turk t brown turk t brown turk t brown turk t brown turk	lours, other) Didity nil odour	
11:28 11:31 11:34 11:37 11:40 11:43 11:46	18 Cumulative Volume Removed (I) 0.1 0.7 1.3 1.9 2.5 3.1 3.7	= vol required for Water Level (m below MP) 3.24 3.24 3.24 3.24 3.24 3.24 3.24 3.24	Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm)	+/- 0.05 pH pH 6.53 6.53 6.51 6.47 6.45 6.41 6.40	+/- 10% Temp. (°C) 14.68 14.46 14.45 14.52 14.49 14.48	+/- 10mV Redox ORP (mV) -15.7 -12.7 -8.7 -6.8 -5.4 6.4 7.1	DO (mg/L) 1.86 0.98 0.31 0.18 0.15 0.13	moderate light moderate light moderate light moderate light moderate light	turbidity, oc t brown turk t brown turk t brown turk t brown turk t brown turk t brown turk t brown turk	lours, other) Didity nil odour	

	nts are referen	ced to the mark	ed measurement				Lshoot	Env I	Monitoring	7	ventia	
Poro ID No	D	uэ									4.0	
		H2	=	Project Name						pling Staff		
Project Area:			Ī					-		ter Model		
	17/0		_	Project No					WQ. Met	er Serial #	.844337.	
	ected Bore D											
Internal Dia	ameter (mm)			Easting		-	Total I	Depth (m)		Screen	Depth From (m))
Drop Tube already ir	n bore? (Y/N)	N		Northing			Water	Level (m)		Scre	en Depth To (m))
Drop Tub	e Length (m)	0.00		Zone		-	Set Pump ir	nlet at (m)		_	Set Pump at (m))
Additiona	l Information											_
Bore F	ield Measur	ements										
Time of SWL	7:30	To	otal Depth (m)	5.00	Mid-screen	accessible?	Clea	ar	_ Depth pump	set at (m)		
Static Water Level (m)	2.98	Во	re Diam (mm)	50	Open Scree	n Length(m)	0.00		Depth of pump	o inlet (m)		
	II Purging De				Sampling D	etails			Sar	mple Bott	tles Required	
Purge Method					oling Method		.		Bottle Type	Quantity	Bottle Type	Quantity
Time Pump in					Time Started							
		WL m (start)			me Stopped							
Time Stopped		-	2.90		sample ID?							
Volume Removed (I)		5			sample ID?		5					
Discharge Rate (I/m)				Rinsate	sample ID?		_					
Time of removal	ump Remov		n(post-removal)		Poro Dor	oth at end (m)						
	Pump Setting		п(розгчетночаг)		Bole De	otir at end (iii)						
Fill / Discharge used		CPM		Air/Gas	Pressure (kPa)							
		-		-		Bore Bailed						
Comments							11					
					Bore I	oartially bloc	кеа					
		Field Parameters	are considered sta	able when within the	o EDA limite for 2	consocutivo mo	acuramente					_
		ricia i arameters	are considered ste	able when within th	IC EI A III III II I I I	CONSCIGNIVE INC	addictificints					
	12	= vol required for	3V method (I)	+/- 3%	+/- 0.05 pH	+/- 10%	+/- 10mV	+/- 10%	Ī			
Time	12 Cumulative	= vol required for Water Level (m	3V method (L) Stability of Field	+/- 3% Specific Conductance	+/- 0.05 pH pH	+/- 10% Temp.	+/- 10mV Redox	+/- 10% DO		Commen	its (colour,	
Time											ats (colour, dours, other)	
Time 8:00	Cumulative Volume	Water Level (m	Stability of Field	Specific Conductance EC (uS/cm)		Temp.	Redox	DO	turbid red color	turbidity, od	dours, other)	
	Cumulative Volume Removed (I)	Water Level (m below MP)	Stability of Field Params	Specific Conductance EC (uS/cm) @25°C	рН	Temp.	Redox ORP (mV)	DO (mg/L)	turbid red color	turbidity, od	dours, other)	
	Cumulative Volume Removed (I)	Water Level (m below MP)	Stability of Field Params	Specific Conductance EC (uS/cm) @25°C	рН	Temp.	Redox ORP (mV)	DO (mg/L)	turbid red color	turbidity, od	dours, other)	
	Cumulative Volume Removed (I)	Water Level (m below MP)	Stability of Field Params	Specific Conductance EC (uS/cm) @25°C	рН	Temp.	Redox ORP (mV)	DO (mg/L)	turbid red color	turbidity, od	dours, other)	
	Cumulative Volume Removed (I)	Water Level (m below MP)	Stability of Field Params	Specific Conductance EC (uS/cm) @25°C	рН	Temp.	Redox ORP (mV)	DO (mg/L)	turbid red color	turbidity, od	dours, other)	
	Cumulative Volume Removed (I)	Water Level (m below MP)	Stability of Field Params	Specific Conductance EC (uS/cm) @25°C	рН	Temp.	Redox ORP (mV)	DO (mg/L)	turbid red color	turbidity, od	dours, other)	
	Cumulative Volume Removed (I)	Water Level (m below MP)	Stability of Field Params	Specific Conductance EC (uS/cm) @25°C	рН	Temp.	Redox ORP (mV)	DO (mg/L)	turbid red color	turbidity, od	dours, other)	
	Cumulative Volume Removed (I)	Water Level (m below MP)	Stability of Field Params	Specific Conductance EC (uS/cm) @25°C	рН	Temp.	Redox ORP (mV)	DO (mg/L)	turbid red color	turbidity, od	dours, other)	
	Cumulative Volume Removed (I)	Water Level (m below MP)	Stability of Field Params	Specific Conductance EC (uS/cm) @25°C	рН	Temp.	Redox ORP (mV)	DO (mg/L)	turbid red color	turbidity, od	dours, other)	
	Cumulative Volume Removed (I)	Water Level (m below MP)	Stability of Field Params	Specific Conductance EC (uS/cm) @25°C	рН	Temp.	Redox ORP (mV)	DO (mg/L)	turbid red color	turbidity, od	dours, other)	
	Cumulative Volume Removed (I)	Water Level (m below MP)	Stability of Field Params	Specific Conductance EC (uS/cm) @25°C	рН	Temp.	Redox ORP (mV)	DO (mg/L)	turbid red color	turbidity, od	dours, other)	
	Cumulative Volume Removed (I)	Water Level (m below MP)	Stability of Field Params	Specific Conductance EC (uS/cm) @25°C	рН	Temp.	Redox ORP (mV)	DO (mg/L)	turbid red color	turbidity, od	dours, other)	
	Cumulative Volume Removed (I)	Water Level (m below MP)	Stability of Field Params	Specific Conductance EC (uS/cm) @25°C	рН	Temp.	Redox ORP (mV)	DO (mg/L)	turbid red color	turbidity, od	dours, other)	
	Cumulative Volume Removed (I)	Water Level (m below MP)	Stability of Field Params	Specific Conductance EC (uS/cm) @25°C	рН	Temp.	Redox ORP (mV)	DO (mg/L)	turbid red color	turbidity, od	dours, other)	
	Cumulative Volume Removed (I)	Water Level (m below MP)	Stability of Field Params	Specific Conductance EC (uS/cm) @25°C	рН	Temp.	Redox ORP (mV)	DO (mg/L)	turbid red color	turbidity, od	dours, other)	
	Cumulative Volume Removed (I)	Water Level (m below MP)	Stability of Field Params	Specific Conductance EC (uS/cm) @25°C	рН	Temp.	Redox ORP (mV)	DO (mg/L)	turbid red color	turbidity, od	dours, other)	
	Cumulative Volume Removed (I)	Water Level (m below MP)	Stability of Field Params	Specific Conductance EC (uS/cm) @25°C	рН	Temp.	Redox ORP (mV)	DO (mg/L)	turbid red color	turbidity, od	dours, other)	
	Cumulative Volume Removed (I)	Water Level (m below MP)	Stability of Field Params	Specific Conductance EC (uS/cm) @25°C	рН	Temp.	Redox ORP (mV)	DO (mg/L)	turbid red color	turbidity, od	dours, other)	
	Cumulative Volume Removed (I)	Water Level (m below MP)	Stability of Field Params	Specific Conductance EC (uS/cm) @25°C	рН	Temp.	Redox ORP (mV)	DO (mg/L)	turbid red color	turbidity, od	dours, other)	
	Cumulative Volume Removed (I)	Water Level (m below MP)	Stability of Field Params	Specific Conductance EC (uS/cm) @25°C	рН	Temp.	Redox ORP (mV)	DO (mg/L)	turbid red color	turbidity, od	dours, other)	
	Cumulative Volume Removed (I)	Water Level (m below MP)	Stability of Field Params	Specific Conductance EC (uS/cm) @25°C	рН	Temp.	Redox ORP (mV)	DO (mg/L)	turbid red color	turbidity, od	dours, other)	
	Cumulative Volume Removed (I)	Water Level (m below MP)	Stability of Field Params	Specific Conductance EC (uS/cm) @25°C	рН	Temp.	Redox ORP (mV)	DO (mg/L)	turbid red color	turbidity, od	dours, other)	
	Cumulative Volume Removed (I)	Water Level (m below MP)	Stability of Field Params	Specific Conductance EC (uS/cm) @25°C	рН	Temp.	Redox ORP (mV)	DO (mg/L)	turbid red color	turbidity, od	dours, other)	

INSTRUMENTATION -INTERMEDIATE VERIFICATION AND CALIBRATION

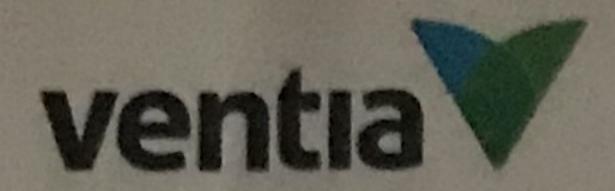
Serial no.: 07510

Model no.: Aqua troll 500

Centre: Burwood

Parameter:

(EC, DO, TU, pH, Temperature, Redox)


Date of verification			Res	sults			Comments		
/calibration	EVPORTOR	Observed	Adjusted	Batch no.	Slope mV	Asy mV		initials	
13/2/23	4.01	4.06	7				pH	AC	
13/2/23	7.00	702	Y				pH	AC	
13/2/23	10.01	9.87	Y				pH	AC	
13/2/23	0	4	N				EC	AC	
13/21/23	1413	1399	Y				EC	AC	
13/2/23	100%	99.4	Y				DO	AC	
13/2123	249.9	251.6	Y				REDOX	AC	
1 1									
14/2/23	4.01	4.03	Y				pH	AC	
14/2/23	7.00	7.01	7				pH	AC	
14/2/23	10.01	9.98	Y		Y Y		pH	AC	
14/21 73	0	4	N		N		EC	AC	
4/2/23	1413	1421	Y				EC	AC	
4/2/23	100%	95.8	Y				DO	AC	
412123	250.2	250.3	y				REDOX	AC	
1 1									
5/2/23	4.01	4.06	1				pH	AC	
512123	7.00	7.04	Y				pH	AC	
5/2/23	10.01	10.01	Y				pH	AC	
12/23		4	N				EC	AC	
5/2/23		1419	Y				EC	AC	
5/2/23	100%	99.3	Y				DO	AC	
121 23	250.2	250.4	•				REDOX	AC	

*If standards are not used to calibrate instrument - explanation required under comments

Water quality measurements where Q = 10 shall meet the following calibration limits

EC	pH	Turbidity	DO	Temperature	
Standard +/- 5%	Standard +/- 0.1	Standard +/- 3%	<+/-2% FS		
+/- 10 µS/cm < 1,000	4 3.9 - 4.1	0 - 10 = 0.10 NTU	(0-20mg/l)	+/-0.2°C	
+/- 100 µS/cm > 1,000	7 6.9 - 7.1	0 - 100 = 1.00 NTU		(When a temperature stabilised environment	
	10 9.9 - 10.1	0 - 1000 = 10.00 NTU	<+/- 0.4 mg/l (0-20mg/l)	can be created)	

WQ Instruments that require continual calibration from initial values outside the above tolerance ranges using the specified solutions will need to be returned to the manufacturer for assessment or repair.

INSTRUMENTATION INTERMEDIATE VERIFICATION AND CALIBRATION

Serial no.: 07510

Centre: Burwood

Model no.: Aqua troll 500

Parameter:

(EC, DO, TU, pH, Temperature, Redox)

Date of			Res	ults			Comments	Staff
verification /calibration	Expected	Observed	Adjusted	Batch no.	Slope mV	Asy mV		HIIILIAIS
16/2/23	4.01	3.99	Y				pH	AC
16/2/23	7.00	6.98	Y				pH	AC
16/2/23	10.01	10.0	Y				pH	AC
	0	4	N				EC	AC
	1413	1419	y				EC	AC
16/2/23	100%	99.3	Y				DO	AC
16/2/23	250.4	250.8	Y				REDOX	AC
16/2/23								
	4.01	4.00	Y				pH	AC
17/2/23	7.00	7.00	Y				pH	AC
17/2/23	10.01	9.93	Y				pH	AC
17/2/23	0	3	N				EC	AC
17/2/23	1413	1415	Y				EC	AC
17/2/23	100%	101.4	Y				DO	AC
17/2/23	2508		V				REDOX	AC
1 1								
1 1	4.01						pH	AC
1 1	7.00						pH	AC
1 1	10.01						pH	AC
1 1	0						EC	AC
1 1	1413						EC	AC
1 1	100%						DO	AC
1 1							REDOX	AC

*If standards are not used to calibrate instrument - explanation required under comments

Water quality measurements where Q = 10 shall meet the following calibration limits

EC	pH	Turbidity	DO	Temperature
Standard +/- 5%	Standard +/- 0.1	Standard +/- 3%	<+/-2% FS	1000
+/- 10 µS/cm < 1,000	4 3.9 - 4.1	0 - 10 = 0.10 NTU	(0-20mg/l)	+/-0.2°C (When a temperature
+/- 100 µS/cm > 1,000	7 6.9 - 7.1	0 - 100 = 1.00 NTU	<+/- 0.4 mg/l	stabilised environment
	10 9.9 - 10.1	0 - 1000 = 10.00 NTU	(0-20mg/l)	can be created)

WQ Instruments that require continual calibration from initial values outside the above tolerance ranges using the specified solutions will need to be returned to the manufacturer for assessment or repair.

Ventia Landfill Subsurface Gas Monitoring - Field Sheet

Project	Creswick Landfill
Client	Hepburn Shire
Job Location	Creswick Landfill
Sampling Staff	Andrew Callander
Instrument Type	GA 5000
Instrument Serial Number	G500274
Calibration Record Supplied (Y/N)	Υ
Weather & Temperature	23 degrees / 8km wind
Site Ground Conditions	Moist
Barometric Pressure	967

General Comments

BH 12's J plug was not sealed properly which may have affected readings from this bore

LFG ID	Date	Time	Peak Flow (I/hr)	Stabilised Flow (I/hr)	SWL (mBTOC)	Depth (mBTOC)	Bore & Headworks Condition	Comments
BH11	13/02/2023	15:15	0	0	DRY	10.33	Good cond	
BH12	13/02/2023	15:00	0	0	DRY	6.57	J Plug does not seal properly	J plug needs replacing
BH10	13/02/2023	13:32	0	0	2.44	6.7	Good cond	
BH9	13/02/2023	12:50	0	0	DRY	6.84	Good cond	

[#] Instrumentation Gas Readings recorded on instrument data export

Table 1: Subsurface Gas Bore Results (FEB 2023)

ID	DATE and TIME	CH4	CO2	02	PEAKCH4	PEAKCO2	MIN O2	BARO	REL.PRESSURE	rernal flo	CO	H2S
ID	ID DATE and Thivie	%	%	%	%	%	%	mb	mb	l/h	ppm	ppm
BH12*	13/02/2023 15:00:00	44.9	17.1	0	45	17.1	0	967	0.23	0	2	1
BH9	13/02/2023 12:50:00	0	5.5	17.2	0	5.5	17.2	967	0.11	0.2	0	0
BH11	13/02/2023 15:15:00	0	2.2	18.6	0	2.2	18.6	967	0.12	0.3	0	0
BH10	13/02/2023 14:53:00	0	5.1	14.2	0	5.1	14.2	967	0.11	0.2	0	0
Notes:		Exceedance of A	ceedance of Adopted Assesment Criteria									

Methane 1% v/v (EPA Victoria, Best Practice Environmental Management, Siting, design, operation and rehabilitation of landfills, 2015) Carbon Dioxide 10% v/v (Mackenzie 2016)

^{*} not applicable due to location within waste mass

Ventia Landfill Building Gas Monitoring - Field Sheet

Project	Creswick Landfill
Client	Hepburn Shire
Job Location	Landfill Cap Workover
Sampling Staff	Andrew Callander
Instrument Type	Inspectra laser
Instrument Serial Number	34090717
Calibration Record Supplied (Y/N)	Υ
Weather and Temperature	23 degrees / 8 km wind
Site Ground Conditions	Dry
Barometric Pressure	467

General Comments

Locations as per Landserv Service location map

970

Location #	Date	Time	CH ₄ Concentration (ppm)	Building and service condition	Sample Location Notes
B1	13/02/2023	13:48	1.9	Good condition	Taken at foot of office building
B2	13/02/2023	13:49	1.8	Good condition	-
В3	13/02/2023	13:49	1.4	Good condition	-
B4	13/02/2023	13:49	1.4	Good condition	-
B5	13/02/2023	13:50	2.1	Good condition	Taken at foot of office building
B6	13/02/2023	13:50	2.2	Good condition	-
B7	13/02/2023	13:51	2	Good condition	-
B8	13/02/2023	13:51	2.4	Good condition	-
В9	13/02/2023	13:53	1.1	Good condition	taken on inside edge of open shed
B10	13/02/2023	13:53	0.7	Good condition	-
B11	13/02/2023	13:55	1	Good condition	taken on inside edge of open shed
B12	13/02/2023	13:56	1.1	Good condition	-
B13	13/02/2023	13:56	0.8	Good condition	-
B14	13/02/2023	14:22	0.6	Good condition	could not access shed - taken at base of slab
B15	13/02/2023	14:23	0.8	Good condition	-
B16	13/02/2023	14:24	0.8	Good condition	-
B17	13/02/2023	14:06	0.9	Good condition	Taken under outer edge of shed / slab
B18	13/02/2023	14:06	1.1	Good condition	-
B19	13/02/2023	14:07	0.8	Good condition	-
B20	13/02/2023	14:07	0.9	Good condition	-
TP1	13/02/2023	14:02	0.8	Good condition	drain / pit
TP2	13/02/2023	14:04	0.9	Good condition	-
TP3	13/02/2023	14:03	0.8	Good condition	-
TP4	13/02/2023	14:03	1.2	Good condition	-
TP5	13/02/2023	14:03	0.9	Good condition	-
TP6	13/02/2023	13:59	1.1	unknown	cannot locate taken in area
TP7	13/02/2023	13:59	2.4	Good condition	-
TP8	13/02/2023	13:59	2.2	Good condition	-
TP9	13/02/2023	13:59	2.7	Good condition	-
TP10	13/02/2023	13:59	2.6	Good condition	-
TP11 (new)	13/02/2023	14:28	2.8	Good condition	in front of green waste pile

RETURN DATE: /

Document No: 2005 Reviewed by: IT Approved by: R&WM Issued date: 25/11/21

EQUIPMENT QUALITY REPORT

Inspectra Laser Equipment Code: MIL-1217 Serial Number: 4531217

☑ Eq	Equipment is clean Pump and battery voltage check									
Calibrat	Calibration Results									
Parame	ter	Standard	Result	Error Ra	nge					
CH4		Methane by 500ppm	505ppm	± 25 ppr	n	66 – WO283592-2 Exp.12/01/2026				
Date:		10/02/2023 Frederick Campbell								
Please ch	*For quality control purposes HydroTerra can supply gas calibration data Please check that the following items are received and all items are returned. Please clean equipment before retuning. A minimum \$20 service/repair charge applies to any unclean or damaged items.									
Photo Ref.		klist Item photo at the back of the)	HT id No.	Sent?	Return?	Comments				
1		Case	N/A	✓						
2		ectra Laser	MIL-1217	✓						
3		oling Probe joint	N/A	√						
4		oling Probe 600mm	N/A	√						
5		copic rod with Suction cup	N/A	√						
6		Battery & charger 240/110V	N/A	✓						
7	$\overline{}$	V 500mA	N1/A	 						
7		e filter 5 – Screw driver	N/A	V ✓						
8	$\overline{}$	& Tag	N/A N/A	\ \ \ \ \						
	rest	x rag	IN/A	1 ,						
	☑ Equipment voltage ☑ Pre-delivery Calibration Test Complete Date:10/02/2023									
Date.		10/02/2023	_							
Calibrate	ed by:	Frederick Campbell								
HT JOB N	HT JOB NO: 20523 CLIENTS REF: P/O No: TBC									

CONDITION ON RETURN:

TIME:

Document No: 2005 Reviewed by: IT Approved by: R&WM Issued date: 25/11/21

RETURN DATE:

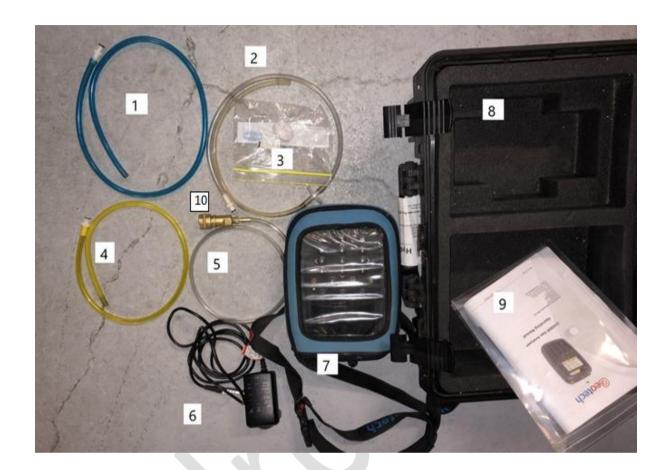
Document No: 2003
Reviewed by: IT
Approved by: R&WM
Issued date: 25/11/21

EQUIPMENT QUALITY REPORT

GA5000

Equipment Code: MLG-7420 Serial Number: G507420

Param	ation Result					1 - 11	
Param		1		l a	1		ration Gas (Expiry Date)
	eter	Standard		Result		nge	
CH4		Methane by Volume	60%	60.2%	± 2%	WO3	28585-4 Exp: 15/12/26
CO2		Carbon Dioxide by volu	me 40%	0% 40% ± 2%		WO3	28585-4 Exp: 15/12/26
H2S		Hydrogen Sulphide	25 ppm	25 ppm	± 2 ppm	WO3	23447-25 Exp: 1/23
O2		Oxygen	18%	18%	± 0.2%	WO3	23447-25 Exp: 1/23
СО		Carbon Monoxide	50 ppm	50 ppm	± 2ppm	WO3	36583-4 Exp: 2/2/27
Photo Ref.	Checklist	ng. A minimum \$20 servi		HT Id No.	Sent?	Returned?	Comments
1		ng with an inlet barb fittir		N/A	✓		
2		ng with an inlet Brass Ex- tting (filter attached)	сар	N/A	'		
3		ter trap filter(s) Qty 1		N/A	✓		
4	Yellow tul	bing with an inlet barb fit	ting	N/A	✓		
5	Clear tubi	ng		N/A	✓		
6	Charger 2	40/110V to 12V 500mA		N/A	✓		
7	GA5000 w	vith a carry bag	1	MLG-7420	✓		
8	Hard case			N/A	✓		
9	Instructio	n Manual		N/A	✓		
10	Well cap f			N/A	✓		
-	Test & Ta			N/A			
		t voltage	I√I Dro	e-delivery Calib	nration Test (`omnlete	


CONDITION ON RETURN:

TIME:

Document No: 2003 Reviewed by: IT Approved by: R&WM Issued date: 25/11/21

SAMPLING RESULTS SUBMISSION SHEET (SAMPLING UNDERTAKEN BY VENTIA)

Client: Hepburn Shire Council
Site: Creswick Landfill

Program: Groundwater/Surface Water Sampling

Samping Period: May 23
Sampler: A Callander
Phone: 427529051

Bore/Sample Point	Date	Time (EST)	Depth (mbmp)	SWL m (mbtoc)	рН	Electrical Conductivity (us/cm @ 25°C)	DO (mg/L)	Temp. (°C)	Redox (mV)	Comments
LB1	10/05/2023	-	-	13.33	-	-	-	-	-	No sample. Bore blocked
LB2	10/05/2023	-	-	14.17	-	-	-	-	-	No sample. Bore blocked
LB3	10/05/2023	-		10.70						SWL only.
Creek U/S BH3	11/05/2023	12:45			6.71	622	4.92	9.9	43.6	
Creek @ BH3	11/05/2023	12:30			6.71	911	4.47	9.4	18.2	
Creek D/S BH3	11/05/2023	10:30			6.91	648	5.71	9.6	94.4	
Leachate Pond	9/05/2023	16:01			6.84	900	3.57	12.3	46.3	
Wetland	6/05/2023	16:09			6.94	1170	0.32	13.3	-30.8	
Dredge hole	9/05/2023	16:24			6.63	818	4.03	11.9	3.8	
ВН1	10/05/2023	-	-	-	-	-	-	-	-	Bore lost.
BH2	10/05/2023	14:26	4.98	2.90	5.59	673	4.53	16.1	117.7	Bailed sample due to resricting bend in bore casing.
внз	10/05/2023	12:22	3.89	0.60	6.51	2541	0.18	13.3	-36.9	Yellow brown slightly turbid nil odour
BH4	10/05/2023	16:15	7.92	5.33	5.83	1907	0.5	13.4	29.9	Yellow silver turbidity very slight odour

Bore/Sample Point	Date	Time (EST)	Depth (mbmp)	SWL m (mbtoc)	рН	Electrical Conductivity (us/cm @ 25°C)	DO (mg/L)	Temp. (°C)	Redox (mV)	Comments
ВН6	10/05/2023	10:11	15.50	11.96	4.97	563	0.56	14.9	229.4	Slight light coloured turbidity nil odour
ВН7	10/05/2023	13:39	7.18	2.31	6.76	736	0.18	13.8	-28.4	Light Yellow Brown turbidity. No odour.
ВН8	10/05/2023	11:38	7.57	3.00	6.62	728	0.22	15.4	-74.4	Dark grey brown, thick turb, no odour.
BH10	9/05/2023	15:31	6.74	2.44	5.57	645	0.26	15.2	90.5	Highly turbid, yellow/brown nil odour
BH14	11/05/2023	11:59	6.29	2.84	6.40	1141	0.25	14.9	9.2	Brown turbidity nil odour

NOTES:

Groundwater samples taken using the low-flow method (as per EPA Publication 669) unless otherwise noted All depths measured from the top of the PVC casing

¹ 2

	nts are referen	ced to the mark	red measureme				shoot	Env I	Monitoring	~	ventia	
Poro ID No		H2									4.0	
			=	Project Name				-		pling Staff		
Project Area:								=		ter Model		
	10/0			Project No					WQ. Met	er Serial #	.844337.	
	ected Bore D											
Internal Dia	ameter (mm)		Ī	Easting			Total I	Depth (m)		Screen	Depth From (m))
Drop Tube already ir	n bore? (Y/N)	N		Northing			Water	Level (m)		Scre	en Depth To (m))
Drop Tub	e Length (m)	0.00		Zone			Set Pump ir	nlet at (m)		-	Set Pump at (m))
Additiona	l Information											_
Bore F	ield Measur	ements										
Time of SWL	14:26	To	otal Depth (m)	4.98	Mid-screen	accessible?	Clea	ar	_ Depth pump	set at (m)		
Static Water Level (m)	2.90	Во	re Diam (mm)	50	Open Scree	n Length(m)	0.00		Depth of pump	o inlet (m)		
	II Purging De				Sampling D	etails			Sar	mple Bott	tles Required	
Purge Method		T .			oling Method		.		Bottle Type	Quantity	Bottle Type	Quantity
		Pump in' WL			Time Started							
		WL m (start)			me Stopped							
Time Stopped		-	2.90		sample ID?							
Volume Removed (I)		=			sample ID?		.					
Discharge Rate (I/m)				Rinsate	sample ID?							
Time of removal	ump Remov		n(post-removal)		Poro Dor	oth at end (m)						
	Pump Setting		п(розиченночан)		Bole De	our at end (m)						
Fill / Discharge used		CPM		Air/Gas	Pressure (kPa)							
				-		Bore Bailed						
Comments)						11					
					Bore I	partially bloc	кеа					
		Field Parameter	are considered sta	able when within the	o EDA limite for 2	consecutive me	acuraments					_
		ricia i alameteis	are considered ste	TOIC WITCH WITHIT II	IC LI A III III II I I I							
	12	= vol required for	3V method (I)	+/- 3%	+/- 0.05 pH	+/- 10%		+/- 10%	Ī			
Terro	12 Cumulative	= vol required for Water Level (m	3V method (L) Stability of Field	+/- 3% Specific Conductance	+/- 0.05 pH pH	+/- 10% Temp.	+/- 10mV Redox	+/- 10% DO		Commen	its (colour,	
Time							+/- 10mV				ats (colour, dours, other)	
Time 15:00	Cumulative Volume	Water Level (m	Stability of Field	Specific Conductance EC (uS/cm)		Temp.	+/- 10mV Redox	DO	turbid red color	turbidity, od	dours, other)	
	Cumulative Volume Removed (I)	Water Level (m below MP)	Stability of Field Params	Specific Conductance EC (uS/cm) @25°C	рН	Temp.	+/- 10mV Redox ORP (mV)	DO (mg/L)	turbid red color	turbidity, od	dours, other)	
	Cumulative Volume Removed (I)	Water Level (m below MP)	Stability of Field Params	Specific Conductance EC (uS/cm) @25°C	рН	Temp.	+/- 10mV Redox ORP (mV)	DO (mg/L)	turbid red color	turbidity, od	dours, other)	
	Cumulative Volume Removed (I)	Water Level (m below MP)	Stability of Field Params	Specific Conductance EC (uS/cm) @25°C	рН	Temp.	+/- 10mV Redox ORP (mV)	DO (mg/L)	turbid red color	turbidity, od	dours, other)	
	Cumulative Volume Removed (I)	Water Level (m below MP)	Stability of Field Params	Specific Conductance EC (uS/cm) @25°C	рН	Temp.	+/- 10mV Redox ORP (mV)	DO (mg/L)	turbid red color	turbidity, od	dours, other)	
	Cumulative Volume Removed (I)	Water Level (m below MP)	Stability of Field Params	Specific Conductance EC (uS/cm) @25°C	рН	Temp.	+/- 10mV Redox ORP (mV)	DO (mg/L)	turbid red color	turbidity, od	dours, other)	
	Cumulative Volume Removed (I)	Water Level (m below MP)	Stability of Field Params	Specific Conductance EC (uS/cm) @25°C	рН	Temp.	+/- 10mV Redox ORP (mV)	DO (mg/L)	turbid red color	turbidity, od	dours, other)	
	Cumulative Volume Removed (I)	Water Level (m below MP)	Stability of Field Params	Specific Conductance EC (uS/cm) @25°C	рН	Temp.	+/- 10mV Redox ORP (mV)	DO (mg/L)	turbid red color	turbidity, od	dours, other)	
	Cumulative Volume Removed (I)	Water Level (m below MP)	Stability of Field Params	Specific Conductance EC (uS/cm) @25°C	рН	Temp.	+/- 10mV Redox ORP (mV)	DO (mg/L)	turbid red color	turbidity, od	dours, other)	
	Cumulative Volume Removed (I)	Water Level (m below MP)	Stability of Field Params	Specific Conductance EC (uS/cm) @25°C	рН	Temp.	+/- 10mV Redox ORP (mV)	DO (mg/L)	turbid red color	turbidity, od	dours, other)	
	Cumulative Volume Removed (I)	Water Level (m below MP)	Stability of Field Params	Specific Conductance EC (uS/cm) @25°C	рН	Temp.	+/- 10mV Redox ORP (mV)	DO (mg/L)	turbid red color	turbidity, od	dours, other)	
	Cumulative Volume Removed (I)	Water Level (m below MP)	Stability of Field Params	Specific Conductance EC (uS/cm) @25°C	рН	Temp.	+/- 10mV Redox ORP (mV)	DO (mg/L)	turbid red color	turbidity, od	dours, other)	
	Cumulative Volume Removed (I)	Water Level (m below MP)	Stability of Field Params	Specific Conductance EC (uS/cm) @25°C	рН	Temp.	+/- 10mV Redox ORP (mV)	DO (mg/L)	turbid red color	turbidity, od	dours, other)	
	Cumulative Volume Removed (I)	Water Level (m below MP)	Stability of Field Params	Specific Conductance EC (uS/cm) @25°C	рН	Temp.	+/- 10mV Redox ORP (mV)	DO (mg/L)	turbid red color	turbidity, od	dours, other)	
	Cumulative Volume Removed (I)	Water Level (m below MP)	Stability of Field Params	Specific Conductance EC (uS/cm) @25°C	рН	Temp.	+/- 10mV Redox ORP (mV)	DO (mg/L)	turbid red color	turbidity, od	dours, other)	
	Cumulative Volume Removed (I)	Water Level (m below MP)	Stability of Field Params	Specific Conductance EC (uS/cm) @25°C	рН	Temp.	+/- 10mV Redox ORP (mV)	DO (mg/L)	turbid red color	turbidity, od	dours, other)	
	Cumulative Volume Removed (I)	Water Level (m below MP)	Stability of Field Params	Specific Conductance EC (uS/cm) @25°C	рН	Temp.	+/- 10mV Redox ORP (mV)	DO (mg/L)	turbid red color	turbidity, od	dours, other)	
	Cumulative Volume Removed (I)	Water Level (m below MP)	Stability of Field Params	Specific Conductance EC (uS/cm) @25°C	рН	Temp.	+/- 10mV Redox ORP (mV)	DO (mg/L)	turbid red color	turbidity, od	dours, other)	
	Cumulative Volume Removed (I)	Water Level (m below MP)	Stability of Field Params	Specific Conductance EC (uS/cm) @25°C	рН	Temp.	+/- 10mV Redox ORP (mV)	DO (mg/L)	turbid red color	turbidity, od	dours, other)	
	Cumulative Volume Removed (I)	Water Level (m below MP)	Stability of Field Params	Specific Conductance EC (uS/cm) @25°C	рН	Temp.	+/- 10mV Redox ORP (mV)	DO (mg/L)	turbid red color	turbidity, od	dours, other)	
	Cumulative Volume Removed (I)	Water Level (m below MP)	Stability of Field Params	Specific Conductance EC (uS/cm) @25°C	рН	Temp.	+/- 10mV Redox ORP (mV)	DO (mg/L)	turbid red color	turbidity, od	dours, other)	
	Cumulative Volume Removed (I)	Water Level (m below MP)	Stability of Field Params	Specific Conductance EC (uS/cm) @25°C	рН	Temp.	+/- 10mV Redox ORP (mV)	DO (mg/L)	turbid red color	turbidity, od	dours, other)	
	Cumulative Volume Removed (I)	Water Level (m below MP)	Stability of Field Params	Specific Conductance EC (uS/cm) @25°C	рН	Temp.	+/- 10mV Redox ORP (mV)	DO (mg/L)	turbid red color	turbidity, od	dours, other)	

Notes: All bore measuremen	nts are referenc	ced to the marke					Lshoot	Env. N	Monitorin		ventia	
David ID No.	D	Пэ			•	Ü		· EIIV I		Ü	40	
	В	H3	- '	Project Name		•				npling Staff		
Project Area:											Aqua troll	
Date		5/2023		Project No					WQ. Me	ter Serial #	,05710	
Expe	cted Bore D	etails										
Internal Dia	meter (mm)		Ī	Easting		-	Total [Depth (m)		Screen	Depth From (m)	
Drop Tube already in	bore? (Y/N)	N		Northing		=	Water	Level (m)		Scree	en Depth To (m)	
Drop Tube	e Length (m)	0.00		Zone			Set Pump in	let at (m)			Set Pump at (m)	
Additional	Unformation		-							_		
	eld Measure											-
Time of SWL			otal Depth (m)	3.89	Mid-screen	accessible?	Clea	ar	Depth pump	set at (m)	2.50	
Static Water Level (m)			re Diam (mm)	50	•	n Length(m)			Depth of pur	•		
Well	l Purging De	etails			Sampling D						les Required	
Purge Method	LF	Pump Type	Micro purge	Samp	oling Method	LF			Bottle Type	Quantity	Bottle Type	Quantity
Time Pump in	11:58	Pump in' WL	0.58		Time Started	12:22	WL m (start)	0.61				
Time Started	12:00	WL m (start)	0.58	Ti	me Stopped	12:30	WL m (end)	0.61				
Time Stopped	12:19	WL m (end)	0.61	·	sample ID?							
Volume Removed (I)	3.1	-		Triplicate	sample ID?		-					
Discharge Rate (I/m)				Rinsate	sample ID?							
	ump Remov			0.40			2.22					
Time of removal			n(post-removal)	0.62	Bore De	oth at end (m)	3.89					
Fill / Discharge used	ump Setting 25/5	JS CPM		Air/Gas	Pressure (kPa)	30						
Comments		0.111			measured to		a mot cours					
Comments					measured to	top or casing	J Hot Cover					
		Field Parameters	are considered sta	ble when within th	ne EPA limits for 3	consecutive me	easurements					
	19	Field Parameters		ble when within th	ne EPA limits for 3	consecutive me	easurements +/- 10mV	+/- 10%]			
Time		= vol required for Water Level (m	3V method (L) Stability of Field	+/- 3% Specific Conductance				+/- 10% DO		Commen	ts (colour,	
Time	19 Cumulative	= vol required for	3V method (L)	+/- 3% Specific	+/- 0.05 pH	+/- 10%	+/- 10mV			Commen turbidity, oc		
Time 12:01	19 Cumulative Volume	= vol required for Water Level (m	3V method (L) Stability of Field	+/- 3% Specific Conductance EC (uS/cm) @25°C 2541	+/- 0.05 pH	+/- 10% Temp. (°C)	+/- 10mV Redox	DO	Yellow brown	turbidity, od	dours, other)	
12:01 12:04	19 Cumulative Volume Removed (I)	= vol required for Water Level (m below MP)	3V method (L) Stability of Field Params	+/- 3% Specific Conductance EC (uS/cm) @25°C	+/- 0.05 pH pH	+/- 10% Temp. (°C)	+/- 10mV Redox ORP (mV) -7.9	DO (mg/L) 1.62 0.26	Yellow brown	turbidity, oc slightly turbi	id nil odour	
12:01 12:04 12:07	19 Cumulative Volume Removed (I)	= vol required for Water Level (m below MP)	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) @25°C 2541	+/- 0.05 pH pH 6.55	+/- 10% Temp. (°C) 12.27 12.95	+/- 10mV Redox ORP (mV)	DO (mg/L) 1.62	Yellow brown	turbidity, oc slightly turbi slightly turbi	id nil odour id nil odour	
12:01 12:04 12:07 12:10	19 Cumulative Volume Removed (I) 0.1 0.6	= vol required for Water Level (m below MP) 0.61	3V method (L) Stability of Field Params Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) @25°C 2541 2550	+/- 0.05 pH pH 6.55 6.50	+/- 10% Temp. (°C) 12.27 12.95	+/- 10mV Redox ORP (mV) -7.9	DO (mg/L) 1.62 0.26	Yellow brown : Yellow brown :	turbidity, oc slightly turbi slightly turbi slightly turbi	id nil odour id nil odour id nil odour id nil odour	
12:01 12:04 12:07 12:10	19 Cumulative Volume Removed (I) 0.1 0.6 1.1 1.6 2.1	= vol required for Water Level (m below MP) 0.61 0.61 0.61 0.61	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) @25°C 2541 2550 2547 2547	+/- 0.05 pH pH 6.55 6.50 6.50 6.50	+/- 10% Temp. (°C) 12.27 12.95 13.10 13.26 13.31	+/- 10mV Redox ORP (mV) -7.9 -11.6 -21.0 -26.9	DO (mg/L) 1.62 0.26 0.20 0.23 0.18	Yellow brown : Yellow brown : Yellow brown :	turbidity, oc slightly turbi slightly turbi slightly turbi slightly turbi	dours, other) id nil odour	
12:01 12:04 12:07 12:10 12:13 12:16	19 Cumulative Volume Removed (I) 0.1 0.6 1.1 1.6 2.1 2.6	= vol required for Water Level (m below MP) 0.61 0.61 0.61 0.61 0.61	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm)	+/- 0.05 pH pH 6.55 6.50 6.50 6.50 6.50 6.51	+/- 10% Temp. (°C) 12.27 12.95 13.10 13.26 13.31 13.22	+/- 10mV Redox ORP (mV) -7.9 -11.6 -21.0 -26.9 -29.7 -33.8	0.26 0.20 0.23 0.18	Yellow brown Yellow brown Yellow brown Yellow brown Yellow brown	turbidity, oc slightly turbi slightly turbi slightly turbi slightly turbi slightly turbi	id nil odour	
12:01 12:04 12:07 12:10	19 Cumulative Volume Removed (I) 0.1 0.6 1.1 1.6 2.1	= vol required for Water Level (m below MP) 0.61 0.61 0.61 0.61	Stability of Field Params Keep purging Keep purging Keep purging Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) @25°C 2541 2550 2547 2547	+/- 0.05 pH pH 6.55 6.50 6.50 6.50	+/- 10% Temp. (°C) 12.27 12.95 13.10 13.26 13.31	+/- 10mV Redox ORP (mV) -7.9 -11.6 -21.0 -26.9	DO (mg/L) 1.62 0.26 0.20 0.23 0.18	Yellow brown : Yellow brown : Yellow brown :	turbidity, oc slightly turbi slightly turbi slightly turbi slightly turbi slightly turbi	id nil odour	
12:01 12:04 12:07 12:10 12:13 12:16	19 Cumulative Volume Removed (I) 0.1 0.6 1.1 1.6 2.1 2.6	= vol required for Water Level (m below MP) 0.61 0.61 0.61 0.61 0.61	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm)	+/- 0.05 pH pH 6.55 6.50 6.50 6.50 6.50 6.51	+/- 10% Temp. (°C) 12.27 12.95 13.10 13.26 13.31 13.22	+/- 10mV Redox ORP (mV) -7.9 -11.6 -21.0 -26.9 -29.7 -33.8	0.26 0.20 0.23 0.18	Yellow brown Yellow brown Yellow brown Yellow brown Yellow brown	turbidity, oc slightly turbi slightly turbi slightly turbi slightly turbi slightly turbi	id nil odour	
12:01 12:04 12:07 12:10 12:13 12:16	19 Cumulative Volume Removed (I) 0.1 0.6 1.1 1.6 2.1 2.6	= vol required for Water Level (m below MP) 0.61 0.61 0.61 0.61 0.61	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm)	+/- 0.05 pH pH 6.55 6.50 6.50 6.50 6.50 6.51	+/- 10% Temp. (°C) 12.27 12.95 13.10 13.26 13.31 13.22	+/- 10mV Redox ORP (mV) -7.9 -11.6 -21.0 -26.9 -29.7 -33.8	0.26 0.20 0.23 0.18	Yellow brown Yellow brown Yellow brown Yellow brown Yellow brown	turbidity, oc slightly turbi slightly turbi slightly turbi slightly turbi slightly turbi	id nil odour	
12:01 12:04 12:07 12:10 12:13 12:16	19 Cumulative Volume Removed (I) 0.1 0.6 1.1 1.6 2.1 2.6	= vol required for Water Level (m below MP) 0.61 0.61 0.61 0.61 0.61	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm)	+/- 0.05 pH pH 6.55 6.50 6.50 6.50 6.50 6.51	+/- 10% Temp. (°C) 12.27 12.95 13.10 13.26 13.31 13.22	+/- 10mV Redox ORP (mV) -7.9 -11.6 -21.0 -26.9 -29.7 -33.8	0.26 0.20 0.23 0.18	Yellow brown Yellow brown Yellow brown Yellow brown Yellow brown	turbidity, oc slightly turbi slightly turbi slightly turbi slightly turbi slightly turbi	id nil odour	
12:01 12:04 12:07 12:10 12:13 12:16	19 Cumulative Volume Removed (I) 0.1 0.6 1.1 1.6 2.1 2.6	= vol required for Water Level (m below MP) 0.61 0.61 0.61 0.61 0.61	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm)	+/- 0.05 pH pH 6.55 6.50 6.50 6.50 6.50 6.51	+/- 10% Temp. (°C) 12.27 12.95 13.10 13.26 13.31 13.22	+/- 10mV Redox ORP (mV) -7.9 -11.6 -21.0 -26.9 -29.7 -33.8	0.26 0.20 0.23 0.18	Yellow brown Yellow brown Yellow brown Yellow brown Yellow brown	turbidity, oc slightly turbi slightly turbi slightly turbi slightly turbi slightly turbi	id nil odour	
12:01 12:04 12:07 12:10 12:13 12:16	19 Cumulative Volume Removed (I) 0.1 0.6 1.1 1.6 2.1 2.6	= vol required for Water Level (m below MP) 0.61 0.61 0.61 0.61 0.61	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm)	+/- 0.05 pH pH 6.55 6.50 6.50 6.50 6.50 6.51	+/- 10% Temp. (°C) 12.27 12.95 13.10 13.26 13.31 13.22	+/- 10mV Redox ORP (mV) -7.9 -11.6 -21.0 -26.9 -29.7 -33.8	0.26 0.20 0.23 0.18	Yellow brown Yellow brown Yellow brown Yellow brown Yellow brown	turbidity, oc slightly turbi slightly turbi slightly turbi slightly turbi slightly turbi	id nil odour	
12:01 12:04 12:07 12:10 12:13 12:16	19 Cumulative Volume Removed (I) 0.1 0.6 1.1 1.6 2.1 2.6	= vol required for Water Level (m below MP) 0.61 0.61 0.61 0.61 0.61	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm)	+/- 0.05 pH pH 6.55 6.50 6.50 6.50 6.50 6.51	+/- 10% Temp. (°C) 12.27 12.95 13.10 13.26 13.31 13.22	+/- 10mV Redox ORP (mV) -7.9 -11.6 -21.0 -26.9 -29.7 -33.8	0.26 0.20 0.23 0.18	Yellow brown Yellow brown Yellow brown Yellow brown Yellow brown	turbidity, oc slightly turbi slightly turbi slightly turbi slightly turbi slightly turbi	id nil odour	
12:01 12:04 12:07 12:10 12:13 12:16	19 Cumulative Volume Removed (I) 0.1 0.6 1.1 1.6 2.1 2.6	= vol required for Water Level (m below MP) 0.61 0.61 0.61 0.61 0.61	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm)	+/- 0.05 pH pH 6.55 6.50 6.50 6.50 6.50 6.51	+/- 10% Temp. (°C) 12.27 12.95 13.10 13.26 13.31 13.22	+/- 10mV Redox ORP (mV) -7.9 -11.6 -21.0 -26.9 -29.7 -33.8	0.26 0.20 0.23 0.18	Yellow brown Yellow brown Yellow brown Yellow brown Yellow brown	turbidity, oc slightly turbi slightly turbi slightly turbi slightly turbi slightly turbi	id nil odour	
12:01 12:04 12:07 12:10 12:13 12:16	19 Cumulative Volume Removed (I) 0.1 0.6 1.1 1.6 2.1 2.6	= vol required for Water Level (m below MP) 0.61 0.61 0.61 0.61 0.61	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm)	+/- 0.05 pH pH 6.55 6.50 6.50 6.50 6.50 6.51	+/- 10% Temp. (°C) 12.27 12.95 13.10 13.26 13.31 13.22	+/- 10mV Redox ORP (mV) -7.9 -11.6 -21.0 -26.9 -29.7 -33.8	0.26 0.20 0.23 0.18	Yellow brown Yellow brown Yellow brown Yellow brown Yellow brown	turbidity, oc slightly turbi slightly turbi slightly turbi slightly turbi slightly turbi	id nil odour	
12:01 12:04 12:07 12:10 12:13 12:16	19 Cumulative Volume Removed (I) 0.1 0.6 1.1 1.6 2.1 2.6	= vol required for Water Level (m below MP) 0.61 0.61 0.61 0.61 0.61	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm)	+/- 0.05 pH pH 6.55 6.50 6.50 6.50 6.50 6.51	+/- 10% Temp. (°C) 12.27 12.95 13.10 13.26 13.31 13.22	+/- 10mV Redox ORP (mV) -7.9 -11.6 -21.0 -26.9 -29.7 -33.8	0.26 0.20 0.23 0.18	Yellow brown Yellow brown Yellow brown Yellow brown Yellow brown	turbidity, oc slightly turbi slightly turbi slightly turbi slightly turbi slightly turbi	id nil odour	
12:01 12:04 12:07 12:10 12:13 12:16	19 Cumulative Volume Removed (I) 0.1 0.6 1.1 1.6 2.1 2.6	= vol required for Water Level (m below MP) 0.61 0.61 0.61 0.61 0.61	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 2541 2550 2547 2547 2539	+/- 0.05 pH pH 6.55 6.50 6.50 6.50 6.50 6.51	+/- 10% Temp. (°C) 12.27 12.95 13.10 13.26 13.31 13.22	+/- 10mV Redox ORP (mV) -7.9 -11.6 -21.0 -26.9 -29.7 -33.8	0.26 0.20 0.23 0.18	Yellow brown Yellow brown Yellow brown Yellow brown Yellow brown	turbidity, oc slightly turbi slightly turbi slightly turbi slightly turbi slightly turbi	id nil odour	
12:01 12:04 12:07 12:10 12:13 12:16	19 Cumulative Volume Removed (I) 0.1 0.6 1.1 1.6 2.1 2.6	= vol required for Water Level (m below MP) 0.61 0.61 0.61 0.61 0.61	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 2541 2550 2547 2547 2539	+/- 0.05 pH pH 6.55 6.50 6.50 6.50 6.50 6.51	+/- 10% Temp. (°C) 12.27 12.95 13.10 13.26 13.31 13.22	+/- 10mV Redox ORP (mV) -7.9 -11.6 -21.0 -26.9 -29.7 -33.8	0.26 0.20 0.23 0.18	Yellow brown Yellow brown Yellow brown Yellow brown Yellow brown	turbidity, oc slightly turbi slightly turbi slightly turbi slightly turbi slightly turbi	id nil odour	
12:01 12:04 12:07 12:10 12:13 12:16	19 Cumulative Volume Removed (I) 0.1 0.6 1.1 1.6 2.1 2.6	= vol required for Water Level (m below MP) 0.61 0.61 0.61 0.61 0.61	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 2541 2550 2547 2547 2539	+/- 0.05 pH pH 6.55 6.50 6.50 6.50 6.50 6.51	+/- 10% Temp. (°C) 12.27 12.95 13.10 13.26 13.31 13.22	+/- 10mV Redox ORP (mV) -7.9 -11.6 -21.0 -26.9 -29.7 -33.8	0.26 0.20 0.23 0.18	Yellow brown Yellow brown Yellow brown Yellow brown Yellow brown	turbidity, oc slightly turbi slightly turbi slightly turbi slightly turbi slightly turbi	id nil odour	
12:01 12:04 12:07 12:10 12:13 12:16	19 Cumulative Volume Removed (I) 0.1 0.6 1.1 1.6 2.1 2.6	= vol required for Water Level (m below MP) 0.61 0.61 0.61 0.61 0.61	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 2541 2550 2547 2547 2539	+/- 0.05 pH pH 6.55 6.50 6.50 6.50 6.50 6.51	+/- 10% Temp. (°C) 12.27 12.95 13.10 13.26 13.31 13.22	+/- 10mV Redox ORP (mV) -7.9 -11.6 -21.0 -26.9 -29.7 -33.8	0.26 0.20 0.23 0.18	Yellow brown Yellow brown Yellow brown Yellow brown Yellow brown	turbidity, oc slightly turbi slightly turbi slightly turbi slightly turbi slightly turbi	id nil odour	
12:01 12:04 12:07 12:10 12:13 12:16	19 Cumulative Volume Removed (I) 0.1 0.6 1.1 1.6 2.1 2.6	= vol required for Water Level (m below MP) 0.61 0.61 0.61 0.61 0.61	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 2541 2550 2547 2547 2539	+/- 0.05 pH pH 6.55 6.50 6.50 6.50 6.50 6.51	+/- 10% Temp. (°C) 12.27 12.95 13.10 13.26 13.31 13.22	+/- 10mV Redox ORP (mV) -7.9 -11.6 -21.0 -26.9 -29.7 -33.8	0.26 0.20 0.23 0.18	Yellow brown Yellow brown Yellow brown Yellow brown Yellow brown	turbidity, oc slightly turbi slightly turbi slightly turbi slightly turbi slightly turbi	id nil odour	
12:01 12:04 12:07 12:10 12:13 12:16	19 Cumulative Volume Removed (I) 0.1 0.6 1.1 1.6 2.1 2.6	= vol required for Water Level (m below MP) 0.61 0.61 0.61 0.61 0.61	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 2541 2550 2547 2547 2539	+/- 0.05 pH pH 6.55 6.50 6.50 6.50 6.50 6.51	+/- 10% Temp. (°C) 12.27 12.95 13.10 13.26 13.31 13.22	+/- 10mV Redox ORP (mV) -7.9 -11.6 -21.0 -26.9 -29.7 -33.8	0.26 0.20 0.23 0.18	Yellow brown Yellow brown Yellow brown Yellow brown Yellow brown	turbidity, oc slightly turbi slightly turbi slightly turbi slightly turbi slightly turbi	id nil odour	

Notes: All bore measuremen	nts are referen	ced to the mark	ed measuremen	nt point. All Coor	dinates in GDA	94.						
			TS Grou	ndwatei	sampli	na field	l sheet -	Fnv	Monitorin	ia V	entia	
David ID No	D	ши			•	O				Ū	4.0	
	В	<u>БП4</u>	_	Project Name						npling Staff		
Project Area:				Client					WQ. Me	eter Model	Aqua tro	II 500
Date	10/0	5/2023		Project No					WQ. Me	ter Serial #	,0571	0
Expe	cted Bore D	Details										
Internal Dia	meter (mm)			Easting			Total D	epth (m)		Screen	Depth From (m)
Drop Tube already in	bore? (Y/N)	N		Northing			Water	Level (m)		_ Scre	en Depth To (m	
Drop Tube	e Length (m)	0.00		Zone			Set Pump in	let at (m)		_	Set Pump at (m)
Additional	Information											
	eld Measur											_
Time of SWL			otal Depth (m)	7.92	Mid scroon	accessible?	Clos	ar	Depth pump	sot at (m)	7.00	
Static Water Level (m)	5.33		re Diam (mm)	50	Open Scree		-	11	Depth of pum			
		-	ile Diam (min)	50		-	0.00					
	l Purging De				Sampling D						les Required	
Purge Method					oling Method				Bottle Type	Quantity	Bottle Type	Quantit
Time Pump in		·					WL m (start)					
Time Started		-					WL m (end)	5.80				
Time Stopped		WL m (end)	5.33		sample ID?		-					
Volume Removed (I)		=		Triplicate	sample ID?		-					
Discharge Rate (I/m)	0.24			Rinsate	sample ID?							
Pu	ump Remov	/al										
Time of removal	13:32	WL n	n(post-removal)	5.78	Bore Dep	oth at end (m)	7.92					
	ump Setting	gs										
Fill / Discharge used	25/5	CPM		Air/Gas	Pressure (kPa)	30						
Comments												
		Field Parameters	are considered sta	able when within t	ne EPA limits for 3	consecutive me	easurements					
	15							+/- 10%	1			
	15 Cumulative	= vol required for	3V method (L)	+/- 3% Specific	ne EPA limits for 3 +/- 0.05 pH pH	consecutive me +/- 10% Temp.	easurements +/- 10mV Redox	+/- 10% DO		Commen	ts (colour,	
Time				+/- 3%	+/- 0.05 pH	+/- 10%	+/- 10mV				ts (colour,	
Time 15:51	Cumulative Volume	= vol required for Water Level (m	3V method (L) Stability of Field	+/- 3% Specific Conductance EC (uS/cm)	+/- 0.05 pH	+/- 10% Temp.	+/- 10mV Redox	DO	yellow silver tu	turbidity, od	dours, other)	
15:51	Cumulative Volume Removed (I)	= vol required for Water Level (m below MP)	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) @25°C 2060	+/- 0.05 pH pH	+/- 10% Temp. (°C)	+/- 10mV Redox ORP (mV)	DO (mg/L) 2.83		turbidity, od	dours, other) slight odour	
15:51 15:54	Cumulative Volume Removed (I) 0.1	= vol required for Water Level (m below MP) 5.33 5.33	3V method (L) Stability of Field Params Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) @25°C 2060 1940	+/- 0.05 pH pH 6.26 5.98	+/- 10% Temp. (°C) 11.74 12.59	+/- 10mV Redox ORP (mV) -1.7	DO (mg/L) 2.83 1.16	yellow silver tu	turbidity, oc rbidity very rbidity very	slight odour	
15:51 15:54 15:57	Cumulative Volume Removed (I) 0.1 0.9 1.7	= vol required for Water Level (m below MP) 5.33 5.33 5.33	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) @25*C 2060 1940 1879	+/- 0.05 pH pH 6.26 5.98	+/- 10% Temp. (°C) 11.74 12.59	+/- 10mV Redox ORP (mV) -1.7 29.4 44.3	DO (mg/L) 2.83 1.16 0.69	yellow silver tu	turbidity, oc rbidity very rbidity very rbidity very	slight odour slight odour	
15:51 15:54 15:57 16:00	Cumulative Volume Removed (I) 0.1 0.9 1.7 2.5	= vol required for Water Level (m below MP) 5.33 5.33 5.33	3V method (L) Stability of Field Params Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 2060 1940 1879	+/- 0.05 pH pH 6.26 5.98 5.82	+/- 10% Temp. (°C) 11.74 12.59 13.11 13.27	+/- 10mV Redox ORP (mV) -1.7 29.4 44.3 42.4	DO (mg/L) 2.83 1.16 0.69 0.61	yellow silver tu yellow silver tu yellow silver tu	turbidity, or rbidity very rbidity very rbidity very rbidity very	slight odour slight odour slight odour slight odour	
15:51 15:54 15:57	Cumulative Volume Removed (I) 0.1 0.9 1.7	= vol required for Water Level (m below MP) 5.33 5.33 5.33	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) @25*C 2060 1940 1879	+/- 0.05 pH pH 6.26 5.98	+/- 10% Temp. (°C) 11.74 12.59	+/- 10mV Redox ORP (mV) -1.7 29.4 44.3	DO (mg/L) 2.83 1.16 0.69	yellow silver tu	turbidity, or rbidity very rbidity very rbidity very rbidity very	slight odour slight odour slight odour slight odour	
15:51 15:54 15:57 16:00	Cumulative Volume Removed (I) 0.1 0.9 1.7 2.5	= vol required for Water Level (m below MP) 5.33 5.33 5.33	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 2060 1940 1879	+/- 0.05 pH pH 6.26 5.98 5.82	+/- 10% Temp. (°C) 11.74 12.59 13.11 13.27	+/- 10mV Redox ORP (mV) -1.7 29.4 44.3 42.4	DO (mg/L) 2.83 1.16 0.69 0.61	yellow silver tu yellow silver tu yellow silver tu	turbidity, or rbidity very rbidity very rbidity very rbidity very rbidity very	slight odour slight odour slight odour slight odour slight odour slight odour	
15:51 15:54 15:57 16:00	Cumulative Volume Removed (I) 0.1 0.9 1.7 2.5	= vol required for Water Level (m below MP) 5.33 5.33 5.33 5.33 5.33	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) @25°C 2060 1940 1879 1882	+/- 0.05 pH pH 6.26 5.98 5.82 5.80 5.81	+/- 10% Temp. (°C) 11.74 12.59 13.11 13.27 13.28	+/- 10mV Redox ORP (mV) -1.7 29.4 44.3 42.4 36.8	DO (mg/L) 2.83 1.16 0.69 0.61 0.54	yellow silver tu yellow silver tu yellow silver tu	turbidity, oc rbidity very rbidity very rbidity very rbidity very rbidity very	slight odour slight odour slight odour slight odour slight odour slight odour	
15:51 15:54 15:57 16:00 16:03 16:06	Cumulative Volume Removed (I) 0.1 0.9 1.7 2.5 3.3	= vol required for Water Level (m below MP) 5.33 5.33 5.33 5.33 5.33 5.33	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 2060 1940 1879 1882 1892	+/- 0.05 pH pH 6.26 5.98 5.82 5.80 5.81	+/- 10% Temp. (°C) 11.74 12.59 13.11 13.27 13.28 13.29	+/- 10mV Redox ORP (mV) -1.7 29.4 44.3 42.4 36.8 35.1	DO (mg/L) 2.83 1.16 0.69 0.61 0.54	yellow silver tu yellow silver tu yellow silver tu yellow silver tu	turbidity, or rbidity very rbidity very rbidity very rbidity very rbidity very rbidity very	slight odour slight odour slight odour slight odour slight odour slight odour slight odour	
15:51 15:54 15:57 16:00 16:03 16:06 16:09	Cumulative Volume Removed (I) 0.1 0.9 1.7 2.5 3.3 4.1 4.9	- vol required for Water Level (m below MP) 5.33 5.33 5.33 5.33 5.33 5.33 5.33	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 2060 1940 1879 1882 1892 1894	+/- 0.05 pH pH 6.26 5.98 5.82 5.80 5.81 5.83	+/- 10% Temp. (°C) 11.74 12.59 13.11 13.27 13.28 13.29 13.35	+/- 10mV Redox ORP (mV) -1.7 29.4 44.3 42.4 36.8 35.1 32.0	DO (mg/L) 2.83 1.16 0.69 0.61 0.54 0.52 0.49	yellow silver tu yellow silver tu yellow silver tu yellow silver tu yellow silver tu	turbidity, or rbidity very rbidity very rbidity very rbidity very rbidity very rbidity very	slight odour slight odour slight odour slight odour slight odour slight odour slight odour	
15:51 15:54 15:57 16:00 16:03 16:06 16:09	Cumulative Volume Removed (I) 0.1 0.9 1.7 2.5 3.3 4.1 4.9	- vol required for Water Level (m below MP) 5.33 5.33 5.33 5.33 5.33 5.33 5.33	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 2060 1940 1879 1882 1892 1894	+/- 0.05 pH pH 6.26 5.98 5.82 5.80 5.81 5.83	+/- 10% Temp. (°C) 11.74 12.59 13.11 13.27 13.28 13.29 13.35	+/- 10mV Redox ORP (mV) -1.7 29.4 44.3 42.4 36.8 35.1 32.0	DO (mg/L) 2.83 1.16 0.69 0.61 0.54 0.52 0.49	yellow silver tu yellow silver tu yellow silver tu yellow silver tu yellow silver tu	turbidity, or rbidity very rbidity very rbidity very rbidity very rbidity very rbidity very	slight odour slight odour slight odour slight odour slight odour slight odour slight odour	
15:51 15:54 15:57 16:00 16:03 16:06 16:09	Cumulative Volume Removed (I) 0.1 0.9 1.7 2.5 3.3 4.1 4.9	- vol required for Water Level (m below MP) 5.33 5.33 5.33 5.33 5.33 5.33 5.33	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 2060 1940 1879 1882 1892 1894	+/- 0.05 pH pH 6.26 5.98 5.82 5.80 5.81 5.83	+/- 10% Temp. (°C) 11.74 12.59 13.11 13.27 13.28 13.29 13.35	+/- 10mV Redox ORP (mV) -1.7 29.4 44.3 42.4 36.8 35.1 32.0	DO (mg/L) 2.83 1.16 0.69 0.61 0.54 0.52 0.49	yellow silver tu yellow silver tu yellow silver tu yellow silver tu yellow silver tu	turbidity, or rbidity very rbidity very rbidity very rbidity very rbidity very rbidity very	slight odour slight odour slight odour slight odour slight odour slight odour slight odour	
15:51 15:54 15:57 16:00 16:03 16:06 16:09	Cumulative Volume Removed (I) 0.1 0.9 1.7 2.5 3.3 4.1 4.9	- vol required for Water Level (m below MP) 5.33 5.33 5.33 5.33 5.33 5.33 5.33	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 2060 1940 1879 1882 1892 1894	+/- 0.05 pH pH 6.26 5.98 5.82 5.80 5.81 5.83	+/- 10% Temp. (°C) 11.74 12.59 13.11 13.27 13.28 13.29 13.35	+/- 10mV Redox ORP (mV) -1.7 29.4 44.3 42.4 36.8 35.1 32.0	DO (mg/L) 2.83 1.16 0.69 0.61 0.54 0.52 0.49	yellow silver tu yellow silver tu yellow silver tu yellow silver tu yellow silver tu	turbidity, or rbidity very rbidity very rbidity very rbidity very rbidity very rbidity very	slight odour slight odour slight odour slight odour slight odour slight odour slight odour	
15:51 15:54 15:57 16:00 16:03 16:06 16:09	Cumulative Volume Removed (I) 0.1 0.9 1.7 2.5 3.3 4.1 4.9	- vol required for Water Level (m below MP) 5.33 5.33 5.33 5.33 5.33 5.33 5.33	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 2060 1940 1879 1882 1892 1894	+/- 0.05 pH pH 6.26 5.98 5.82 5.80 5.81 5.83	+/- 10% Temp. (°C) 11.74 12.59 13.11 13.27 13.28 13.29 13.35	+/- 10mV Redox ORP (mV) -1.7 29.4 44.3 42.4 36.8 35.1 32.0	DO (mg/L) 2.83 1.16 0.69 0.61 0.54 0.52 0.49	yellow silver tu yellow silver tu yellow silver tu yellow silver tu yellow silver tu	turbidity, or rbidity very rbidity very rbidity very rbidity very rbidity very rbidity very	slight odour slight odour slight odour slight odour slight odour slight odour slight odour	
15:51 15:54 15:57 16:00 16:03 16:06 16:09	Cumulative Volume Removed (I) 0.1 0.9 1.7 2.5 3.3 4.1 4.9	- vol required for Water Level (m below MP) 5.33 5.33 5.33 5.33 5.33 5.33 5.33	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 2060 1940 1879 1882 1892 1894	+/- 0.05 pH pH 6.26 5.98 5.82 5.80 5.81 5.83	+/- 10% Temp. (°C) 11.74 12.59 13.11 13.27 13.28 13.29 13.35	+/- 10mV Redox ORP (mV) -1.7 29.4 44.3 42.4 36.8 35.1 32.0	DO (mg/L) 2.83 1.16 0.69 0.61 0.54 0.52 0.49	yellow silver tu yellow silver tu yellow silver tu yellow silver tu yellow silver tu	turbidity, or rbidity very rbidity very rbidity very rbidity very rbidity very rbidity very	slight odour slight odour slight odour slight odour slight odour slight odour slight odour	
15:51 15:54 15:57 16:00 16:03 16:06 16:09	Cumulative Volume Removed (I) 0.1 0.9 1.7 2.5 3.3 4.1 4.9	- vol required for Water Level (m below MP) 5.33 5.33 5.33 5.33 5.33 5.33 5.33	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 2060 1940 1879 1882 1892 1894	+/- 0.05 pH pH 6.26 5.98 5.82 5.80 5.81 5.83	+/- 10% Temp. (°C) 11.74 12.59 13.11 13.27 13.28 13.29 13.35	+/- 10mV Redox ORP (mV) -1.7 29.4 44.3 42.4 36.8 35.1 32.0	DO (mg/L) 2.83 1.16 0.69 0.61 0.54 0.52 0.49	yellow silver tu yellow silver tu yellow silver tu yellow silver tu yellow silver tu	turbidity, or rbidity very rbidity very rbidity very rbidity very rbidity very rbidity very	slight odour slight odour slight odour slight odour slight odour slight odour slight odour	
15:51 15:54 15:57 16:00 16:03 16:06 16:09	Cumulative Volume Removed (I) 0.1 0.9 1.7 2.5 3.3 4.1 4.9	- vol required for Water Level (m below MP) 5.33 5.33 5.33 5.33 5.33 5.33 5.33	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 2060 1940 1879 1882 1892 1894	+/- 0.05 pH pH 6.26 5.98 5.82 5.80 5.81 5.83	+/- 10% Temp. (°C) 11.74 12.59 13.11 13.27 13.28 13.29 13.35	+/- 10mV Redox ORP (mV) -1.7 29.4 44.3 42.4 36.8 35.1 32.0	DO (mg/L) 2.83 1.16 0.69 0.61 0.54 0.52 0.49	yellow silver tu yellow silver tu yellow silver tu yellow silver tu yellow silver tu	turbidity, or rbidity very rbidity very rbidity very rbidity very rbidity very rbidity very	slight odour slight odour slight odour slight odour slight odour slight odour slight odour	
15:51 15:54 15:57 16:00 16:03 16:06 16:09	Cumulative Volume Removed (I) 0.1 0.9 1.7 2.5 3.3 4.1 4.9	- vol required for Water Level (m below MP) 5.33 5.33 5.33 5.33 5.33 5.33 5.33	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 2060 1940 1879 1882 1892 1894	+/- 0.05 pH pH 6.26 5.98 5.82 5.80 5.81 5.83	+/- 10% Temp. (°C) 11.74 12.59 13.11 13.27 13.28 13.29 13.35	+/- 10mV Redox ORP (mV) -1.7 29.4 44.3 42.4 36.8 35.1 32.0	DO (mg/L) 2.83 1.16 0.69 0.61 0.54 0.52 0.49	yellow silver tu yellow silver tu yellow silver tu yellow silver tu yellow silver tu	turbidity, or rbidity very rbidity very rbidity very rbidity very rbidity very rbidity very	slight odour slight odour slight odour slight odour slight odour slight odour slight odour	
15:51 15:54 15:57 16:00 16:03 16:06 16:09	Cumulative Volume Removed (I) 0.1 0.9 1.7 2.5 3.3 4.1 4.9	- vol required for Water Level (m below MP) 5.33 5.33 5.33 5.33 5.33 5.33 5.33	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 2060 1940 1879 1882 1892 1894	+/- 0.05 pH pH 6.26 5.98 5.82 5.80 5.81 5.83	+/- 10% Temp. (°C) 11.74 12.59 13.11 13.27 13.28 13.29 13.35	+/- 10mV Redox ORP (mV) -1.7 29.4 44.3 42.4 36.8 35.1 32.0	DO (mg/L) 2.83 1.16 0.69 0.61 0.54 0.52 0.49	yellow silver tu yellow silver tu yellow silver tu yellow silver tu yellow silver tu	turbidity, or rbidity very rbidity very rbidity very rbidity very rbidity very rbidity very	slight odour slight odour slight odour slight odour slight odour slight odour slight odour	
15:51 15:54 15:57 16:00 16:03 16:06 16:09	Cumulative Volume Removed (I) 0.1 0.9 1.7 2.5 3.3 4.1 4.9	- vol required for Water Level (m below MP) 5.33 5.33 5.33 5.33 5.33 5.33 5.33	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 2060 1940 1879 1882 1892 1894	+/- 0.05 pH pH 6.26 5.98 5.82 5.80 5.81 5.83	+/- 10% Temp. (°C) 11.74 12.59 13.11 13.27 13.28 13.29 13.35	+/- 10mV Redox ORP (mV) -1.7 29.4 44.3 42.4 36.8 35.1 32.0	DO (mg/L) 2.83 1.16 0.69 0.61 0.54 0.52 0.49	yellow silver tu yellow silver tu yellow silver tu yellow silver tu yellow silver tu	turbidity, or rbidity very rbidity very rbidity very rbidity very rbidity very rbidity very	slight odour slight odour slight odour slight odour slight odour slight odour slight odour	
15:51 15:54 15:57 16:00 16:03 16:06 16:09	Cumulative Volume Removed (I) 0.1 0.9 1.7 2.5 3.3 4.1 4.9	- vol required for Water Level (m below MP) 5.33 5.33 5.33 5.33 5.33 5.33 5.33	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 2060 1940 1879 1882 1892 1894	+/- 0.05 pH pH 6.26 5.98 5.82 5.80 5.81 5.83	+/- 10% Temp. (°C) 11.74 12.59 13.11 13.27 13.28 13.29 13.35	+/- 10mV Redox ORP (mV) -1.7 29.4 44.3 42.4 36.8 35.1 32.0	DO (mg/L) 2.83 1.16 0.69 0.61 0.54 0.52 0.49	yellow silver tu yellow silver tu yellow silver tu yellow silver tu yellow silver tu	turbidity, or rbidity very rbidity very rbidity very rbidity very rbidity very rbidity very	slight odour slight odour slight odour slight odour slight odour slight odour slight odour	
15:51 15:54 15:57 16:00 16:03 16:06 16:09	Cumulative Volume Removed (I) 0.1 0.9 1.7 2.5 3.3 4.1 4.9	- vol required for Water Level (m below MP) 5.33 5.33 5.33 5.33 5.33 5.33 5.33	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 2060 1940 1879 1882 1892 1894	+/- 0.05 pH pH 6.26 5.98 5.82 5.80 5.81 5.83	+/- 10% Temp. (°C) 11.74 12.59 13.11 13.27 13.28 13.29 13.35	+/- 10mV Redox ORP (mV) -1.7 29.4 44.3 42.4 36.8 35.1 32.0	DO (mg/L) 2.83 1.16 0.69 0.61 0.54 0.52 0.49	yellow silver tu yellow silver tu yellow silver tu yellow silver tu yellow silver tu	turbidity, or rbidity very rbidity very rbidity very rbidity very rbidity very rbidity very	slight odour slight odour slight odour slight odour slight odour slight odour slight odour	
15:51 15:54 15:57 16:00 16:03 16:06 16:09	Cumulative Volume Removed (I) 0.1 0.9 1.7 2.5 3.3 4.1 4.9	- vol required for Water Level (m below MP) 5.33 5.33 5.33 5.33 5.33 5.33 5.33	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 2060 1940 1879 1882 1892 1894	+/- 0.05 pH pH 6.26 5.98 5.82 5.80 5.81 5.83	+/- 10% Temp. (°C) 11.74 12.59 13.11 13.27 13.28 13.29 13.35	+/- 10mV Redox ORP (mV) -1.7 29.4 44.3 42.4 36.8 35.1 32.0	DO (mg/L) 2.83 1.16 0.69 0.61 0.54 0.52 0.49	yellow silver tu yellow silver tu yellow silver tu yellow silver tu yellow silver tu	turbidity, or rbidity very rbidity very rbidity very rbidity very rbidity very rbidity very	slight odour slight odour slight odour slight odour slight odour slight odour slight odour	
15:51 15:54 15:57 16:00 16:03 16:06 16:09	Cumulative Volume Removed (I) 0.1 0.9 1.7 2.5 3.3 4.1 4.9	- vol required for Water Level (m below MP) 5.33 5.33 5.33 5.33 5.33 5.33 5.33	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 2060 1940 1879 1882 1892 1894	+/- 0.05 pH pH 6.26 5.98 5.82 5.80 5.81 5.83	+/- 10% Temp. (°C) 11.74 12.59 13.11 13.27 13.28 13.29 13.35	+/- 10mV Redox ORP (mV) -1.7 29.4 44.3 42.4 36.8 35.1 32.0	DO (mg/L) 2.83 1.16 0.69 0.61 0.54 0.52 0.49	yellow silver tu yellow silver tu yellow silver tu yellow silver tu yellow silver tu	turbidity, or rbidity very rbidity very rbidity very rbidity very rbidity very rbidity very	slight odour slight odour slight odour slight odour slight odour slight odour slight odour	
15:51 15:54 15:57 16:00 16:03 16:06 16:09	Cumulative Volume Removed (I) 0.1 0.9 1.7 2.5 3.3 4.1 4.9	- vol required for Water Level (m below MP) 5.33 5.33 5.33 5.33 5.33 5.33 5.33	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 2060 1940 1879 1882 1892 1894	+/- 0.05 pH pH 6.26 5.98 5.82 5.80 5.81 5.83	+/- 10% Temp. (°C) 11.74 12.59 13.11 13.27 13.28 13.29 13.35	+/- 10mV Redox ORP (mV) -1.7 29.4 44.3 42.4 36.8 35.1 32.0	DO (mg/L) 2.83 1.16 0.69 0.61 0.54 0.52 0.49	yellow silver tu yellow silver tu yellow silver tu yellow silver tu yellow silver tu	turbidity, or rbidity very rbidity very rbidity very rbidity very rbidity very rbidity very	slight odour slight odour slight odour slight odour slight odour slight odour slight odour	
15:51 15:54 15:57 16:00 16:03 16:06 16:09	Cumulative Volume Removed (I) 0.1 0.9 1.7 2.5 3.3 4.1 4.9	- vol required for Water Level (m below MP) 5.33 5.33 5.33 5.33 5.33 5.33 5.33	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 2060 1940 1879 1882 1892 1894	+/- 0.05 pH pH 6.26 5.98 5.82 5.80 5.81 5.83	+/- 10% Temp. (°C) 11.74 12.59 13.11 13.27 13.28 13.29 13.35	+/- 10mV Redox ORP (mV) -1.7 29.4 44.3 42.4 36.8 35.1 32.0	DO (mg/L) 2.83 1.16 0.69 0.61 0.54 0.52 0.49	yellow silver tu yellow silver tu yellow silver tu yellow silver tu yellow silver tu	turbidity, or rbidity very rbidity very rbidity very rbidity very rbidity very rbidity very	slight odour slight odour slight odour slight odour slight odour slight odour slight odour	

Notes: All bore measuremen	nts are reference	ced to the marke	ed measuremer	t point. All Coor	dinates in GDA	N94.				N //	entia	
			TS Grou	ndwater	sampli	ing field	d sheet -	Env I	Monitorin	g	entia	
Bore ID No	В	Н6		Project Name	Не	epburn Land	Fill		San	npling Staff	AC	
Project Area:			=								Aqua troll	500
Date		5/2023	-	Project No						ter Serial #	,05710	
	cted Bore D			1 Toject No					WQ. MC	ter senar #	,03710	
•												
Internal Dia	meter (mm)		Ī	Easting		-	Total [Depth (m)		Screen	Depth From (m)	
Drop Tube already in	bore? (Y/N)	N		Northing		_	Water	Level (m)		Scree	en Depth To (m)	
Drop Tube	e Length (m)	0.00		7one			Set Pump in	let at (m)			Set Pump at (m)	
ыор шы	e Length (m)	0.00		20116		=-	set rump ii	ilet at (III)			set rump at (m)	
Additional	Information											
Bore Fi	eld Measure	ements										
Time of SWL	8:55	To	otal Depth (m)	15.50	Mid-screen	accessible?	Clea	ar	Depth pump	set at (m)	15.00	
Static Water Level (m)	11.96	Во	re Diam (mm)	50	Open Scree	n Length(m)	0.00		Depth of pun	np inlet (m)	15.00	
Wel	l Purging De	etails			Sampling D	etails			Sá	ample Bott	les Required	
Purge Method	LF	Pump Type	Bladder	-	ling Method		-		Bottle Type	Quantity	Bottle Type	Quantity
Time Pump in		Pump in' WL					WL m (start)					
Time Started		WL m (start)					WL m (end)	11.96				
Time Stopped	10:08	WL m (end)	11.97	·	sample ID?		=					
Volume Removed (I)	2.3	-		Triplicate	sample ID?		-					
Discharge Rate (I/m)	0.14			Rinsate	sample ID?							
Pt	ump Remov	al										
Time of removal	10:35	WL m	n(post-removal)	11.97	Bore De	pth at end (m)	15.50					
	ump Setting	gs										
Fill / Discharge used	22/8	СРМ		Air/Gas	Pressure (kPa)	40						
Comments		b	ore has been	tapered with,	tubing had b	een cut and	l put down th	e casing.	Tubing remove	erd		
					Dups	and blank ta	iken					:
		Field Parameters	are considered sta	ble when within th	ne EPA limits for 3	consecutive me	easurements					
	21	= vol required for	3V method (L)	+/- 3%	+/- 0.05 pH	+/- 10%	+/- 10mV	+/- 10%				
Time	Cumulative Volume	Water Level (m below MP)	Stability of Field Params	Specific Conductance EC (uS/cm)	рН	Temp.	Redox	DO		Commen	ts (colour,	
	Removed (I)	Delow IVIF)	raiailis	@25°C		(°C)	ORP (mV)	(mg/L)		turbidity, oc	lours, other)	
9:56	0.1	11.97	Keep purging	509	4.96	12.55	212.0	1.21	slight light cold	oured turbid	lity nil odour	
9:59	0.65	11.97	Keep purging	539	4.93	14.22	219.4	0.70	slight light cold	oured turbid	lity nil odour	
10:02	1.2	11.97	Keep purging	551	4.95	14.30	222.5	0.58	slight light cold	oured turbid	lity nil odour	
10:05	1.75	11.97	Keep purging	564	4.93	14.28	224.5	0.57	slight light cold	oured turbid	lity nil odour	
10:08	2.3	11.97	OK to sample	563	4.97	14.90	229.4	0.56	slight light cold	oured turbid	lity nil odour	

Notes: All bore measuremen	nts are referen	ced to the mark	ed measuremer	nt point. All Coo	rdinates in GDA	.94.					4	
			TS Grou	ndwate	r sampli	na fiela	l sheet -	Fnv I	Monitoring	y V	entia	
David ID No	D	U.7			•	O					4.0	
		SH7	_	Project Name					·	ling Staff		
Project Area:				Client	F	IEPBURN SHIF	RE		WQ. Met	er Model	Aqua tro	l 500
Date	10/0	5/2023		Project No					WQ. Mete	r Serial #	,0571	0
Expe	cted Bore D	etails										
Internal Dia	ameter (mm)			Easting			Total D	epth (m)		Screen	Depth From (m	·)
Drop Tube already in	n bore? (Y/N)	IN	_	Northing			water	Levei (m)		Scre	en Depth 10 (m)
Drop Tube	e Length (m)	0.00		Zone			Set Pump in	let at (m)			Set Pump at (m)
Additiona	l Information											
Bore Fi	ield Measur	ements										
Time of SWL			otal Depth (m)	7.18	Mid-screen	accessible?	Clea	ar	Depth pump s	et at (m)	6.50	
Static Water Level (m)			re Diam (mm)	50	Open Scree				Depth of pump			
	l Purging De	_			Sampling D	-					tles Required	
Purge Method			MicroPurge	Samu	oling Method				Bottle Type		Bottle Type	Quantit
Time Pump in				•	_		WL m (start)	2.49	1Ltr green	1	7,1	
		WL m (start)					WL m (end)		Oml filtered meta			
Time Stopped					e sample ID?		-	,	60ml COD	1		
Volume Removed (I)		='	2.51		sample ID?		_		50ml glass	1		
Discharge Rate (I/m)		-			sample ID?		-		3,000	•		
	ump Remov	val		Misate	. sample ID?							
Time of removal			n(post-removal)	2.49	Bore Der	oth at end (m)	7.18					
	Pump Setting	_	(<u>/</u>									
Fill / Discharge used		CPM		Air/Gas	Pressure (kPa)	30						
-				-		All time as ECT	_				l	
Comments					/	All times EST						
		Field Parameters	are considered sta						1			
	29 Cumulative	= vol required for	3V method (L)	+/- 3% Specific	+/- 0.05 pH	+/- 10%	+/- 10mV	+/- 10%		Commen	nts (colour	
Time	Cumulative Volume			+/- 3% Specific Conductance EC (uS/cm)		+/- 10% Temp.	+/- 10mV Redox	DO			nts (colour,	
	Cumulative Volume Removed (I)	= vol required for Water Level (m below MP)	3V method (L) Stability of Field	+/- 3% Specific Conductance EC (uS/cm) @25°C	+/- 0.05 pH pH	+/- 10% Temp. (°C)	+/- 10mV Redox ORP (mV)	DO (mg/L)	Light Vallow Bro	turbidity, o	dours, other)	
13:12	Cumulative Volume Removed (I)	= vol required for Water Level (m below MP)	3V method (L) Stability of Field	+/- 3% Specific Conductance EC (uS/cm) @25°C 127	+/- 0.05 pH pH 7.18	+/- 10% Temp. (°C)	+/- 10mV Redox ORP (mV)	DO (mg/L) 9.19	Light Yellow Bro	turbidity, o	dours, other)	
13:12 13:15	Cumulative Volume Removed (I) 0.1	= vol required for Water Level (m below MP) 2.31 2.31	3V method (L) Stability of Field	+/- 3% Specific Conductance EC (uS/cm) @25°C 127 718	+/- 0.05 pH pH 7.18 6.89	+/- 10% Temp. (°C) 11.55 12.10	+/- 10mV Redox ORP (mV) 35.3 35.8	DO (mg/L) 9.19 8.24	Light Yellow Bro	turbidity, o	dity. No odour.	
13:12 13:15 13:18	Cumulative Volume Removed (I) 0.1 0.6 1.1	= vol required for Water Level (m below MP) 2.31 2.31 2.31	3V method (L) Stability of Field	+/- 3% Specific Conductance EC (uS/cm) @25°C 127 718 712	+/- 0.05 pH pH 7.18 6.89 6.78	+/- 10% Temp. (°C) 11.55 12.10	+/- 10mV Redox ORP (mV) 35.3 35.8 32.4	DO (mg/L) 9.19 8.24 3.41	Light Yellow Bro	turbidity, or wn turbic wn turbic	dity. No odour. dity. No odour. dity. No odour.	
13:12 13:15	Cumulative Volume Removed (I) 0.1	= vol required for Water Level (m below MP) 2.31 2.31	3V method (L) Stability of Field	+/- 3% Specific Conductance EC (uS/cm) @25°C 127 718	+/- 0.05 pH pH 7.18 6.89	+/- 10% Temp. (°C) 11.55 12.10	+/- 10mV Redox ORP (mV) 35.3 35.8	DO (mg/L) 9.19 8.24	Light Yellow Bro	turbidity, or wn turbic wn turbic	dity. No odour. dity. No odour. dity. No odour.	
13:12 13:15 13:18	Cumulative Volume Removed (I) 0.1 0.6 1.1	= vol required for Water Level (m below MP) 2.31 2.31 2.31	3V method (L) Stability of Field	+/- 3% Specific Conductance EC (uS/cm) @25°C 127 718 712	+/- 0.05 pH pH 7.18 6.89 6.78	+/- 10% Temp. (°C) 11.55 12.10	+/- 10mV Redox ORP (mV) 35.3 35.8 32.4	DO (mg/L) 9.19 8.24 3.41	Light Yellow Bro	turbidity, or wn turbic wn turbic wn turbic wn turbic	dours, other) dity. No odour. dity. No odour. dity. No odour. dity. No odour.	
13:12 13:15 13:18 13:21	Cumulative Volume Removed (I) 0.1 0.6 1.1	= vol required for Water Level (m below MP) 2.31 2.31 2.31	3V method (L) Stability of Field	+/- 3% Specific Conductance EC (uS/cm) #25°C 127 718 712 749	+/- 0.05 pH pH 7.18 6.89 6.78	+/- 10% Temp. (°C) 11.55 12.10 12.64 13.53	+/- 10mV Redox ORP (mV) 35.3 35.8 32.4 13.6	DO (mg/L) 9.19 8.24 3.41 0.52	Light Yellow Bro	wn turbic wn turbic wn turbic wn turbic wn turbic	dours, other) dity. No odour.	
13:12 13:15 13:18 13:21 13:24	Cumulative Volume Removed (I) 0.1 0.6 1.1 1.6	= vol required for Water Level (m below MP) 2.31 2.31 2.31 2.31 2.31	3V method (L) Stability of Field	+/- 3% Specific Conductance EC (uS/cm) @25°C 127 718 712 749 746	+/- 0.05 pH pH 7.18 6.89 6.78 6.72	+/- 10% Temp. (°C) 11.55 12.10 12.64 13.53 13.59	+/- 10mV Redox ORP (mV) 35.3 35.8 32.4 13.6 -4.1	DO (mg/L) 9.19 8.24 3.41 0.52 0.42	Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro	wn turbic	dours, other) dity. No odour.	
13:12 13:15 13:18 13:21 13:24 13:27	Cumulative Volume Removed (I) 0.1 0.6 1.1 1.6 2.1	= vol required for Water Level (m below MP) 2.31 2.31 2.31 2.31 2.31 2.31	3V method (L) Stability of Field	+/- 3% Specific Conductance EC (uS/cm) #25°C 127 718 712 749 746 740	+/- 0.05 pH pH 7.18 6.89 6.78 6.72 6.74 6.75	+/- 10% Temp. (°C) 11.55 12.10 12.64 13.53 13.59 13.50	+/- 10mV Redox ORP (mV) 35.3 35.8 32.4 13.6 -4.1 -10.9	DO (mg/L) 9.19 8.24 3.41 0.52 0.42	Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro	wn turbic wn turbic wn turbic wn turbic wn turbic wn turbic wn turbic	dours, other) dity. No odour.	
13:12 13:15 13:18 13:21 13:24 13:27 13:30	Cumulative Volume Removed (I) 0.1 0.6 1.1 1.6 2.1 2.6 3.1	= vol required for Water Level (m below MP) 2.31 2.31 2.31 2.31 2.31 2.31 2.31 2.31	3V method (L) Stability of Field	+/- 3% Specific Conductance EC (uS/cm) #25°C 127 718 712 749 746 740 734	+/- 0.05 pH pH 7.18 6.89 6.78 6.72 6.74 6.75	+/- 10% Temp. (°C) 11.55 12.10 12.64 13.53 13.59 13.50 13.74	+/- 10mV Redox ORP (mV) 35.3 35.8 32.4 13.6 -4.1 -10.9 -24.6	DO (mg/L) 9.19 8.24 3.41 0.52 0.42 0.20 0.19	Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro	wn turbic	dours, other) dity. No odour.	
13:12 13:15 13:18 13:21 13:24 13:27 13:30 13:33	Cumulative Volume Removed (I) 0.1 0.6 1.1 1.6 2.1 2.6 3.1 3.6	= vol required for Water Level (m below MP) 2.31 2.31 2.31 2.31 2.31 2.31 2.31 2.31 2.31	3V method (L) Stability of Field Params	+/- 3% Specific Conductance EC (uS/cm) #25°C 127 718 712 749 746 740 734	+/- 0.05 pH pH 7.18 6.89 6.78 6.72 6.74 6.75 6.75	+/- 10% Temp. (°C) 11.55 12.10 12.64 13.53 13.59 13.50 13.74	+/- 10mV Redox ORP (mV) 35.3 35.8 32.4 13.6 -4.1 -10.9 -24.6 -26.0	DO (mg/L) 9.19 8.24 3.41 0.52 0.42 0.20 0.19	Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro	wn turbic	dours, other) dity. No odour.	
13:12 13:15 13:18 13:21 13:24 13:27 13:30 13:33	Cumulative Volume Removed (I) 0.1 0.6 1.1 1.6 2.1 2.6 3.1 3.6	= vol required for Water Level (m below MP) 2.31 2.31 2.31 2.31 2.31 2.31 2.31 2.31 2.31	3V method (L) Stability of Field Params	+/- 3% Specific Conductance EC (uS/cm) #25°C 127 718 712 749 746 740 734	+/- 0.05 pH pH 7.18 6.89 6.78 6.72 6.74 6.75 6.75	+/- 10% Temp. (°C) 11.55 12.10 12.64 13.53 13.59 13.50 13.74	+/- 10mV Redox ORP (mV) 35.3 35.8 32.4 13.6 -4.1 -10.9 -24.6 -26.0	DO (mg/L) 9.19 8.24 3.41 0.52 0.42 0.20 0.19	Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro	wn turbic	dours, other) dity. No odour.	
13:12 13:15 13:18 13:21 13:24 13:27 13:30 13:33	Cumulative Volume Removed (I) 0.1 0.6 1.1 1.6 2.1 2.6 3.1 3.6	= vol required for Water Level (m below MP) 2.31 2.31 2.31 2.31 2.31 2.31 2.31 2.31 2.31	3V method (L) Stability of Field Params	+/- 3% Specific Conductance EC (uS/cm) #25°C 127 718 712 749 746 740 734	+/- 0.05 pH pH 7.18 6.89 6.78 6.72 6.74 6.75 6.75	+/- 10% Temp. (°C) 11.55 12.10 12.64 13.53 13.59 13.50 13.74	+/- 10mV Redox ORP (mV) 35.3 35.8 32.4 13.6 -4.1 -10.9 -24.6 -26.0	DO (mg/L) 9.19 8.24 3.41 0.52 0.42 0.20 0.19	Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro	wn turbic	dours, other) dity. No odour.	
13:12 13:15 13:18 13:21 13:24 13:27 13:30 13:33	Cumulative Volume Removed (I) 0.1 0.6 1.1 1.6 2.1 2.6 3.1 3.6	= vol required for Water Level (m below MP) 2.31 2.31 2.31 2.31 2.31 2.31 2.31 2.31 2.31	3V method (L) Stability of Field Params	+/- 3% Specific Conductance EC (uS/cm) #25°C 127 718 712 749 746 740 734	+/- 0.05 pH pH 7.18 6.89 6.78 6.72 6.74 6.75 6.75	+/- 10% Temp. (°C) 11.55 12.10 12.64 13.53 13.59 13.50 13.74	+/- 10mV Redox ORP (mV) 35.3 35.8 32.4 13.6 -4.1 -10.9 -24.6 -26.0	DO (mg/L) 9.19 8.24 3.41 0.52 0.42 0.20 0.19	Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro	wn turbic	dours, other) dity. No odour.	
13:12 13:15 13:18 13:21 13:24 13:27 13:30 13:33	Cumulative Volume Removed (I) 0.1 0.6 1.1 1.6 2.1 2.6 3.1 3.6	= vol required for Water Level (m below MP) 2.31 2.31 2.31 2.31 2.31 2.31 2.31 2.31 2.31	3V method (L) Stability of Field Params	+/- 3% Specific Conductance EC (uS/cm) #25°C 127 718 712 749 746 740 734	+/- 0.05 pH pH 7.18 6.89 6.78 6.72 6.74 6.75 6.75	+/- 10% Temp. (°C) 11.55 12.10 12.64 13.53 13.59 13.50 13.74	+/- 10mV Redox ORP (mV) 35.3 35.8 32.4 13.6 -4.1 -10.9 -24.6 -26.0	DO (mg/L) 9.19 8.24 3.41 0.52 0.42 0.20 0.19	Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro	wn turbic	dours, other) dity. No odour.	
13:12 13:15 13:18 13:21 13:24 13:27 13:30 13:33	Cumulative Volume Removed (I) 0.1 0.6 1.1 1.6 2.1 2.6 3.1 3.6	= vol required for Water Level (m below MP) 2.31 2.31 2.31 2.31 2.31 2.31 2.31 2.31 2.31	3V method (L) Stability of Field Params	+/- 3% Specific Conductance EC (uS/cm) #25°C 127 718 712 749 746 740 734	+/- 0.05 pH pH 7.18 6.89 6.78 6.72 6.74 6.75 6.75	+/- 10% Temp. (°C) 11.55 12.10 12.64 13.53 13.59 13.50 13.74	+/- 10mV Redox ORP (mV) 35.3 35.8 32.4 13.6 -4.1 -10.9 -24.6 -26.0	DO (mg/L) 9.19 8.24 3.41 0.52 0.42 0.20 0.19	Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro	wn turbic	dours, other) dity. No odour.	
13:12 13:15 13:18 13:21 13:24 13:27 13:30 13:33	Cumulative Volume Removed (I) 0.1 0.6 1.1 1.6 2.1 2.6 3.1 3.6	= vol required for Water Level (m below MP) 2.31 2.31 2.31 2.31 2.31 2.31 2.31 2.31 2.31	3V method (L) Stability of Field Params	+/- 3% Specific Conductance EC (uS/cm) #25°C 127 718 712 749 746 740 734	+/- 0.05 pH pH 7.18 6.89 6.78 6.72 6.74 6.75 6.75	+/- 10% Temp. (°C) 11.55 12.10 12.64 13.53 13.59 13.50 13.74	+/- 10mV Redox ORP (mV) 35.3 35.8 32.4 13.6 -4.1 -10.9 -24.6 -26.0	DO (mg/L) 9.19 8.24 3.41 0.52 0.42 0.20 0.19	Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro	wn turbic	dours, other) dity. No odour.	
13:12 13:15 13:18 13:21 13:24 13:27 13:30 13:33	Cumulative Volume Removed (I) 0.1 0.6 1.1 1.6 2.1 2.6 3.1 3.6	= vol required for Water Level (m below MP) 2.31 2.31 2.31 2.31 2.31 2.31 2.31 2.31 2.31	3V method (L) Stability of Field Params	+/- 3% Specific Conductance EC (uS/cm) #25°C 127 718 712 749 746 740 734	+/- 0.05 pH pH 7.18 6.89 6.78 6.72 6.74 6.75 6.75	+/- 10% Temp. (°C) 11.55 12.10 12.64 13.53 13.59 13.50 13.74	+/- 10mV Redox ORP (mV) 35.3 35.8 32.4 13.6 -4.1 -10.9 -24.6 -26.0	DO (mg/L) 9.19 8.24 3.41 0.52 0.42 0.20 0.19	Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro	wn turbic	dours, other) dity. No odour.	
13:12 13:15 13:18 13:21 13:24 13:27 13:30 13:33	Cumulative Volume Removed (I) 0.1 0.6 1.1 1.6 2.1 2.6 3.1 3.6	= vol required for Water Level (m below MP) 2.31 2.31 2.31 2.31 2.31 2.31 2.31 2.31 2.31	3V method (L) Stability of Field Params	+/- 3% Specific Conductance EC (uS/cm) #25°C 127 718 712 749 746 740 734	+/- 0.05 pH pH 7.18 6.89 6.78 6.72 6.74 6.75 6.75	+/- 10% Temp. (°C) 11.55 12.10 12.64 13.53 13.59 13.50 13.74	+/- 10mV Redox ORP (mV) 35.3 35.8 32.4 13.6 -4.1 -10.9 -24.6 -26.0	DO (mg/L) 9.19 8.24 3.41 0.52 0.42 0.20 0.19	Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro	wn turbic	dours, other) dity. No odour.	
13:12 13:15 13:18 13:21 13:24 13:27 13:30 13:33	Cumulative Volume Removed (I) 0.1 0.6 1.1 1.6 2.1 2.6 3.1 3.6	= vol required for Water Level (m below MP) 2.31 2.31 2.31 2.31 2.31 2.31 2.31 2.31 2.31	3V method (L) Stability of Field Params	+/- 3% Specific Conductance EC (uS/cm) #25°C 127 718 712 749 746 740 734	+/- 0.05 pH pH 7.18 6.89 6.78 6.72 6.74 6.75 6.75	+/- 10% Temp. (°C) 11.55 12.10 12.64 13.53 13.59 13.50 13.74	+/- 10mV Redox ORP (mV) 35.3 35.8 32.4 13.6 -4.1 -10.9 -24.6 -26.0	DO (mg/L) 9.19 8.24 3.41 0.52 0.42 0.20 0.19	Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro	wn turbic	dours, other) dity. No odour.	
13:12 13:15 13:18 13:21 13:24 13:27 13:30 13:33	Cumulative Volume Removed (I) 0.1 0.6 1.1 1.6 2.1 2.6 3.1 3.6	= vol required for Water Level (m below MP) 2.31 2.31 2.31 2.31 2.31 2.31 2.31 2.31 2.31	3V method (L) Stability of Field Params	+/- 3% Specific Conductance EC (uS/cm) #25°C 127 718 712 749 746 740 734	+/- 0.05 pH pH 7.18 6.89 6.78 6.72 6.74 6.75 6.75	+/- 10% Temp. (°C) 11.55 12.10 12.64 13.53 13.59 13.50 13.74	+/- 10mV Redox ORP (mV) 35.3 35.8 32.4 13.6 -4.1 -10.9 -24.6 -26.0	DO (mg/L) 9.19 8.24 3.41 0.52 0.42 0.20 0.19	Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro	wn turbic	dours, other) dity. No odour.	
13:12 13:15 13:18 13:21 13:24 13:27 13:30 13:33	Cumulative Volume Removed (I) 0.1 0.6 1.1 1.6 2.1 2.6 3.1 3.6	= vol required for Water Level (m below MP) 2.31 2.31 2.31 2.31 2.31 2.31 2.31 2.31 2.31	3V method (L) Stability of Field Params	+/- 3% Specific Conductance EC (uS/cm) #25°C 127 718 712 749 746 740 734	+/- 0.05 pH pH 7.18 6.89 6.78 6.72 6.74 6.75 6.75	+/- 10% Temp. (°C) 11.55 12.10 12.64 13.53 13.59 13.50 13.74	+/- 10mV Redox ORP (mV) 35.3 35.8 32.4 13.6 -4.1 -10.9 -24.6 -26.0	DO (mg/L) 9.19 8.24 3.41 0.52 0.42 0.20 0.19	Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro	wn turbic	dours, other) dity. No odour.	
13:12 13:15 13:18 13:21 13:24 13:27 13:30 13:33	Cumulative Volume Removed (I) 0.1 0.6 1.1 1.6 2.1 2.6 3.1 3.6	= vol required for Water Level (m below MP) 2.31 2.31 2.31 2.31 2.31 2.31 2.31 2.31 2.31	3V method (L) Stability of Field Params	+/- 3% Specific Conductance EC (uS/cm) #25°C 127 718 712 749 746 740 734	+/- 0.05 pH pH 7.18 6.89 6.78 6.72 6.74 6.75 6.75	+/- 10% Temp. (°C) 11.55 12.10 12.64 13.53 13.59 13.50 13.74	+/- 10mV Redox ORP (mV) 35.3 35.8 32.4 13.6 -4.1 -10.9 -24.6 -26.0	DO (mg/L) 9.19 8.24 3.41 0.52 0.42 0.20 0.19	Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro	wn turbic	dours, other) dity. No odour.	
13:12 13:15 13:18 13:21 13:24 13:27 13:30 13:33	Cumulative Volume Removed (I) 0.1 0.6 1.1 1.6 2.1 2.6 3.1 3.6	= vol required for Water Level (m below MP) 2.31 2.31 2.31 2.31 2.31 2.31 2.31 2.31 2.31	3V method (L) Stability of Field Params	+/- 3% Specific Conductance EC (uS/cm) #25°C 127 718 712 749 746 740 734	+/- 0.05 pH pH 7.18 6.89 6.78 6.72 6.74 6.75 6.75	+/- 10% Temp. (°C) 11.55 12.10 12.64 13.53 13.59 13.50 13.74	+/- 10mV Redox ORP (mV) 35.3 35.8 32.4 13.6 -4.1 -10.9 -24.6 -26.0	DO (mg/L) 9.19 8.24 3.41 0.52 0.42 0.20 0.19	Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro	wn turbic	dours, other) dity. No odour.	
13:12 13:15 13:18 13:21 13:24 13:27 13:30 13:33	Cumulative Volume Removed (I) 0.1 0.6 1.1 1.6 2.1 2.6 3.1 3.6	= vol required for Water Level (m below MP) 2.31 2.31 2.31 2.31 2.31 2.31 2.31 2.31 2.31	3V method (L) Stability of Field Params	+/- 3% Specific Conductance EC (uS/cm) #25°C 127 718 712 749 746 740 734	+/- 0.05 pH pH 7.18 6.89 6.78 6.72 6.74 6.75 6.75	+/- 10% Temp. (°C) 11.55 12.10 12.64 13.53 13.59 13.50 13.74	+/- 10mV Redox ORP (mV) 35.3 35.8 32.4 13.6 -4.1 -10.9 -24.6 -26.0	DO (mg/L) 9.19 8.24 3.41 0.52 0.42 0.20 0.19	Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro Light Yellow Bro	wn turbic	dours, other) dity. No odour.	

Notes: All bore measuremen	nts are referen	ced to the mark	ed measuremer	nt point. All Coo	rdinates in GDA	N94.					4	
			TS Grou	ndwate	r sampli	ing field	l sheet -	- Env l	Monitoring	, V	entia	
Rore ID No	B	H8		Project Name	•	O				ling Staff	AC	
		110	_					•	·	Ü		U 500
Project Area:				Client	F	HEPBURN SHIR	RE.	:	WQ. Met			11 500
Date	10/0	5/2023		Project No					WQ. Mete	r Serial #	,0571	0
Expe	ected Bore D	etails										
Internal Dia	ameter (mm)		_	Easting		_	Total [Depth (m)		Screen	Depth From (m	1)
				Northing			Water	Lovel (m)		Soro	on Donth To (m	,)
Drop Tube already in	rbole: (17N)	IN		Northing		-	water	Level (III)		3016	en bepui io (iii	·/
Drop Tube	e Length (m)	0.00		Zone		= -	Set Pump in	ilet at (m)			Set Pump at (m	1)
Additiona	I Information											
Bore Fi	ield Measur	ements										
Time of SWL	10:51	To	otal Depth (m)	7.57	Mid-screen	accessible?	Clea	ar	Depth pumps	et at (m)	7.00)
Static Water Level (m)	3.00	Вс	ore Diam (mm)	50	Open Scree	n Length(m)	0.00		Depth of pump	inlet (m)	7.00)
Wel	II Purging De	etails			Sampling D	etails			Sar	nple Bott	tles Required	
Purge Method	LF	Pump Type	MicroPurge	Samp	oling Method	LF			Bottle Type	Quantity	Bottle Type	Quantit
Time Pump in					Ü		WL m (start)	3.04	1ltr	1	7.	
Time Started		·					WL m (end)		ml METALS filtere			
Time Stopped					e sample ID?		-		60ml COD	1		1
Volume Removed (I)			0.00		sample ID?		='		50ml GLASS	1		
Discharge Rate (I/m)		-			sample ID?		-		SSIII GLASS			
	ump Remov	/al		Kirisate	, sample ib:							
Time of removal	,		n(post-removal)	3.27	Bore Dei	pth at end (m)	7.57					
	Pump Setting	_	П(резклетнечал)	0.27		pur at ona (m)	7.07					
Fill / Discharge used	,	CPM		Air/Gas	Pressure (kPa)	30						
-							_					
Comments												
												_
		Field Parameters	are considered sta	able when within t	he EPA limits for 3	consecutive me	easurements		1			_
	27	= vol required for	3V method (L)	+/- 3% Specific	+/- 0.05 pH	+/- 10%	+/- 10mV	+/- 10%		0	the feedering	
Time	Cumulative Volume			+/- 3% Specific Conductance EC (uS/cm)		+/- 10% Temp.	+/- 10mV Redox	DO			nts (colour,	
	Cumulative Volume Removed (I)	= vol required for Water Level (m below MP)	3V method (L) Stability of Field Params	+/- 3% Specific Conductance EC (uS/cm) @25°C	+/- 0.05 pH pH	+/- 10% Temp. (°C)	+/- 10mV Redox ORP (mV)	DO (mg/L)		turbidity, o	dours, other)	
11:02	Cumulative Volume Removed (I)	= vol required for Water Level (m below MP)	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) @25°C 859	+/- 0.05 pH pH	+/- 10% Temp. (°C)	+/- 10mV Redox ORP (mV)	DO (mg/L) 0.39	Dark grey brown	turbidity, o	dours, other)	
11:02 11:05	Cumulative Volume Removed (I) 0.1	= vol required for Water Level (m below MP) 3.04 3.04	3V method (L) Stability of Field Params Keep purging Keep purging	+/- 3% Specific Conductance EC (us/cm) @25°C 859 851	+/- 0.05 pH pH 6.48 6.57	+/- 10% Temp. (°C) 14.72 15.57	+/- 10mV Redox ORP (mV) 67.6 -7.7	DO (mg/L) 0.39 0.24	Dark grey brown	turbidity, on, thick tu	dours, other) Irb, no odour. Irb, no odour.	
11:02	Cumulative Volume Removed (I)	= vol required for Water Level (m below MP)	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) @25°C 859	+/- 0.05 pH pH	+/- 10% Temp. (°C)	+/- 10mV Redox ORP (mV)	DO (mg/L) 0.39		turbidity, on, thick tu	dours, other) Irb, no odour. Irb, no odour.	
11:02 11:05	Cumulative Volume Removed (I) 0.1	= vol required for Water Level (m below MP) 3.04 3.04	3V method (L) Stability of Field Params Keep purging Keep purging	+/- 3% Specific Conductance EC (us/cm) @25°C 859 851	+/- 0.05 pH pH 6.48 6.57	+/- 10% Temp. (°C) 14.72 15.57	+/- 10mV Redox ORP (mV) 67.6 -7.7	DO (mg/L) 0.39 0.24	Dark grey brown	turbidity, on n, thick tu n, thick tu n, thick tu	dours, other) Irb, no odour. Irb, no odour. Irb, no odour.	
11:02 11:05 11:08	Cumulative Volume Removed (I) 0.1 0.7 1.3	= vol required for Water Level (m below MP) 3.04 3.04 3.04	Stability of Field Params Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) @25°C 859 851	+/- 0.05 pH pH 6.48 6.57	+/- 10% Temp. (°C) 14.72 15.57	+/- 10mV Redox ORP (mV) 67.6 -7.7 -23.4	DO (mg/L) 0.39 0.24 0.22	Dark grey brown	turbidity, or n, thick tu n, thick tu n, thick tu n, thick tu	dours, other) Irb, no odour.	
11:02 11:05 11:08 11:11	Cumulative Volume Removed (I) 0.1 0.7 1.3	= vol required for Water Level (m below MP) 3.04 3.04 3.04 3.04	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) =25°C 859 851 842 821	+/- 0.05 pH pH 6.48 6.57 6.60	+/- 10% Temp. (°C) 14.72 15.57 15.55	+/- 10mV Redox ORP (mV) 67.6 -7.7 -23.4 -39.1	DO (mg/L) 0.39 0.24 0.22 0.21	Dark grey brown Dark grey brown	turbidity, or n, thick tu n, thick tu n, thick tu n, thick tu n, thick tu	dours, other) Irb, no odour.	
11:02 11:05 11:08 11:11 11:14	Cumulative Volume Removed (I) 0.1 0.7 1.3 2 2.6	= vol required for Water Level (m below MP) 3.04 3.04 3.04 3.04 3.04	Stability of Field Params Keep purging Keep purging Keep purging Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) @25°C 859 851 842 821 810	+/- 0.05 pH pH 6.48 6.57 6.60 6.60	+/- 10% Temp. (°C) 14.72 15.57 15.55 15.49	+/- 10mV Redox ORP (mV) 67.6 -7.7 -23.4 -39.1	DO (mg/L) 0.39 0.24 0.22 0.21 0.20	Dark grey brown Dark grey brown Dark grey brown Dark grey brown	turbidity, or n, thick tu n, thick tu n, thick tu n, thick tu n, thick tu n, thick tu	dours, other) Irb, no odour.	
11:02 11:05 11:08 11:11 11:14 11:17	Cumulative Volume Removed (I) 0.1 0.7 1.3 2 2.6 3.2	= vol required for Water Level (m below MP) 3.04 3.04 3.04 3.04 3.04 3.04	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging Keep purging Keep purging Keep purging	#/- 3% Specific Conductance EC (uS/cm) #25°C 859 851 842 821 810 802	+/- 0.05 pH pH 6.48 6.57 6.60 6.60 6.59 6.60	+/- 10% Temp. (°C) 14.72 15.57 15.55 15.49	+/- 10mV Redox ORP (mV) 67.6 -7.7 -23.4 -39.1 -49.1 -59.3	DO (mg/L) 0.39 0.24 0.22 0.21 0.20 0.22	Dark grey brown	turbidity, or 1, thick tu 1, thick tu	dours, other) Irb, no odour.	
11:02 11:05 11:08 11:11 11:14 11:17 11:20	Cumulative Volume Removed (I) 0.1 0.7 1.3 2 2.6 3.2 3.8	= vol required for Water Level (m below MP) 3.04 3.04 3.04 3.04 3.04 3.04 3.04 3.04	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 859 851 842 821 810 802	+/- 0.05 pH pH 6.48 6.57 6.60 6.60 6.60 6.60	+/- 10% Temp. (°C) 14.72 15.57 15.55 15.49 15.46	+/- 10mV Redox ORP (mV) 67.6 -7.7 -23.4 -39.1 -49.1 -59.3 -61.7	DO (mg/L) 0.39 0.24 0.22 0.21 0.20 0.22	Dark grey brown	turbidity, on n, thick tu n, thick tu	dours, other) Irb, no odour.	
11:02 11:05 11:08 11:11 11:14 11:17 11:20 11:23	Cumulative Volume Removed (I) 0.1 0.7 1.3 2 2.6 3.2 3.8 4.4	= vol required for Water Level (m below MP) 3.04 3.04 3.04 3.04 3.04 3.04 3.04 3.05	3V method (L) Stability of Field Params Keep purging	#/- 3% Specific Conductance EC (uS/cm) #25°C 859 851 842 821 810 802 792 771	+/- 0.05 pH pH 6.48 6.57 6.60 6.60 6.60 6.60 6.60	+/- 10% Temp. (°C) 14.72 15.57 15.55 15.58 15.49 15.46 15.44	+/- 10mV Redox ORP (mV) 67.6 -7.7 -23.4 -39.1 -49.1 -59.3 -61.7 -66.2	DO (mg/L) 0.39 0.24 0.22 0.21 0.20 0.22 0.21	Dark grey brown	turbidity, on n, thick tu n, thick tu	dours, other) Irb, no odour.	
11:02 11:05 11:08 11:11 11:14 11:17 11:20 11:23 11:26 11:29	Cumulative Volume Removed (I) 0.1 0.7 1.3 2 2.6 3.2 3.8 4.4 5	= vol required for Water Level (m below MP) 3.04 3.04 3.04 3.04 3.04 3.04 3.05 3.05	3V method (L) Stability of Field Params Keep purging	#/- 3% Specific Conductance EC (uS/cm) #25°C 859 851 842 821 810 802 771 763 744	+/- 0.05 pH pH 6.48 6.57 6.60 6.60 6.60 6.60 6.60 6.60 6.60 6.6	+/- 10% Temp. (°C) 14.72 15.57 15.55 15.58 15.49 15.46 15.44 15.34 15.36	+/- 10mV Redox ORP (mV) 67.6 -7.7 -23.4 -39.1 -49.1 -59.3 -61.7 -66.2 -67.8	DO (mg/L) 0.39 0.24 0.22 0.21 0.20 0.22 0.21 0.22 0.22	Dark grey brown	turbidity, on a, thick tu a,	dours, other) Irb, no odour.	
11:02 11:05 11:08 11:11 11:14 11:17 11:20 11:23 11:26 11:29 11:32	Cumulative Volume Removed (I) 0.1 0.7 1.3 2 2.6 3.2 3.8 4.4 5 5.6 6.2	= vol required for Water Level (m below MP) 3.04 3.04 3.04 3.04 3.04 3.04 3.05 3.05 3.05	3V method (L) Stability of Field Params Keep purging	#/- 3% Specific Conductance EC (uS/cm) #25°C #859 #851 #842 #810 #802 792 771 763 744 731	+/- 0.05 pH pH 6.48 6.57 6.60 6.60 6.60 6.60 6.60 6.60 6.60 6.6	+/- 10% Temp. (°C) 14.72 15.57 15.55 15.58 15.49 15.46 15.44 15.34 15.36 15.39	+/- 10mV Redox ORP (mV) 67.6 -7.7 -23.4 -39.1 -49.1 -59.3 -61.7 -66.2 -67.8 -69.9 -72.7	DO (mg/L) 0.39 0.24 0.22 0.21 0.20 0.22 0.21 0.22 0.22 0.22	Dark grey brown	turbidity, on, thick tu n, thick tu	dours, other) Irb, no odour.	
11:02 11:05 11:08 11:11 11:14 11:17 11:20 11:23 11:26 11:29	Cumulative Volume Removed (I) 0.1 0.7 1.3 2 2.6 3.2 3.8 4.4 5	= vol required for Water Level (m below MP) 3.04 3.04 3.04 3.04 3.04 3.04 3.05 3.05	3V method (L) Stability of Field Params Keep purging	#/- 3% Specific Conductance EC (uS/cm) #25°C 859 851 842 821 810 802 771 763 744	+/- 0.05 pH pH 6.48 6.57 6.60 6.60 6.60 6.60 6.60 6.60 6.60 6.6	+/- 10% Temp. (°C) 14.72 15.57 15.55 15.58 15.49 15.46 15.44 15.34 15.36	+/- 10mV Redox ORP (mV) 67.6 -7.7 -23.4 -39.1 -49.1 -59.3 -61.7 -66.2 -67.8	DO (mg/L) 0.39 0.24 0.22 0.21 0.20 0.22 0.21 0.22 0.22	Dark grey brown	turbidity, on, thick tu n, thick tu	dours, other) Irb, no odour.	
11:02 11:05 11:08 11:11 11:14 11:17 11:20 11:23 11:26 11:29 11:32	Cumulative Volume Removed (I) 0.1 0.7 1.3 2 2.6 3.2 3.8 4.4 5 5.6 6.2	= vol required for Water Level (m below MP) 3.04 3.04 3.04 3.04 3.04 3.04 3.05 3.05 3.05	3V method (L) Stability of Field Params Keep purging	#/- 3% Specific Conductance EC (uS/cm) #25°C #859 #851 #842 #810 #802 792 771 763 744 731	+/- 0.05 pH pH 6.48 6.57 6.60 6.60 6.60 6.60 6.60 6.60 6.60 6.6	+/- 10% Temp. (°C) 14.72 15.57 15.55 15.58 15.49 15.46 15.44 15.34 15.36 15.39	+/- 10mV Redox ORP (mV) 67.6 -7.7 -23.4 -39.1 -49.1 -59.3 -61.7 -66.2 -67.8 -69.9 -72.7	DO (mg/L) 0.39 0.24 0.22 0.21 0.20 0.22 0.21 0.22 0.22 0.22	Dark grey brown	turbidity, on, thick tu n, thick tu	dours, other) Irb, no odour.	
11:02 11:05 11:08 11:11 11:14 11:17 11:20 11:23 11:26 11:29 11:32	Cumulative Volume Removed (I) 0.1 0.7 1.3 2 2.6 3.2 3.8 4.4 5 5.6 6.2	= vol required for Water Level (m below MP) 3.04 3.04 3.04 3.04 3.04 3.04 3.05 3.05 3.05	3V method (L) Stability of Field Params Keep purging	#/- 3% Specific Conductance EC (uS/cm) #25°C #859 #851 #842 #810 #802 792 771 763 744 731	+/- 0.05 pH pH 6.48 6.57 6.60 6.60 6.60 6.60 6.60 6.60 6.60 6.6	+/- 10% Temp. (°C) 14.72 15.57 15.55 15.58 15.49 15.46 15.44 15.34 15.36 15.39	+/- 10mV Redox ORP (mV) 67.6 -7.7 -23.4 -39.1 -49.1 -59.3 -61.7 -66.2 -67.8 -69.9 -72.7	DO (mg/L) 0.39 0.24 0.22 0.21 0.20 0.22 0.21 0.22 0.22 0.22	Dark grey brown	turbidity, on, thick tu n, thick tu	dours, other) Irb, no odour.	
11:02 11:05 11:08 11:11 11:14 11:17 11:20 11:23 11:26 11:29 11:32	Cumulative Volume Removed (I) 0.1 0.7 1.3 2 2.6 3.2 3.8 4.4 5 5.6 6.2	= vol required for Water Level (m below MP) 3.04 3.04 3.04 3.04 3.04 3.04 3.05 3.05 3.05	3V method (L) Stability of Field Params Keep purging	#/- 3% Specific Conductance EC (uS/cm) #25°C #859 #851 #842 #810 #802 792 771 763 744 731	+/- 0.05 pH pH 6.48 6.57 6.60 6.60 6.60 6.60 6.60 6.60 6.60 6.6	+/- 10% Temp. (°C) 14.72 15.57 15.55 15.58 15.49 15.46 15.44 15.34 15.36 15.39	+/- 10mV Redox ORP (mV) 67.6 -7.7 -23.4 -39.1 -49.1 -59.3 -61.7 -66.2 -67.8 -69.9 -72.7	DO (mg/L) 0.39 0.24 0.22 0.21 0.20 0.22 0.21 0.22 0.22 0.22	Dark grey brown	turbidity, on, thick tu n, thick tu	dours, other) Irb, no odour.	
11:02 11:05 11:08 11:11 11:14 11:17 11:20 11:23 11:26 11:29 11:32	Cumulative Volume Removed (I) 0.1 0.7 1.3 2 2.6 3.2 3.8 4.4 5 5.6 6.2	= vol required for Water Level (m below MP) 3.04 3.04 3.04 3.04 3.04 3.04 3.05 3.05 3.05	3V method (L) Stability of Field Params Keep purging	#/- 3% Specific Conductance EC (uS/cm) #25°C #859 #851 #842 #810 #802 792 771 763 744 731	+/- 0.05 pH pH 6.48 6.57 6.60 6.60 6.60 6.60 6.60 6.60 6.60 6.6	+/- 10% Temp. (°C) 14.72 15.57 15.55 15.58 15.49 15.46 15.44 15.34 15.36 15.39	+/- 10mV Redox ORP (mV) 67.6 -7.7 -23.4 -39.1 -49.1 -59.3 -61.7 -66.2 -67.8 -69.9 -72.7	DO (mg/L) 0.39 0.24 0.22 0.21 0.20 0.22 0.21 0.22 0.22 0.22	Dark grey brown	turbidity, on, thick tu n, thick tu	dours, other) Irb, no odour.	
11:02 11:05 11:08 11:11 11:14 11:17 11:20 11:23 11:26 11:29 11:32	Cumulative Volume Removed (I) 0.1 0.7 1.3 2 2.6 3.2 3.8 4.4 5 5.6 6.2	= vol required for Water Level (m below MP) 3.04 3.04 3.04 3.04 3.04 3.04 3.05 3.05 3.05	3V method (L) Stability of Field Params Keep purging	#/- 3% Specific Conductance EC (uS/cm) #25°C 859 851 842 821 810 802 792 771 763 744 731	+/- 0.05 pH pH 6.48 6.57 6.60 6.60 6.60 6.60 6.60 6.60 6.60 6.6	+/- 10% Temp. (°C) 14.72 15.57 15.55 15.58 15.49 15.46 15.44 15.34 15.36 15.39	+/- 10mV Redox ORP (mV) 67.6 -7.7 -23.4 -39.1 -49.1 -59.3 -61.7 -66.2 -67.8 -69.9 -72.7	DO (mg/L) 0.39 0.24 0.22 0.21 0.20 0.22 0.21 0.22 0.22 0.22	Dark grey brown	turbidity, on, thick tu n, thick tu	dours, other) Irb, no odour.	
11:02 11:05 11:08 11:11 11:14 11:17 11:20 11:23 11:26 11:29 11:32	Cumulative Volume Removed (I) 0.1 0.7 1.3 2 2.6 3.2 3.8 4.4 5 5.6 6.2	= vol required for Water Level (m below MP) 3.04 3.04 3.04 3.04 3.04 3.04 3.05 3.05 3.05	3V method (L) Stability of Field Params Keep purging	#/- 3% Specific Conductance EC (uS/cm) #25°C 859 851 842 821 810 802 792 771 763 744 731	+/- 0.05 pH pH 6.48 6.57 6.60 6.60 6.60 6.60 6.60 6.60 6.60 6.6	+/- 10% Temp. (°C) 14.72 15.57 15.55 15.58 15.49 15.46 15.44 15.34 15.36 15.39	+/- 10mV Redox ORP (mV) 67.6 -7.7 -23.4 -39.1 -49.1 -59.3 -61.7 -66.2 -67.8 -69.9 -72.7	DO (mg/L) 0.39 0.24 0.22 0.21 0.20 0.22 0.21 0.22 0.22 0.22	Dark grey brown	turbidity, on, thick tu n, thick tu	dours, other) Irb, no odour.	
11:02 11:05 11:08 11:11 11:14 11:17 11:20 11:23 11:26 11:29 11:32	Cumulative Volume Removed (I) 0.1 0.7 1.3 2 2.6 3.2 3.8 4.4 5 5.6 6.2	= vol required for Water Level (m below MP) 3.04 3.04 3.04 3.04 3.04 3.04 3.05 3.05 3.05	3V method (L) Stability of Field Params Keep purging	#/- 3% Specific Conductance EC (uS/cm) #25°C 859 851 842 821 810 802 792 771 763 744 731	+/- 0.05 pH pH 6.48 6.57 6.60 6.60 6.60 6.60 6.60 6.60 6.60 6.6	+/- 10% Temp. (°C) 14.72 15.57 15.55 15.58 15.49 15.46 15.44 15.34 15.36 15.39	+/- 10mV Redox ORP (mV) 67.6 -7.7 -23.4 -39.1 -49.1 -59.3 -61.7 -66.2 -67.8 -69.9 -72.7	DO (mg/L) 0.39 0.24 0.22 0.21 0.20 0.22 0.21 0.22 0.22 0.22	Dark grey brown	turbidity, on, thick tu n, thick tu	dours, other) Irb, no odour.	
11:02 11:05 11:08 11:11 11:14 11:17 11:20 11:23 11:26 11:29 11:32	Cumulative Volume Removed (I) 0.1 0.7 1.3 2 2.6 3.2 3.8 4.4 5 5.6 6.2	= vol required for Water Level (m below MP) 3.04 3.04 3.04 3.04 3.04 3.04 3.05 3.05 3.05	3V method (L) Stability of Field Params Keep purging	#/- 3% Specific Conductance EC (uS/cm) #25°C 859 851 842 821 810 802 792 771 763 744 731	+/- 0.05 pH pH 6.48 6.57 6.60 6.60 6.60 6.60 6.60 6.60 6.60 6.6	+/- 10% Temp. (°C) 14.72 15.57 15.55 15.58 15.49 15.46 15.44 15.34 15.36 15.39	+/- 10mV Redox ORP (mV) 67.6 -7.7 -23.4 -39.1 -49.1 -59.3 -61.7 -66.2 -67.8 -69.9 -72.7	DO (mg/L) 0.39 0.24 0.22 0.21 0.20 0.22 0.21 0.22 0.22 0.22	Dark grey brown	turbidity, on, thick tu n, thick tu	dours, other) Irb, no odour.	
11:02 11:05 11:08 11:11 11:14 11:17 11:20 11:23 11:26 11:29 11:32	Cumulative Volume Removed (I) 0.1 0.7 1.3 2 2.6 3.2 3.8 4.4 5 5.6 6.2	= vol required for Water Level (m below MP) 3.04 3.04 3.04 3.04 3.04 3.04 3.05 3.05 3.05	3V method (L) Stability of Field Params Keep purging	#/- 3% Specific Conductance EC (uS/cm) #25°C 859 851 842 821 810 802 792 771 763 744 731	+/- 0.05 pH pH 6.48 6.57 6.60 6.60 6.60 6.60 6.60 6.60 6.60 6.6	+/- 10% Temp. (°C) 14.72 15.57 15.55 15.58 15.49 15.46 15.44 15.34 15.36 15.39	+/- 10mV Redox ORP (mV) 67.6 -7.7 -23.4 -39.1 -49.1 -59.3 -61.7 -66.2 -67.8 -69.9 -72.7	DO (mg/L) 0.39 0.24 0.22 0.21 0.20 0.22 0.21 0.22 0.22 0.22	Dark grey brown	turbidity, on, thick tu n, thick tu	dours, other) Irb, no odour.	
11:02 11:05 11:08 11:11 11:14 11:17 11:20 11:23 11:26 11:29 11:32	Cumulative Volume Removed (I) 0.1 0.7 1.3 2 2.6 3.2 3.8 4.4 5 5.6 6.2	= vol required for Water Level (m below MP) 3.04 3.04 3.04 3.04 3.04 3.04 3.05 3.05 3.05	3V method (L) Stability of Field Params Keep purging	#/- 3% Specific Conductance EC (uS/cm) #25°C 859 851 842 821 810 802 792 771 763 744 731	+/- 0.05 pH pH 6.48 6.57 6.60 6.60 6.60 6.60 6.60 6.60 6.60 6.6	+/- 10% Temp. (°C) 14.72 15.57 15.55 15.58 15.49 15.46 15.44 15.34 15.36 15.39	+/- 10mV Redox ORP (mV) 67.6 -7.7 -23.4 -39.1 -49.1 -59.3 -61.7 -66.2 -67.8 -69.9 -72.7	DO (mg/L) 0.39 0.24 0.22 0.21 0.20 0.22 0.21 0.22 0.22 0.22	Dark grey brown	turbidity, on, thick tu n, thick tu	dours, other) Irb, no odour.	
11:02 11:05 11:08 11:11 11:14 11:17 11:20 11:23 11:26 11:29 11:32	Cumulative Volume Removed (I) 0.1 0.7 1.3 2 2.6 3.2 3.8 4.4 5 5.6 6.2	= vol required for Water Level (m below MP) 3.04 3.04 3.04 3.04 3.04 3.04 3.05 3.05 3.05	3V method (L) Stability of Field Params Keep purging	#/- 3% Specific Conductance EC (uS/cm) #25°C 859 851 842 821 810 802 792 771 763 744 731	+/- 0.05 pH pH 6.48 6.57 6.60 6.60 6.60 6.60 6.60 6.60 6.60 6.6	+/- 10% Temp. (°C) 14.72 15.57 15.55 15.58 15.49 15.46 15.44 15.34 15.36 15.39	+/- 10mV Redox ORP (mV) 67.6 -7.7 -23.4 -39.1 -49.1 -59.3 -61.7 -66.2 -67.8 -69.9 -72.7	DO (mg/L) 0.39 0.24 0.22 0.21 0.20 0.22 0.21 0.22 0.22 0.22	Dark grey brown	turbidity, on, thick tu n, thick tu	dours, other) Irb, no odour.	

Notes: All bore measuremen	nts are referen	ced to the mark	ed measuremer	nt point. All Coor	dinates in GDA	N94.						
							l sheet -	- Fny l	Monitorin	ug V	entia	
Para ID No	D	⊔1∩			•	Ü				•	40	
	В	HIU	_	Project Name						npling Staff		
Project Area:				Client					WQ. Me	eter Model	Aqua tro	II 500
Date	9/0	5/2023		Project No					WQ. Me	ter Serial #	,0571	0
Expe	ected Bore D)etails										
Internal Dia	ameter (mm)		-	Easting		=	Total [Depth (m)		Screen	Depth From (m	1)
Drop Tube already ir	n bore? (Y/N)	N		Northing			Water	Level (m)		Scre	en Depth To (m	1)
Drop lub	e Length (m)	0.00		Zone		-	Set Pump in	nlet at (m)			Set Pump at (m	1)
Additiona	l Information											
Bore F	ield Measur	ements										
Time of SWL	14:24	To	otal Depth (m)	6.73		accessible?		ar	_ Depth pump	set at (m)	5.70	
Static Water Level (m)		_	re Diam (mm)	50	Open Scree	n Length(m)	0.00	-	Depth of pum	np inlet (m)	5.70	
	II Purging De				Sampling D						les Required	
Purge Method			MicroPurge	·	oling Method				Bottle Type	Quantity	Bottle Type	Quantit
Time Pump in		·					WL m (start)					
Time Started		-					WL m (end)	2.51				
Time Stopped		_ WL m (end)	2.51		sample ID?		_					
Volume Removed (I)		=			sample ID?		=			+		
Discharge Rate (I/m)		- -		Rínsate	sample ID?							+
Time of removal	ump Remov		n(post-removal)	2.52	Rore De	pth at end (m)	6.74					
	Pump Setting	_	пфозгленнован	2.02	Boic Be	paratena (iii)	0.74					
Fill / Discharge used		CPM		Air/Gas	Pressure (kPa)	30						
-		_				All times EST						
Comments												
Comments					,	WI WITIES EST						
Comments					,	un diries Est						
Comments		Field Parameters	are considered sta	able when within t			easurements					
Comments			are considered sta		he EPA limits for 3	consecutive me		±/- 10%]			
	25 Cumulative	Field Parameters = vol required for Water Level (m		+/- 3% Specific			easurements +/- 10mV Redox	+/- 10% DO		Commen	its (colour,	
Comments	25	= vol required for	3V method (L)	+/- 3%	he EPA limits for 3	consecutive me	+/- 10mV				its (colour, dours, other)	
	25 Cumulative Volume	= vol required for Water Level (m	3V method (L) Stability of Field	+/- 3% Specific Conductance EC (uS/cm)	he EPA limits for 3	consecutive me +/- 10% Temp.	+/- 10mV Redox	DO	Highly turbid, y	turbidity, od	dours, other)	
Time	25 Cumulative Volume Removed (I)	= vol required for Water Level (m below MP)	3V method (L) Stability of Field Params	+/- 3% Specific Conductance EC (uS/cm) @25°C	he EPA limits for 3 +/- 0.05 pH pH	+/- 10% Temp.	+/- 10mV Redox ORP (mV)	DO (mg/L)	Highly turbid, y	turbidity, od	dours, other)	
Time 14:43	25 Cumulative Volume Removed (I)	= vol required for Water Level (m below MP)	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (us/cm) @25°C 559	he EPA limits for 3 +/- 0.05 pH pH 5.70	+/- 10% Temp. (°C)	+/- 10mV Redox ORP (mV)	DO (mg/L) 0.62	3 3	turbidity, oc rellow/brow rellow/brow	vn nil odour	
Time 14:43 14:46	25 Cumulative Volume Removed (I) 0.1	= vol required for Water Level (m below MP) 2.49 2.53	3V method (L) Stability of Field Params Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) @25°C 559 630	+/- 0.05 pH pH 5.70	+/- 10% Temp. (°C) 15.13	+/- 10mV Redox ORP (mV) 79.5 82.3	DO (mg/L) 0.62 0.64	Highly turbid, y	turbidity, oc rellow/brow rellow/brow rellow/brow	vn nil odour vn nil odour	
Time 14:43 14:46 14:49	25 Cumulative Volume Removed (I) 0.1 0.8	= vol required for Water Level (m below MP) 2.49 2.53 2.50	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (us/cm) #25°C 559 630 628	+/- 0.05 pH pH 5.70 5.68	+/- 10% Temp. (°C) 15.13 15.21	+/- 10mV Redox ORP (mV) 79.5 82.3 85.3	DO (mg/L) 0.62 0.64 0.52	Highly turbid, y	turbidity, or rellow/brow rellow/brow rellow/brow	vn nil odour vn nil odour vn nil odour vn nil odour	
Time 14:43 14:46 14:49 14:52	25 Cumulative Volume Removed (I) 0.1 0.8 1.6 2.4	= vol required for Water Level (m below MP) 2.49 2.53 2.50 2.51	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/m) =25°C 559 630 628	+/- 0.05 pH pH 5.70 5.68 5.70	+/- 10% Temp. (°C) 15.13 15.21 15.21	+/- 10mV Redox ORP (mV) 79.5 82.3 85.3 86.4	DO (mg/L) 0.62 0.64 0.52 0.50	Highly turbid, y Highly turbid, y Highly turbid, y	turbidity, or rellow/brow rellow/brow rellow/brow rellow/brow	vn nil odour	
14:43 14:46 14:49 14:52 14:55	25 Cumulative Volume Removed (I) 0.1 0.8 1.6 2.4 3.2	= vol required for Water Level (m below MP) 2.49 2.53 2.50 2.51	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) @25°C 559 630 628 652	+/- 0.05 pH pH 5.70 5.68 5.70 5.70	+/- 10% Temp. (°C) 15.13 15.21 15.21 15.23	+/- 10mV Redox ORP (mV) 79.5 82.3 85.3 86.4 88.8	DO (mg/L) 0.62 0.64 0.52 0.50 0.49	Highly turbid, y Highly turbid, y Highly turbid, y	turbidity, or rellow/brow rellow/brow rellow/brow rellow/brow rellow/brow rellow/brow	vn nil odour	
Time 14:43 14:46 14:49 14:52 14:55 14:58	25 Cumulative Volume Removed (I) 0.1 0.8 1.6 2.4 3.2	= vol required for Water Level (m below MP) 2.49 2.53 2.50 2.51 2.52	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (u5/cm) #25' 559 630 628 652 652	+/- 0.05 pH pH 5.70 5.68 5.70 5.70 5.70	+/- 10% Temp. (°C) 15.13 15.21 15.21 15.23 15.31	+/- 10mV Redox ORP (mV) 79.5 82.3 85.3 86.4 88.8 89.1	0.62 0.64 0.52 0.50 0.49	Highly turbid, y Highly turbid, y Highly turbid, y Highly turbid, y	turbidity, or rellow/brow rellow/brow rellow/brow rellow/brow rellow/brow rellow/brow	vn nil odour	
14:43 14:46 14:49 14:52 14:55 14:58 15:01	25 Cumulative Volume Removed (I) 0.1 0.8 1.6 2.4 3.2 4 4.8 5.6	= vol required for Water Level (m below MP) 2.49 2.53 2.50 2.51 2.52 2.51 2.51	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 559 630 628 652 652 638	+/- 0.05 pH pH 5.70 5.68 5.70 5.70 5.70 5.59 5.61	+/- 10% Temp. (°C) 15.13 15.21 15.21 15.23 15.31 15.23 15.18	+/- 10mV Redox ORP (mV) 79.5 82.3 85.3 86.4 88.8 89.1 91.7	DO (mg/L) 0.62 0.64 0.52 0.50 0.49 0.49	Highly turbid, y	turbidity, or rellow/brow rellow/brow rellow/brow rellow/brow rellow/brow rellow/brow rellow/brow	vn nil odour	
14:43 14:46 14:49 14:52 14:55 14:58 15:01 15:04	25 Cumulative Volume Removed (I) 0.1 0.8 1.6 2.4 3.2 4 4.8 5.6 6.4	= vol required for Water Level (m below MP) 2.49 2.53 2.50 2.51 2.52 2.52 2.51 2.51 2.52	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 559 630 628 652 652 638 615 584	+/- 0.05 pH pH 5.70 5.68 5.70 5.70 5.70 5.59 5.61 5.53	+/- 10% Temp. (°C) 15.13 15.21 15.21 15.23 15.31 15.23 15.18 15.16	+/- 10mV Redox ORP (mV) 79.5 82.3 85.3 86.4 88.8 89.1 91.7 89.8	0.62 0.64 0.52 0.50 0.49 0.45 0.38	Highly turbid, y	turbidity, or rellow/brow rellow/brow rellow/brow rellow/brow rellow/brow rellow/brow rellow/brow rellow/brow	vn nil odour	
14:43 14:46 14:49 14:52 14:55 14:58 15:01 15:04 15:07 15:10	25 Cumulative Volume Removed (I) 0.1 0.8 1.6 2.4 3.2 4 4.8 5.6 6.4	= vol required for Water Level (m below MP) 2.49 2.53 2.50 2.51 2.52 2.51 2.51 2.52 2.51 2.52	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 559 630 628 652 652 638 615 584 507	+/- 0.05 pH pH 5.70 5.68 5.70 5.70 5.70 5.70 5.59 5.61 5.53	+/- 10% Temp. (°C) 15.13 15.21 15.21 15.23 15.31 15.23 15.16 15.26 15.26	+/- 10mV Redox ORP (mV) 79.5 82.3 85.3 86.4 88.8 89.1 91.7 89.8 90.0	0.62 0.64 0.52 0.50 0.49 0.49 0.45 0.38	Highly turbid, y	rellow/brow rellow/brow rellow/brow rellow/brow rellow/brow rellow/brow rellow/brow rellow/brow rellow/brow rellow/brow	vn nil odour	
14:43 14:46 14:49 14:52 14:55 14:58 15:01 15:04 15:07 15:10 15:13	25 Cumulative Volume Removed (I) 0.1 0.8 1.6 2.4 3.2 4 4.8 5.6 6.4 7.2	= vol required for Water Level (m below MP) 2.49 2.53 2.50 2.51 2.52 2.51 2.51 2.52 2.51 2.52 2.52 2.52	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 559 630 628 652 652 652 638 615 584 507 472 489	+/- 0.05 pH pH 5.70 5.68 5.70 5.70 5.59 5.61 5.53 5.56 5.55	+/- 10% Temp. (°C) 15.13 15.21 15.21 15.23 15.31 15.23 15.18 15.16 15.26 15.21	+/- 10mV Redox ORP (mV) 79.5 82.3 85.3 86.4 88.8 89.1 91.7 89.8 90.0 94.0	DO (mg/L) 0.62 0.64 0.52 0.50 0.49 0.49 0.45 0.38 0.34 0.30	Highly turbid, y becoming cle	rellow/brow rellow/brow rellow/brow rellow/brow rellow/brow rellow/brow rellow/brow rellow/brow rellow/brow rellow/brow rellow/brow	vn nil odour	
Time 14:43 14:46 14:49 14:52 14:55 14:58 15:01 15:04 15:07 15:10 15:13 15:16	25 Cumulative Volume Removed (I) 0.1 0.8 1.6 2.4 3.2 4 4.8 5.6 6.4 7.2 8 8.8	= vol required for Water Level (m below MP) 2.49 2.53 2.50 2.51 2.52 2.51 2.52 2.52 2.52 2.52 2.52	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/m) #25°C 559 630 628 652 652 638 615 584 507 472 489	+/- 0.05 pH pH 5.70 5.68 5.70 5.70 5.59 5.61 5.53 5.56 5.55 5.57	+/- 10% Temp. (°C) 15.13 15.21 15.21 15.23 15.31 15.23 15.18 15.16 15.26 15.21 15.21	+/- 10mV Redox ORP (mV) 79.5 82.3 85.3 86.4 88.8 89.1 91.7 89.8 90.0 94.0 94.3	0.62 0.64 0.52 0.50 0.49 0.45 0.38 0.34 0.30 0.29	Highly turbid, y becoming cle becoming cle	rellow/brow rellow/brow rellow/brow rellow/brow rellow/brow rellow/brow rellow/brow rellow/brow rellow/brow rellow/brow rellow/brow rellow/brow rellow/brow	vn nil odour	
Time 14:43 14:46 14:49 14:52 14:55 14:58 15:01 15:04 15:07 15:10 15:13 15:16 15:19	25 Cumulative Volume Removed (I) 0.1 0.8 1.6 2.4 3.2 4 4.8 5.6 6.4 7.2 8 8.8 9.6	= vol required for Water Level (m below MP) 2.49 2.53 2.50 2.51 2.52 2.51 2.52 2.52 2.52 2.52 2.52 2.52 2.52 2.52 2.520	stability of Field Params Keep purging	+/- 3% Specific Conductance EC (US/cm) @25°C 559 630 628 652 652 652 653 615 584 507 472 489 473	5.70 5.68 5.70 5.70 5.69 5.70 5.59 5.61 5.53 5.56 5.55 5.57	+/- 10% Temp. (°C) 15.13 15.21 15.21 15.23 15.31 15.23 15.16 15.26 15.21 15.31 15.26	+/- 10mV Redox ORP (mV) 79.5 82.3 85.3 86.4 88.8 89.1 91.7 89.8 90.0 94.0 94.3 90.8	DO (mg/L) 0.62 0.64 0.52 0.50 0.49 0.49 0.45 0.38 0.34 0.30 0.29	Highly turbid, y becoming cle becoming cle lightly turbid ni	rellow/brow rellow/brow rellow/brow rellow/brow rellow/brow rellow/brow rellow/brow rellow/brow rellow/brow rellow/brow rellow/brow rellow/brow	vn nil odour	
Time 14:43 14:46 14:49 14:52 14:55 14:58 15:01 15:07 15:10 15:13 15:16 15:19 15:22	25 Cumulative Volume Removed (I) 0.1 0.8 1.6 2.4 3.2 4 4.8 5.6 6.4 7.2 8 8.8 9.6 10.4	= vol required for Water Level (m below MP) 2.49 2.53 2.50 2.51 2.52 2.51 2.51 2.52 2.52 2.52 2.52 2.52 2.520 2.520 2.520 2.51	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 559 630 628 652 652 652 638 615 584 507 472 489 473 483	+/- 0.05 pH pH 5.70 5.68 5.70 5.70 5.59 5.61 5.53 5.56 5.55 5.57 5.57	+/- 10% Temp. (°C) 15.13 15.21 15.21 15.23 15.31 15.23 15.18 15.16 15.26 15.21 15.28 15.28	+/- 10mV Redox ORP (mV) 79.5 82.3 85.3 86.4 88.8 89.1 91.7 89.8 90.0 94.0 94.3 90.8 90.8	DO (mg/L) 0.62 0.64 0.52 0.50 0.49 0.45 0.38 0.34 0.30 0.29 0.27	Highly turbid, y becoming cle becoming cle lightly turbid ni	rellow/brow rellow/brow rellow/brow rellow/brow rellow/brow rellow/brow rellow/brow rellow/brow rellow/brow rellow/brow rellow/brow rellow/brow rellow/brow rellow/brow rellow/brow	vn nil odour	
Time 14:43 14:46 14:49 14:52 14:55 14:58 15:01 15:04 15:07 15:10 15:13 15:16 15:19 15:22 15:25	25 Cumulative Volume Removed (I) 0.1 0.8 1.6 2.4 3.2 4 4.8 5.6 6.4 7.2 8 8.8 9.6	= vol required for Water Level (m below MP) 2.49 2.53 2.50 2.51 2.52 2.52 2.51 2.52 2.52 2.52 2.52 2.52 2.52 2.52 2.52 2.520 2.520 2.51 32.51	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 559 630 628 652 652 638 615 584 507 472 489 473 483 632	+/- 0.05 pH pH 5.70 5.68 5.70 5.70 5.59 5.61 5.53 5.56 5.57 5.57 5.57	+/- 10% Temp. (°C) 15.13 15.21 15.21 15.23 15.31 15.23 15.16 15.26 15.21 15.22 15.31 15.26 15.21	+/- 10mV Redox ORP (mV) 79.5 82.3 85.3 86.4 88.8 89.1 91.7 89.8 90.0 94.0 94.3 90.8 90.8	DO (mg/L) 0.62 0.64 0.52 0.50 0.49 0.49 0.45 0.38 0.34 0.30 0.29 0.27 0.26	Highly turbid, y becoming cle becoming cle lightly turbid ni lightly turbid ni	turbidity, or rellow/brow	vn nil odour	
Time 14:43 14:46 14:49 14:52 14:55 14:58 15:01 15:04 15:07 15:10 15:16 15:16 15:19	25 Cumulative Volume Removed (I) 0.1 0.8 1.6 2.4 3.2 4 4.8 5.6 6.4 7.2 8 8.8 9.6 10.4	= vol required for Water Level (m below MP) 2.49 2.53 2.50 2.51 2.52 2.51 2.51 2.52 2.52 2.52 2.52 2.52 2.520 2.520 2.520 2.51	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 559 630 628 652 652 652 638 615 584 507 472 489 473 483	+/- 0.05 pH pH 5.70 5.68 5.70 5.70 5.59 5.61 5.53 5.56 5.55 5.57 5.57	+/- 10% Temp. (°C) 15.13 15.21 15.21 15.23 15.31 15.23 15.18 15.16 15.26 15.21 15.28 15.28	+/- 10mV Redox ORP (mV) 79.5 82.3 85.3 86.4 88.8 89.1 91.7 89.8 90.0 94.0 94.3 90.8 90.8	DO (mg/L) 0.62 0.64 0.52 0.50 0.49 0.45 0.38 0.34 0.30 0.29 0.27	Highly turbid, y becoming cle becoming cle lightly turbid ni	turbidity, or rellow/brow	vn nil odour	
Time 14:43 14:46 14:49 14:52 14:55 14:58 15:01 15:04 15:07 15:10 15:13 15:16 15:19 15:22 15:25	25 Cumulative Volume Removed (I) 0.1 0.8 1.6 2.4 3.2 4 4.8 5.6 6.4 7.2 8 8.8 9.6	= vol required for Water Level (m below MP) 2.49 2.53 2.50 2.51 2.52 2.52 2.51 2.52 2.52 2.52 2.52 2.52 2.52 2.52 2.52 2.520 2.520 2.51 32.51	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 559 630 628 652 652 638 615 584 507 472 489 473 483 632	+/- 0.05 pH pH 5.70 5.68 5.70 5.70 5.59 5.61 5.53 5.56 5.57 5.57 5.57	+/- 10% Temp. (°C) 15.13 15.21 15.21 15.23 15.31 15.23 15.16 15.26 15.21 15.22 15.31 15.26 15.21	+/- 10mV Redox ORP (mV) 79.5 82.3 85.3 86.4 88.8 89.1 91.7 89.8 90.0 94.0 94.3 90.8 90.8	0.62 0.62 0.64 0.52 0.50 0.49 0.49 0.45 0.38 0.34 0.30 0.29 0.27 0.26	Highly turbid, y becoming cle becoming cle lightly turbid ni lightly turbid ni	turbidity, or rellow/brow	vn nil odour	
Time 14:43 14:46 14:49 14:52 14:55 14:58 15:01 15:04 15:07 15:10 15:13 15:16 15:19 15:22 15:25	25 Cumulative Volume Removed (I) 0.1 0.8 1.6 2.4 3.2 4 4.8 5.6 6.4 7.2 8 8.8 9.6	= vol required for Water Level (m below MP) 2.49 2.53 2.50 2.51 2.52 2.52 2.51 2.52 2.52 2.52 2.52 2.52 2.52 2.52 2.52 2.520 2.520 2.51 32.51	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 559 630 628 652 652 638 615 584 507 472 489 473 483 632	+/- 0.05 pH pH 5.70 5.68 5.70 5.70 5.59 5.61 5.53 5.56 5.57 5.57 5.57	+/- 10% Temp. (°C) 15.13 15.21 15.21 15.23 15.31 15.23 15.16 15.26 15.21 15.22 15.31 15.26 15.21	+/- 10mV Redox ORP (mV) 79.5 82.3 85.3 86.4 88.8 89.1 91.7 89.8 90.0 94.0 94.3 90.8 90.8	0.62 0.62 0.64 0.52 0.50 0.49 0.49 0.45 0.38 0.34 0.30 0.29 0.27 0.26	Highly turbid, y becoming cle becoming cle lightly turbid ni lightly turbid ni	turbidity, or rellow/brow	vn nil odour	
Time 14:43 14:46 14:49 14:52 14:55 14:58 15:01 15:04 15:07 15:10 15:13 15:16 15:19 15:22 15:25	25 Cumulative Volume Removed (I) 0.1 0.8 1.6 2.4 3.2 4 4.8 5.6 6.4 7.2 8 8.8 9.6	= vol required for Water Level (m below MP) 2.49 2.53 2.50 2.51 2.52 2.52 2.51 2.52 2.52 2.52 2.52 2.52 2.52 2.52 2.52 2.520 2.520 2.51 32.51	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 559 630 628 652 652 638 615 584 507 472 489 473 483 632	+/- 0.05 pH pH 5.70 5.68 5.70 5.70 5.59 5.61 5.53 5.56 5.57 5.57 5.57	+/- 10% Temp. (°C) 15.13 15.21 15.21 15.23 15.31 15.23 15.16 15.26 15.21 15.22 15.31 15.26 15.21	+/- 10mV Redox ORP (mV) 79.5 82.3 85.3 86.4 88.8 89.1 91.7 89.8 90.0 94.0 94.3 90.8 90.8	0.62 0.62 0.64 0.52 0.50 0.49 0.49 0.45 0.38 0.34 0.30 0.29 0.27 0.26	Highly turbid, y becoming cle becoming cle lightly turbid ni lightly turbid ni	turbidity, or rellow/brow	vn nil odour	
Time 14:43 14:46 14:49 14:52 14:55 14:58 15:01 15:04 15:07 15:10 15:13 15:16 15:19 15:22 15:25	25 Cumulative Volume Removed (I) 0.1 0.8 1.6 2.4 3.2 4 4.8 5.6 6.4 7.2 8 8.8 9.6	= vol required for Water Level (m below MP) 2.49 2.53 2.50 2.51 2.52 2.52 2.51 2.52 2.52 2.52 2.52 2.52 2.52 2.52 2.52 2.520 2.520 2.51 32.51	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 559 630 628 652 652 638 615 584 507 472 489 473 483 632	+/- 0.05 pH pH 5.70 5.68 5.70 5.70 5.59 5.61 5.53 5.56 5.57 5.57 5.57	+/- 10% Temp. (°C) 15.13 15.21 15.21 15.23 15.31 15.23 15.16 15.26 15.21 15.22 15.31 15.26 15.21	+/- 10mV Redox ORP (mV) 79.5 82.3 85.3 86.4 88.8 89.1 91.7 89.8 90.0 94.0 94.3 90.8 90.8	0.62 0.62 0.64 0.52 0.50 0.49 0.49 0.45 0.38 0.34 0.30 0.29 0.27 0.26	Highly turbid, y becoming cle becoming cle lightly turbid ni lightly turbid ni	turbidity, or rellow/brow	vn nil odour	
Time 14:43 14:46 14:49 14:52 14:55 14:58 15:01 15:04 15:07 15:10 15:13 15:16 15:19 15:22 15:25	25 Cumulative Volume Removed (I) 0.1 0.8 1.6 2.4 3.2 4 4.8 5.6 6.4 7.2 8 8.8 9.6	= vol required for Water Level (m below MP) 2.49 2.53 2.50 2.51 2.52 2.52 2.51 2.52 2.52 2.52 2.52 2.52 2.52 2.52 2.52 2.520 2.520 2.51 32.51	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 559 630 628 652 652 638 615 584 507 472 489 473 483 632	+/- 0.05 pH pH 5.70 5.68 5.70 5.70 5.59 5.61 5.53 5.56 5.57 5.57 5.57	+/- 10% Temp. (°C) 15.13 15.21 15.21 15.23 15.31 15.23 15.16 15.26 15.21 15.22 15.31 15.26 15.21	+/- 10mV Redox ORP (mV) 79.5 82.3 85.3 86.4 88.8 89.1 91.7 89.8 90.0 94.0 94.3 90.8 90.8	0.62 0.62 0.64 0.52 0.50 0.49 0.49 0.45 0.38 0.34 0.30 0.29 0.27 0.26	Highly turbid, y becoming cle becoming cle lightly turbid ni lightly turbid ni	turbidity, or rellow/brow	vn nil odour	
Time 14:43 14:46 14:49 14:52 14:55 14:58 15:01 15:04 15:07 15:10 15:13 15:16 15:19 15:22 15:25	25 Cumulative Volume Removed (I) 0.1 0.8 1.6 2.4 3.2 4 4.8 5.6 6.4 7.2 8 8.8 9.6	= vol required for Water Level (m below MP) 2.49 2.53 2.50 2.51 2.52 2.52 2.51 2.52 2.52 2.52 2.52 2.52 2.52 2.52 2.52 2.520 2.520 2.51 32.51	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 559 630 628 652 652 638 615 584 507 472 489 473 483 632	+/- 0.05 pH pH 5.70 5.68 5.70 5.70 5.59 5.61 5.53 5.56 5.57 5.57 5.57	+/- 10% Temp. (°C) 15.13 15.21 15.21 15.23 15.31 15.23 15.16 15.26 15.21 15.22 15.31 15.26 15.21	+/- 10mV Redox ORP (mV) 79.5 82.3 85.3 86.4 88.8 89.1 91.7 89.8 90.0 94.0 94.3 90.8 90.8	0.62 0.62 0.64 0.52 0.50 0.49 0.49 0.45 0.38 0.34 0.30 0.29 0.27 0.26	Highly turbid, y becoming cle becoming cle lightly turbid ni lightly turbid ni	turbidity, or rellow/brow	vn nil odour	
Time 14:43 14:46 14:49 14:52 14:55 14:58 15:01 15:04 15:07 15:10 15:13 15:16 15:19 15:22 15:25	25 Cumulative Volume Removed (I) 0.1 0.8 1.6 2.4 3.2 4 4.8 5.6 6.4 7.2 8 8.8 9.6	= vol required for Water Level (m below MP) 2.49 2.53 2.50 2.51 2.52 2.52 2.51 2.52 2.52 2.52 2.52 2.52 2.52 2.52 2.52 2.520 2.520 2.51 32.51	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 559 630 628 652 652 638 615 584 507 472 489 473 483 632	+/- 0.05 pH pH 5.70 5.68 5.70 5.70 5.59 5.61 5.53 5.56 5.57 5.57 5.57	+/- 10% Temp. (°C) 15.13 15.21 15.21 15.23 15.31 15.23 15.16 15.26 15.21 15.22 15.31 15.26 15.21	+/- 10mV Redox ORP (mV) 79.5 82.3 85.3 86.4 88.8 89.1 91.7 89.8 90.0 94.0 94.3 90.8 90.8	0.62 0.62 0.64 0.52 0.50 0.49 0.49 0.45 0.38 0.34 0.30 0.29 0.27 0.26	Highly turbid, y becoming cle becoming cle lightly turbid ni lightly turbid ni	turbidity, or rellow/brow	vn nil odour	

Notes: All bore measuremen	its are referenc	ced to the marke		·			l sheet -	- Env ľ	Monitorin	a V (entia	
Bore ID No	Bl	114		Project Name	•	Ü				pling Staff	AC	
Project Area:			-	-		•					Aqua troll	500
•	11/0			Project No							,05710	
	cted Bore D			110,000.140					WQ. Mct	er senar #	,00710	
•				Fasting			Total (Depth (m)		Screen	Depth From (m)	
			-								en Depth To (m)	
Drop Tube already in						•				_		
Drop Tube	e Length (m)	0.00		Zone		-	Set Pump ir	ilet at (m)		=	Set Pump at (m)	
	Information											-
Time of SWL	eld Measure		otal Depth (m)	6.30	Mid scroon	accossible?	Clea	ar.	Depth pump	sot at (m)	5.90	
Static Water Level (m)		•	re Diam (mm)	50	•	n Length(m)		JI	Depth of pump			
	l Purging De	•			Sampling D						les Required	
Purge Method			MicroPurge		oling Method				Bottle Type		Bottle Type	Quantity
Time Pump in							WL m (start)	2.88				
Time Started	11:30	WL m (start)	2.85	Ti	me Stopped	12:07	WL m (end)	2.89				
Time Stopped	11:56	WL m (end)	2.88	Duplicate	sample ID?							
Volume Removed (I)	5.7			Triplicate	sample ID?							
Discharge Rate (I/m)	0.22			Rinsate	sample ID?							
Pu	ump Remov	al										
Time of removal	12:15	WL m	n(post-removal)	2.84	Bore De	oth at end (m)	6.29					
	ump Setting	js										
Fill / Discharge used	25/5	СРМ		Air/Gas	Pressure (kPa)	30						
Comments												
					go	ood recharge)					
		Field Parameters	are considered sta	ble when within th	ne EPA limits for 3	consecutive me	easurements		1			
	20 Cumulative	= vol required for	3V method (L)	ble when within th +/- 3% Specific	+/- 0.05 pH	+/- 10%	+/- 10mV	+/- 10%		Common	to (colour	
Time	Cumulative Volume			+/- 3% Specific Conductance EC (uS/cm)		+/- 10% Temp.	+/- 10mV Redox	DO		Commen		
	Cumulative Volume Removed (I)	= vol required for Water Level (m below MP)	3V method (L) Stability of Field Params	+/- 3% Specific Conductance EC (uS/cm) @25°C	+/- 0.05 pH pH	+/- 10% Temp. (°C)	+/- 10mV Redox ORP (mV)	DO (mg/L)	Brown turbidity	turbidity, oc		
11:32	Cumulative Volume Removed (I)	= vol required for Water Level (m below MP)	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) @25°C	+/- 0.05 pH pH	+/- 10% Temp. (°C) 14.31	+/- 10mV Redox ORP (mV)	DO (mg/L) 0.74	Brown turbidity	turbidity, od		
11:32 11:35	Cumulative Volume Removed (I) 0.1	= vol required for Water Level (m below MP) 2.88 2.87	3V method (L) Stability of Field Params Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) @25°C 1020 1025	+/- 0.05 pH pH 6.52 6.50	+/- 10% Temp. (°C) 14.31 14.54	+/- 10mV Redox ORP (mV) 67.8 46.3	DO (mg/L) 0.74 0.37	Brown turbidity	turbidity, od nil odour nil odour		
11:32 11:35 11:38	Cumulative Volume Removed (I) 0.1 0.8	= vol required for Water Level (m below MP) 2.88 2.87 2.88	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) @25°C 1020 1025	+/- 0.05 pH pH 6.52 6.50 6.47	+/- 10% Temp. (°C) 14.31 14.54	+/- 10mV Redox ORP (mV) 67.8 46.3 32.0	DO (mg/L) 0.74 0.37 0.42	Brown turbidity Brown turbidity	turbidity, od nil odour nil odour nil odour		
11:32 11:35 11:38 11:41	Cumulative Volume Removed (I) 0.1 0.8 1.5	= vol required for Water Level (m below MP) 2.88 2.87 2.88 2.89	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (u5/cm) #25°C 1020 1025 1053 1064	+/- 0.05 pH pH 6.52 6.50 6.47 6.45	+/- 10% Temp. (°C) 14.31 14.54 14.66	+/- 10mV Redox ORP (mV) 67.8 46.3 32.0 23.2	DO (mg/L) 0.74 0.37 0.42 0.38	Brown turbidity Brown turbidity Brown turbidity	turbidity, oc nil odour nil odour nil odour nil odour		
11:32 11:35 11:38 11:41 11:44	Cumulative Volume Removed (I) 0.1 0.8 1.5 2.2	= vol required for Water Level (m below MP) 2.88 2.87 2.88 2.89	Stability of Field Params Keep purging Keep purging Keep purging Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) @25°C 1020 1025 1053 1064 1071	+/- 0.05 pH pH 6.52 6.50 6.47 6.45	+/- 10% Temp. (°C) 14.31 14.54 14.66 14.68	+/- 10mV Redox ORP (mV) 67.8 46.3 32.0 23.2	DO (mg/L) 0.74 0.37 0.42 0.38 0.37	Brown turbidity Brown turbidity Brown turbidity Brown turbidity	nil odour nil odour nil odour nil odour nil odour		
11:32 11:35 11:38 11:41 11:44 11:47	Cumulative Volume Removed (I) 0.1 0.8 1.5 2.2 2.9 3.6	= vol required for Water Level (m below MP) 2.88 2.87 2.88 2.89 2.90 2.88	3V method (L) Stability of Field Params Keep purging Keep purging Keep purging Keep purging Keep purging Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 1020 1025 1053 1064 1071 1136	+/- 0.05 pH pH 6.52 6.50 6.47 6.45 6.42	+/- 10% Temp. (°C) 14.31 14.54 14.66 14.68 15.01	+/- 10mV Redox ORP (mV) 67.8 46.3 32.0 23.2 16.6	0.74 0.37 0.42 0.38 0.37	Brown turbidity Brown turbidity Brown turbidity Brown turbidity Brown turbidity	nil odour nil odour nil odour nil odour nil odour nil odour		
11:32 11:35 11:38 11:41 11:44 11:47 11:50	Cumulative Volume Removed (I) 0.1 0.8 1.5 2.2 2.9 3.6 4.3	= vol required for Water Level (m below MP) 2.88 2.87 2.88 2.89 2.90 2.88	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 1020 1025 1053 1064 1071 1136 1139	+/- 0.05 pH pH 6.52 6.50 6.47 6.45 6.42 6.41 6.40	+/- 10% Temp. (°C) 14.31 14.54 14.66 14.68 15.01 15.09	+/- 10mV Redox ORP (mV) 67.8 46.3 32.0 23.2 16.6 13.5	DO (mg/L) 0.74 0.37 0.42 0.38 0.37 0.29	Brown turbidity Brown turbidity Brown turbidity Brown turbidity Brown turbidity Brown turbidity	turbidity, oc nil odour nil odour nil odour nil odour nil odour nil odour		
11:32 11:35 11:38 11:41 11:44 11:47 11:50 11:53	Cumulative Volume Removed (I) 0.1 0.8 1.5 2.2 2.9 3.6 4.3	= vol required for Water Level (m below MP) 2.88 2.87 2.88 2.89 2.90 2.88 2.89 2.89	Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (u5/cm) #25°C 1020 1025 1053 1064 1071 1136 1139	+/- 0.05 pH pH 6.52 6.50 6.47 6.45 6.42 6.41 6.40 6.39	+/- 10% Temp. (°C) 14.31 14.54 14.66 14.68 15.01 15.09 15.01	+/- 10mV Redox ORP (mV) 67.8 46.3 32.0 23.2 16.6 13.5 11.0 10.4	DO (mg/L) 0.74 0.37 0.42 0.38 0.37 0.29 0.26	Brown turbidity	nil odour nil odour nil odour nil odour nil odour nil odour nil odour		
11:32 11:35 11:38 11:41 11:44 11:47 11:50	Cumulative Volume Removed (I) 0.1 0.8 1.5 2.2 2.9 3.6 4.3	= vol required for Water Level (m below MP) 2.88 2.87 2.88 2.89 2.90 2.88	3V method (L) Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (uS/cm) #25°C 1020 1025 1053 1064 1071 1136 1139	+/- 0.05 pH pH 6.52 6.50 6.47 6.45 6.42 6.41 6.40	+/- 10% Temp. (°C) 14.31 14.54 14.66 14.68 15.01 15.09	+/- 10mV Redox ORP (mV) 67.8 46.3 32.0 23.2 16.6 13.5	DO (mg/L) 0.74 0.37 0.42 0.38 0.37 0.29	Brown turbidity Brown turbidity Brown turbidity Brown turbidity Brown turbidity Brown turbidity	nil odour nil odour nil odour nil odour nil odour nil odour nil odour		
11:32 11:35 11:38 11:41 11:44 11:47 11:50 11:53	Cumulative Volume Removed (I) 0.1 0.8 1.5 2.2 2.9 3.6 4.3	= vol required for Water Level (m below MP) 2.88 2.87 2.88 2.89 2.90 2.88 2.89 2.89	Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (u5/cm) #25°C 1020 1025 1053 1064 1071 1136 1139	+/- 0.05 pH pH 6.52 6.50 6.47 6.45 6.42 6.41 6.40 6.39	+/- 10% Temp. (°C) 14.31 14.54 14.66 14.68 15.01 15.09 15.01	+/- 10mV Redox ORP (mV) 67.8 46.3 32.0 23.2 16.6 13.5 11.0 10.4	DO (mg/L) 0.74 0.37 0.42 0.38 0.37 0.29 0.26	Brown turbidity	nil odour nil odour nil odour nil odour nil odour nil odour nil odour		
11:32 11:35 11:38 11:41 11:44 11:47 11:50 11:53	Cumulative Volume Removed (I) 0.1 0.8 1.5 2.2 2.9 3.6 4.3	= vol required for Water Level (m below MP) 2.88 2.87 2.88 2.89 2.90 2.88 2.89 2.89	Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (u5/cm) #25°C 1020 1025 1053 1064 1071 1136 1139	+/- 0.05 pH pH 6.52 6.50 6.47 6.45 6.42 6.41 6.40 6.39	+/- 10% Temp. (°C) 14.31 14.54 14.66 14.68 15.01 15.09 15.01	+/- 10mV Redox ORP (mV) 67.8 46.3 32.0 23.2 16.6 13.5 11.0 10.4	DO (mg/L) 0.74 0.37 0.42 0.38 0.37 0.29 0.26	Brown turbidity	nil odour nil odour nil odour nil odour nil odour nil odour nil odour		
11:32 11:35 11:38 11:41 11:44 11:47 11:50 11:53	Cumulative Volume Removed (I) 0.1 0.8 1.5 2.2 2.9 3.6 4.3	= vol required for Water Level (m below MP) 2.88 2.87 2.88 2.89 2.90 2.88 2.89 2.89	Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (u5/cm) #25°C 1020 1025 1053 1064 1071 1136 1139	+/- 0.05 pH pH 6.52 6.50 6.47 6.45 6.42 6.41 6.40 6.39	+/- 10% Temp. (°C) 14.31 14.54 14.66 14.68 15.01 15.09 15.01	+/- 10mV Redox ORP (mV) 67.8 46.3 32.0 23.2 16.6 13.5 11.0 10.4	DO (mg/L) 0.74 0.37 0.42 0.38 0.37 0.29 0.26	Brown turbidity	nil odour nil odour nil odour nil odour nil odour nil odour nil odour		
11:32 11:35 11:38 11:41 11:44 11:47 11:50 11:53	Cumulative Volume Removed (I) 0.1 0.8 1.5 2.2 2.9 3.6 4.3	= vol required for Water Level (m below MP) 2.88 2.87 2.88 2.89 2.90 2.88 2.89 2.89	Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (u5/cm) #25°C 1020 1025 1053 1064 1071 1136 1139	+/- 0.05 pH pH 6.52 6.50 6.47 6.45 6.42 6.41 6.40 6.39	+/- 10% Temp. (°C) 14.31 14.54 14.66 14.68 15.01 15.09 15.01	+/- 10mV Redox ORP (mV) 67.8 46.3 32.0 23.2 16.6 13.5 11.0 10.4	DO (mg/L) 0.74 0.37 0.42 0.38 0.37 0.29 0.26	Brown turbidity	nil odour nil odour nil odour nil odour nil odour nil odour nil odour		
11:32 11:35 11:38 11:41 11:44 11:47 11:50 11:53	Cumulative Volume Removed (I) 0.1 0.8 1.5 2.2 2.9 3.6 4.3	= vol required for Water Level (m below MP) 2.88 2.87 2.88 2.89 2.90 2.88 2.89 2.89	Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (u5/cm) #25°C 1020 1025 1053 1064 1071 1136 1139	+/- 0.05 pH pH 6.52 6.50 6.47 6.45 6.42 6.41 6.40 6.39	+/- 10% Temp. (°C) 14.31 14.54 14.66 14.68 15.01 15.09 15.01	+/- 10mV Redox ORP (mV) 67.8 46.3 32.0 23.2 16.6 13.5 11.0 10.4	DO (mg/L) 0.74 0.37 0.42 0.38 0.37 0.29 0.26	Brown turbidity	nil odour nil odour nil odour nil odour nil odour nil odour nil odour		
11:32 11:35 11:38 11:41 11:44 11:47 11:50 11:53	Cumulative Volume Removed (I) 0.1 0.8 1.5 2.2 2.9 3.6 4.3	= vol required for Water Level (m below MP) 2.88 2.87 2.88 2.89 2.90 2.88 2.89 2.89	Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (u5/cm) #25°C 1020 1025 1053 1064 1071 1136 1139	+/- 0.05 pH pH 6.52 6.50 6.47 6.45 6.42 6.41 6.40 6.39	+/- 10% Temp. (°C) 14.31 14.54 14.66 14.68 15.01 15.09 15.01	+/- 10mV Redox ORP (mV) 67.8 46.3 32.0 23.2 16.6 13.5 11.0 10.4	DO (mg/L) 0.74 0.37 0.42 0.38 0.37 0.29 0.26	Brown turbidity	nil odour nil odour nil odour nil odour nil odour nil odour nil odour		
11:32 11:35 11:38 11:41 11:44 11:47 11:50 11:53	Cumulative Volume Removed (I) 0.1 0.8 1.5 2.2 2.9 3.6 4.3	= vol required for Water Level (m below MP) 2.88 2.87 2.88 2.89 2.90 2.88 2.89 2.89	Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (u5/cm) #25°C 1020 1025 1053 1064 1071 1136 1139	+/- 0.05 pH pH 6.52 6.50 6.47 6.45 6.42 6.41 6.40 6.39	+/- 10% Temp. (°C) 14.31 14.54 14.66 14.68 15.01 15.09 15.01	+/- 10mV Redox ORP (mV) 67.8 46.3 32.0 23.2 16.6 13.5 11.0 10.4	DO (mg/L) 0.74 0.37 0.42 0.38 0.37 0.29 0.26	Brown turbidity	nil odour nil odour nil odour nil odour nil odour nil odour nil odour		
11:32 11:35 11:38 11:41 11:44 11:47 11:50 11:53	Cumulative Volume Removed (I) 0.1 0.8 1.5 2.2 2.9 3.6 4.3	= vol required for Water Level (m below MP) 2.88 2.87 2.88 2.89 2.90 2.88 2.89 2.89	Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (u5/cm) #25°C 1020 1025 1053 1064 1071 1136 1139	+/- 0.05 pH pH 6.52 6.50 6.47 6.45 6.42 6.41 6.40 6.39	+/- 10% Temp. (°C) 14.31 14.54 14.66 14.68 15.01 15.09 15.01	+/- 10mV Redox ORP (mV) 67.8 46.3 32.0 23.2 16.6 13.5 11.0 10.4	DO (mg/L) 0.74 0.37 0.42 0.38 0.37 0.29 0.26	Brown turbidity	nil odour nil odour nil odour nil odour nil odour nil odour nil odour		
11:32 11:35 11:38 11:41 11:44 11:47 11:50 11:53	Cumulative Volume Removed (I) 0.1 0.8 1.5 2.2 2.9 3.6 4.3	= vol required for Water Level (m below MP) 2.88 2.87 2.88 2.89 2.90 2.88 2.89 2.89	Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (u5/cm) #25°C 1020 1025 1053 1064 1071 1136 1139	+/- 0.05 pH pH 6.52 6.50 6.47 6.45 6.42 6.41 6.40 6.39	+/- 10% Temp. (°C) 14.31 14.54 14.66 14.68 15.01 15.09 15.01	+/- 10mV Redox ORP (mV) 67.8 46.3 32.0 23.2 16.6 13.5 11.0 10.4	DO (mg/L) 0.74 0.37 0.42 0.38 0.37 0.29 0.26	Brown turbidity	nil odour nil odour nil odour nil odour nil odour nil odour nil odour		
11:32 11:35 11:38 11:41 11:44 11:47 11:50 11:53	Cumulative Volume Removed (I) 0.1 0.8 1.5 2.2 2.9 3.6 4.3	= vol required for Water Level (m below MP) 2.88 2.87 2.88 2.89 2.90 2.88 2.89 2.89	Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (u5/cm) #25°C 1020 1025 1053 1064 1071 1136 1139	+/- 0.05 pH pH 6.52 6.50 6.47 6.45 6.42 6.41 6.40 6.39	+/- 10% Temp. (°C) 14.31 14.54 14.66 14.68 15.01 15.09 15.01	+/- 10mV Redox ORP (mV) 67.8 46.3 32.0 23.2 16.6 13.5 11.0 10.4	DO (mg/L) 0.74 0.37 0.42 0.38 0.37 0.29 0.26	Brown turbidity	nil odour nil odour nil odour nil odour nil odour nil odour nil odour		
11:32 11:35 11:38 11:41 11:44 11:47 11:50 11:53	Cumulative Volume Removed (I) 0.1 0.8 1.5 2.2 2.9 3.6 4.3	= vol required for Water Level (m below MP) 2.88 2.87 2.88 2.89 2.90 2.88 2.89 2.89	Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (u5/cm) #25°C 1020 1025 1053 1064 1071 1136 1139	+/- 0.05 pH pH 6.52 6.50 6.47 6.45 6.42 6.41 6.40 6.39	+/- 10% Temp. (°C) 14.31 14.54 14.66 14.68 15.01 15.09 15.01	+/- 10mV Redox ORP (mV) 67.8 46.3 32.0 23.2 16.6 13.5 11.0 10.4	DO (mg/L) 0.74 0.37 0.42 0.38 0.37 0.29 0.26	Brown turbidity	nil odour nil odour nil odour nil odour nil odour nil odour nil odour		
11:32 11:35 11:38 11:41 11:44 11:47 11:50 11:53	Cumulative Volume Removed (I) 0.1 0.8 1.5 2.2 2.9 3.6 4.3	= vol required for Water Level (m below MP) 2.88 2.87 2.88 2.89 2.90 2.88 2.89 2.89	Stability of Field Params Keep purging	+/- 3% Specific Conductance EC (u5/cm) #25°C 1020 1025 1053 1064 1071 1136 1139	+/- 0.05 pH pH 6.52 6.50 6.47 6.45 6.42 6.41 6.40 6.39	+/- 10% Temp. (°C) 14.31 14.54 14.66 14.68 15.01 15.09 15.01	+/- 10mV Redox ORP (mV) 67.8 46.3 32.0 23.2 16.6 13.5 11.0 10.4	DO (mg/L) 0.74 0.37 0.42 0.38 0.37 0.29 0.26	Brown turbidity	nil odour nil odour nil odour nil odour nil odour nil odour nil odour		

Ventia Landfill Subsurface Gas Monitoring - Field Sheet

Project	Creswick Landfill
Client	Hepburn Shire
Job Location	Creswick Landfill
Sampling Staff	Andrew Callander
Instrument Type	GA 5000
Instrument Serial Number	G507420
Calibration Record Supplied (Y/N)	Υ
Weather & Temperature	14 degrees / 5-10 km wind
Site Ground Conditions	Moist
Barometric Pressure	975

BH 12's J plug was not sealed properly which may have affected readings from this bore

LFG ID	Date	Time	Peak Flow (I/hr)	Stabilised Flow (I/hr)	SWL (mBTOC)	Depth (mBTOC)	Bore & Headworks Condition	Comments
BH11	18/05/2023	6:58	0	0	DRY	10.33	Good cond	
BH12	18/05/2023	6:39	0	0	DRY	6.57	J Plug does not seal properly	J plug needs replacing
BH10	18/05/2023	6:24	0	0	2.43	6.73	Good cond	
BH9	18/05/2023	6:08	0	0	DRY	6.84	Good cond	

[#] Instrumentation Gas Readings recorded on instrument data export

Table 1: Subsurface Gas Bore Results (May 2023)

Table 1. Jubbulla	ce das bore results (i	VIU / 2023)										
ID	DATE and TIME	CH4	CO2	02	PEAKCH4	PEAKCO2	MIN O2	BARO	REL.PRESSURE	TERNAL FLO	CO	H2S
ID	DATE and Tilvic	%	%	%	%	%	%	mb	mb	I/h	ppm	ppm
BH12*	18/05/2023 6:39	43.9	17.4	0	45.8	17.7	0	974	-0.04	0.1	1	0
BH9	18/05/2023 6:08	0	6.3	13.7	0.1	6.3	13.7	975	-0.12	0.1	0	0
BH11	18/05/2023 6:58	0	15.6	15.6	1	3.5	15	974	-0.04	0.1	0	0
BH10	18/05/2023 6:24	0	9.8	9	0	9.9	9	975	-0.09	0.1	0	0
Notes:		Exceedance of	Adopted Assesr	ment Criteria						•		

Methane 1% v/v (EPA Victoria, Best Practice Environmental Management, Siting, design, operation and rehabilitation of landfills, 2015) Carbon Dioxide 10% v/v (Mackenzie 2016)

 $[\]ensuremath{^{\star}}$ not applicable due to location within waste mass

Ventia Landfill Building Gas Monitoring - Field Sheet

Project	Creswick Landfill
Client	Hepburn Shire
Job Location	Landfill Cap Workover
Sampling Staff	Andrew Callander
Instrument Type	Inspectra laser
Instrument Serial Number	34090717
Calibration Record Supplied (Y/N)	Υ
Weather and Temperature	14degrees / 5 km wind
Site Ground Conditions	Dry
Barometric Pressure	475

General Comments

Locations as per Landserv Service location map

Location #	Date	Time	CH ₄ Concentration (ppm)	Building and service condition	Sample Location Notes
B1	9/05/2023	13:15	0.9	Good condition	Taken at foot of office building
B2	9/05/2023	13:15	0.9	Good condition	-
В3	9/05/2023	13:16	1.2	Good condition	-
B4	9/05/2023	13:16	0.8	Good condition	-
B5	9/05/2023	13:19	0.8	Good condition	Taken at foot of office building
В6	9/05/2023	13:18	0.9	Good condition	-
В7	9/05/2023	13:18	1	Good condition	-
B8	9/05/2023	13:21	1.1	Good condition	-
В9	9/05/2023	13:22	1.1	Good condition	taken on inside edge of open shed
B10	9/05/2023	13:23	1.1	Good condition	-
B11	9/05/2023	13:25	0.9	Good condition	taken on inside edge of open shed
B12	9/05/2023	13:24	0.9	Good condition	-
B13	9/05/2023	13:25	1.1	Good condition	-
B14	9/05/2023	13:28	1.2	Good condition	could not access shed - taken at base of slab
B15	9/05/2023	13:29	1.4	Good condition	-
B16	9/05/2023	13:30	1.5	Good condition	-
B17	9/05/2023	13:41	1.8	Good condition	Taken under outer edge of shed / slab
B18	9/05/2023	13:41	1.2	Good condition	-
B19	9/05/2023	13:42	0.9	Good condition	-
B20	9/05/2023	13:43	1.1	Good condition	-

Location #	Date	Time	CH ₄ Concentration (ppm)	Building and service condition	Sample Location Notes
TP1	9/05/2023	13:24	1.5	Good condition	drain / pit
TP2	9/05/2023	13:25	0.9	Good condition	-
TP3	9/05/2023	13:25	1.2	Good condition	-
TP4	9/05/2023	13:26	1.2	Good condition	-
TP5	9/05/2023	13:26	1.4	Good condition	-
TP6	9/05/2023	13:27	1.3	Good condition	-
TP7	9/05/2023	13:27	1.4	Good condition	-
TP8	9/05/2023	13:29	1.3	Good condition	-
TP9	9/05/2023	13:35	1.5	Good condition	-
TP10	9/05/2023	13:35	1.7	Good condition	-
TP11 (new)	9/05/2023	13:29	2	Good condition	in front of green waste pile

HT JOB NO:

20901

Document No: 2003
Reviewed by: IT
Approved by: R&WM
Issued date: 25/11/21

EQUIPMENT QUALITY REPORT

GA5000

Equipment Code: MLG-8510 Serial Number: G508510

v		t has been issued as follo ent is clean		battery voltage	e check	E	☑ Clear Data
Calibra	ation Result	ts				Calib	ration Gas (Expiry Date)
Param	neter	Standard		Result	Error Ra	nge	
CH4		Methane by Volume	60%	60%	± 2%	WO3	328585-4 Exp: 15/12/26
CO2		Carbon Dioxide by volu	ume 40%	40%	± 2%	WO3	328585-4 Exp: 15/12/26
H2S		Hydrogen Sulphide	25 ppm	25 ppm	± 2 ppm	WO3	361643-4-25 Exp: 7/24
02		Oxygen	18%	18%	± 0.2%		361643-4-25 Exp: 7/24
СО		Carbon Monoxide	50 ppm	50 ppm	± 2ppm	A010)12 Exp: 12/09/27
Photo	returnii						
Ref.		at the back of this form)					
1		ng with an inlet barb fitti		N/A	✓ ✓		
2		ing with an inlet Brass Ex tting (filter attached)	с-сар	N/A	•		
		3 1					
3	Spare wat	ter trap filter(s) Qty 1		N/A	✓		
3		ter trap filter(s) Qty 1 bing with an inlet barb fi	itting	N/A N/A	✓ ✓		
		bing with an inlet barb fi	itting		✓ ✓		
4	Yellow tul Clear tubi Charger 2	bing with an inlet barb fi ing 140/110V to 12V 500mA	itting	N/A N/A N/A	✓ ✓		
4 5 6 7	Yellow tul Clear tubi Charger 2 GA5000 w	bing with an inlet barb fi ing 40/110V to 12V 500mA vith a carry bag	itting	N/A N/A N/A MLG-8510	\(\frac{1}{2} \)		
4 5 6 7 8	Yellow tul Clear tubi Charger 2 GA5000 w Hard case	bing with an inlet barb fiing 440/110V to 12V 500mA vith a carry bag	itting	N/A N/A N/A MLG-8510 N/A	√		
4 5 6 7 8 9	Yellow tul Clear tubi Charger 2 GA5000 w Hard case Instructio	bing with an inlet barb fi ing 40/110V to 12V 500mA vith a carry bag e on Manual	itting	N/A N/A N/A MLG-8510 N/A	✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓		
4 5 6 7 8	Yellow tul Clear tubi Charger 2 GA5000 w Hard case	bing with an inlet barb fiing 40/110V to 12V 500mA vith a carry bag e on Manual fitting	itting	N/A N/A N/A MLG-8510 N/A	√		


CLIENTS REF: P/O No: TBC

Document No: 2003
Reviewed by: IT
Approved by: R&WM
Issued date: 25/11/21

RETURN DATE: / / TIME: CONDITION ON RETURN:

RETURN DATE: /

Document No: 2005 Reviewed by: IT Approved by: R&WM Issued date: 25/11/21

EQUIPMENT QUALITY REPORT

Inspectra Laser Equipment Code: MIL-4881 Serial Number: 4881217

☑ Equ	☑ Clear Data				
Calibrati	on Results				Calibration Gas Expiry Date
Paramet	er Standard	Result	Error Ra	nge	
CH4	Methane by 500ppm	508ppm	± 25 ppn	n	66 – WO283592-2 Exp.12/01/2026
Date: Calibrate	08/05/2023 d by: Frederick Campbell		0		
Please che	ty control purposes HydroTerra can eck that the following items are rece A minimum \$20 service/repair char	ived and all items ar	re returned.		
Ref.	Checklist Item (See photo at the back of the form)	HT id No.	Sent?	Return?	Comments
1	Carry Case	N/A	✓		
2	Inspectra Laser	MIL-4881	✓		
	Sampling Probe joint	N/A	✓		
	Sampling Probe 600mm	N/A	√		
	Telescopic rod with Suction cup	N/A	√		
	Spare Battery & charger 240/110V	N/A	✓		
	to 12V 500mA	21/2			
	Spare filter	N/A	✓ ✓		
	Tools – Screw driver Test & Tag	N/A N/A	→		
_		Pre-delivery Calib	oration Test	Complete	
Date:	08/05/2023				
	d by: Frederick Campbell				
HT JOB N	O: 20901	CLIENTS RE	F: P/O No:	ТВС	

CONDITION ON RETURN:

TIME:

Document No: 2005 Reviewed by: IT Approved by: R&WM Issued date: 25/11/21

2022/2023 ANNUAL MONITORING REPORT – CRESWICK LANDFILL APPENDIX B - LABORATORY RESULTS

						Fie	eld			рН	EC	Solids		Alka	linity			
				Standing Water Level	Temperature	Dissolved Oxygen	Redox Potential	Electrical Conductivity (Non Compensated)	pH (Field)	рн (Lab)	Electrical conductivity *(lab)	TDS	Alkalinity (Carbonate as CaCO3)	Alkalinity (Bicarbonate as CaCO3)	Alkalinity (Hydroxide) *	Alkalinity (total) as CaCO3	Calcium (filtered)	Chloride
				m	°C	ug/L	mV	μS/cm	-	-	uS/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
EQL				0.01	0.1	10	0.1	1	0.01	0.01	1	10	1	1	1	1	0.5	1
Groundwater Qu	ality Objective									6.5-8		2000					1000	25-700
ANZECC 2000 FW	/ 95%																	
ANZECC 2000 Irri	gation																	175
ANZECC 2000 Liv												2,000					1,000	
Field ID	Location Code	Date	Lab Report Number															
BH2	BH2	31 Aug 2022	EM2216860	2.12	14.08	4,130	72.3	634.5	6.12	6.78	763	417	<1	56	<1	56	2	209
BH3	BH3	31 Aug 2022	EM2216860	0.45	10.91	230	-75.4	3364	6.67	6.93	3,240	1,830	<1	241	<1	241	39	932
BH7	BH7	31 Aug 2022	EM2216860	2.42	12.41	210	-42.1	1127	6.42	6.79	1,090	588	<1	146	<1	146	24	263
BH8	BH8	31 Aug 2022	EM2216860	2.25	12.24	330	-96.6	1122	6.71	7.05	1,020	521	<1	242	<1	242	17	139
BH10	BH10	01 Sep 2022	EM2217005	2.26	12.61	350	96.6	691	5.99	6.44	708	764	<1	95	<1	95	8	150
BH14	BH14	01 Sep 2022	EM2217005	2.23	10.68	630	-30.7	1608	6.42	6.68	1,780	1,240	<1	97	<1	97	33	517
BH4	BH4	01 Sep 2022	EM2217005	4.52	12.7	50	-82.3	2378	6.36	6.55	2,030	1,380	<1	213	<1	213	20	570
BH6	BH6	02 Sep 2022	EM2217005	11.72	13.82	340	242	713	5.03	5.79	746	439	<1	10	<1	10	4	215
BH14	BH14	16 Nov 2022	EM2222748	2.01	12.33	140	6.4	1541	6.15	6.88	1,520	820	<1	124	<1	124	22	409
BH4	BH4	16 Nov 2022	EM2222748	3.25	12.96	40	-74.9	2512	6.05	6.34	2,100	1,410	<1	167	<1	167	23	688
BH8	BH8	16 Nov 2022	EM2222748	1.87	14.1	30	-98.9	1000	6.54	7.06	875	455	<1	277	<1	277	15	100
BH2	BH2	17 Nov 2022	EM2222858	1.93	14.99	530	47.3	638.9	5.68	6.07	730	342	<1	32	<1	32	1	181
BH3	BH3	17 Nov 2022	EM2222858	0.59	14.1	120	-42.6	3353	6.39	6.58	2,950	1,820	<1	226	<1	226	44	991
BH6	BH6	17 Nov 2022	EM2222858	11.2	15.05	360	194.7	653.5	4.91	5.57	754	375	<1	12	<1	12	4	197
BH7	BH7	17 Nov 2022	EM2222858	2.42	14.45	90	-31.1	880	6.35	6.63	934	462	<1	181	<1	181	22	168
BH10	BH10	18 Nov 2022	EM2222858	2.06	14.53	210	68.3	777	5.72	6	845	566	<1	58	<1	58	8	206
BH14	BH14	13 Feb 2023	EM2302400	3.19	14.53	120	8.5	1,190	6.4	6.65	1,330	978	<1	138	<1	138	21	363
BH4	BH4	13 Feb 2023	EM2302400	4.88	14.36	370	6.5	1,840	5.77	5.96	1,770	1,060	<1	71	<1	71	12	550
BH10	BH10	14 Feb 2023	EM2302525	2.44	16.22	250	114.7	795	5.61	5.76	806	563	<1	46	<1	46	8	215
BH3	BH3	14 Feb 2023	EM2302525	0.87	17.2	160	-17.2	2,480	6.52	6.67	2,390	1,380	<1	227	<1	227	39	669
BH6	BH6	14 Feb 2023	EM2302525	11.65	14.9	280	220.1	632	5.05	5.66	661	395	<1	13	<1	13	5	182
BH7	BH7	14 Feb 2023	EM2302525	2.69	15.34	160	-8.5	975	6.54	6.53	924	573	<1	152	<1	152	18	205
ВН8	BH8	14 Feb 2023	EM2302525	3.02	16.67	130	-47.7	928	6.68	6.85	823	656	<1	275	<1	275	13	96
BH2	BH2	17 Feb 2023	EM2302775	2.98	19.7	2,690	122.2	68	5.73	6.39	734	385	<1	32	<1	32	1	199
BH10	BH10	09 May 2023	EM2308222	2.44	15.2	260	90.5	645	5.57	6.32	761	459	<1	47	<1	47	6	200
BH2	BH2	10 May 2023	EM2308315	2.9	16.1	4,530	117.7	673	5.59	6.43	756	469	<1	34	<1	34	1	226
BH3	BH3	10 May 2023	EM2308315	0.6	13.29	180	-36.9	2541	6.51	8.15	3,350	2,030	<1	196	<1	196	51	917
BH4	BH4	10 May 2023	EM2308315	5.33	13.41	500	29.9	1907	5.83	7.71	2,300	1,510	<1	96	<1	96	20	720
BH6	BH6	10 May 2023	EM2308315	11.96	14.9	560	229.4	563	4.97	6.92	674	425	<1	10	<1	10	4	180
BH7	BH7	10 May 2023	EM2308315	2.31	13.83	180	-28.4	736	6.76	8.03	928	500	<1	146	<1	146	25	210
BH8	BH8	10 May 2023	EM2308315	3	15.36	220	-74.4	728	6.62	8.46	809	489	16	282	<1	298	13	94
BH14	BH14	11 May 2023	EM2308446	2.85	14.94	250	9.2	1,140	6.4	6.7	1,290	893	<1	103	<1	103	26	378

#1 Errata slip for ANZECC (2000), June 2005, nitrate trigger levels should be deleted and noted 'under review'. Calculations in NIWA (2002): Memorandum, Nitrate Guideline Values in ANZECC (2000) suggest that nitrate criteria are significantly underestimated. Environmental Standards

Australian and New Zealand Environment and Conservation Council, October 2000, ANZECC 2000 FW 95% Australian and New Zealand Environment and Conservation Council, October 2000, ANZECC 2000 Irrigation Australian and New Zealand Environment and Conservation Council, October 2000, ANZECC 2000 Livestock

										Sulfate as							
					Majo	or lons				SO4		1	Nitrogen Forn	ns		Inorg	anics
				Magnesium (filtered)	Potassium (filtered)	Sodium (filtered)	Cations Total	Anions Total	onic Balance	Sulfate as SO4 - Turbidimetric (filtered)	Ammonia as N	Nitrate (as N)	Nitrite (as N)	Nitrite + Nitrate as N	Kjeldahl Nitrogen Total	COD	20.
				mg/L	mg/L	mg/L	meq/L	meq/L	%	ug/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
EQL				0.5	0.5	0.5	0.01	0.01	0.01	1,000	0.01	0.01	0.01	0.01	0.1	10	1
Groundwater C	uality Objective			2000		115				250,000	0.9	0.16			25		
ANZECC 2000 F	W 95%											7.2 ^{#1}					
ANZECC 2000 Ir						115											
ANZECC 2000 L	U .																
Field ID	Location Code	Date	Lab Report Number	<u> </u>													
BH2	BH2	31 Aug 2022	EM2216860	18	<1	96	5.76	7.47	13	22,000	0.08	0.01	<0.01	0.01	0.3	<10	2
BH3	BH3	31 Aug 2022	EM2216860	83	12	423	27.5	31.4	6.65	14,000	0.68	<0.01	<0.01	<0.01	0.9	18	30
BH7	BH7	31 Aug 2022	EM2216860	26	16	119	8.92	10.6	8.52	12,000	0.8	0.02	<0.01	0.02	1.2	<10	9
BH8	BH8	31 Aug 2022	EM2216860	33	4	116	8.71	9.92	6.49	56,000	3.7	0.01	<0.01	0.01	5.4	<10	21
BH10	BH10	01 Sep 2022	EM2217005	17	19	85	5.98	6.75	6.06	30,000	1.06	0.57	<0.01	0.57	4.8	61	33
BH14	BH14	01 Sep 2022	EM2217005	52	3	187	14.1	16.9	8.83	17,000	0.24	0.04	<0.01	0.04	1.5	<10	10
BH4	BH4	01 Sep 2022	EM2217005	58	<1	253	16.8	20.5	10	9,000	0.62	<0.01	<0.01	<0.01	1.4	142	58
BH6	BH6	02 Sep 2022	EM2217005	17	1	94	5.71	6.68	7.81	20,000	<0.01	0.97	<0.01	0.97	0.4	<10	5
BH14	BH14	16 Nov 2022	EM222748	45	3	168	12.2	14.8	9.64	37,000	0.32	0.03	<0.01	0.03	1.4	131	11
BH4	BH4	16 Nov 2022	EM2222748	64	<1	283	18.7	22.9	10	8,000	0.67	<0.02	<0.02	<0.01	2.3	210	28
BH8	BH8	16 Nov 2022	EM2222748	31	4	101	8.12	8.94	4.82	28.000	4.56	<0.01	<0.01	<0.01	4.9	105	19
BH2	BH2	17 Nov 2022	EM2222858	14	1	97	5.45	6.16	6.16	20,000	0.03	0.15	0.04	0.19	0.9	<10	<1
BH3	BH3	17 Nov 2022	EM2222858	95	14	431	29.1	32.8	6.01	18,000	0.42	0.03	<0.01	0.03	1	12	17
BH6	BH6	17 Nov 2022	EM2222858	18	1	91	5.66	6.21	4.62	20,000	<0.01	1.39	<0.01	1.39	0.3	12	<1
BH7	BH7	17 Nov 2022	EM2222858	24	15	100	7.81	8.54	4.5	9,000	0.43	0.01	<0.01	0.01	1	<10	13
BH10	BH10	18 Nov 2022	EM2222858	19	11	96	6.42	7.45	7.42	23,000	1.28	0.03	<0.01	0.03	3.2	17	11
BH14	BH14	13 Feb 2023	EM2302400	39	4	163	11.4	13.4	8.05	22,000	0.51	0.03	<0.01	0.03	0.9	90	16
BH4	BH4	13 Feb 2023	EM2302400	37	<1	239	14	17	9.71	6.000	<0.01	0.03	<0.01	0.03	0.7	145	39
BH10	BH10	14 Feb 2023	EM2302525	20	9	103	6.76	7.46	4.97	23.000	1.52	0.03	<0.01	0.03	1.8	83	11
BH3	BH3	14 Feb 2023	EM2302525	71	18	304	21.5	23.8	5.1	18,000	0.13	<0.01	<0.01	<0.01	0.9	13	30
BH6	BH6	14 Feb 2023	EM2302525	17	1	91	5.63	5.79	1.37	19,000	<0.01	1.91	<0.01	1.91	0.3	16	4
BH7	BH7	14 Feb 2023	EM2302525	24	15	111	8.08	9.03	5.51	10,000	0.79	<0.01	<0.01	<0.01	0.9	196	15
BH8	BH8	14 Feb 2023	EM2302525	26	4	114	7.85	8.35	3.08	7,000	1.43	<0.01	<0.01	<0.01	4	439	30
BH2	BH2	17 Feb 2023	EM2302775	14	1	103	5.71	6.67	7.77	20,000	0.32	0.89	<0.01	0.89	0.6	34	1
BH10	BH10	09 May 2023	EM2308222	19	9	95	6.31	7.08	5.73	24,000	1.23	0.25	<0.01	0.25	1.3	24	11
BH2	BH2	10 May 2023	EM2308315	17	1	117	6.56	7.43	6.18	18,000	0.08	3.14	0.01	3.15	0.7	58	6
ВН3	BH3	10 May 2023	EM2308315	94	18	406	28.4	30.4	3.38	29,000	0.14	<0.02	<0.02	0.01	0.9	117	23
BH4	BH4	10 May 2023	EM2308315	58	<1	303	19	22.3	8.05	2,000	0.16	0.08	<0.01	0.08	0.7	149	35
ВН6	BH6	10 May 2023	EM2308315	17	1	90	5.54	5.69	1.38	20,000	<0.01	2.01	<0.01	2.01	0.4	<10	<1
BH7	BH7	10 May 2023	EM2308315	25	18	106	8.38	8.88	2.93	2,000	1.51	0.02	<0.01	0.02	1.5	65	12
BH8	BH8	10 May 2023	EM2308315	30	4	112	8.09	8.67	3.44	3,000	3.6	0.02	<0.01	0.02	3.7	134	21
BH14	BH14	11 May 2023	EM2308446	42	4	158	11.7	12.9	4.79	9,000	0.74	0.03	<0.01	0.03	1.3	<10	7

Australian and New Zealand Environment and Conservation Council, October 2000, ANZECC 2000 FW 95% Australian and New Zealand Environment and Conservation Council, October 2000, ANZECC 2000 Irrigation Australian and New Zealand Environment and Conservation Council, October 2000, ANZECC 2000 Livestock

^{#1} Errata slip for ANZECC (2000), June 2005, nitrate trigger levels should be deleted and noted 'under review'. Calculations in NIWA (2002): Memorandum, Nitrate Guideline Values in ANZECC (2000) suggest that nitrate criteria are significantly underestimated. **Environmental Standards**

		Metals		
	Chromium (III+VI)	Iron	Zinc	Volatile Fatty Acids (as Acetic Acid)
	mg/L	mg/L	mg/L	ug/L
EQL	0.001	0.05	0.005	5,000
Groundwater Quality Objective	0.001	0.3	0.008	
ANZECC 2000 FW 95%			0.008	
ANZECC 2000 Irrigation	0.1		2	
ANZECC 2000 Livestock	1		20	

Field ID	Location Code	Date	Lab Report Number				
BH2	BH2	31 Aug 2022	EM2216860	< 0.001	23	0.04	16,000
BH3	BH3	31 Aug 2022	EM2216860	< 0.001	58.4	0.061	14,000
BH7	BH7	31 Aug 2022	EM2216860	0.002	44.9	0.037	25,000
BH8	BH8	31 Aug 2022	EM2216860	0.013	70	0.072	17,000
BH10	BH10	01 Sep 2022	EM2217005	0.021	35.9	0.108	30,000
BH14	BH14	01 Sep 2022	EM2217005	0.014	48.2	0.046	14,000
BH4	BH4	01 Sep 2022	EM2217005	0.019	123	0.061	28,000
BH6	BH6	02 Sep 2022	EM2217005	0.001	0.3	0.059	11,000
BH14	BH14	16 Nov 2022	EM2222748	0.024	40.9	0.073	34,000
BH4	BH4	16 Nov 2022	EM2222748	0.03	116	0.077	56,000
BH8	BH8	16 Nov 2022	EM2222748	0.01	56.5	0.023	31,000
BH2	BH2	17 Nov 2022	EM2222858	< 0.001	27.4	0.044	23,000
BH3	BH3	17 Nov 2022	EM2222858	0.002	68.4	0.159	26,000
BH6	BH6	17 Nov 2022	EM2222858	0.001	0.22	0.077	30,000
BH7	BH7	17 Nov 2022	EM2222858	0.004	39.2	0.018	31,000
BH10	BH10	18 Nov 2022	EM2222858	0.016	31	0.071	17,000
BH14	BH14	13 Feb 2023	EM2302400	0.048	47.5	0.059	19,000
BH4	BH4	13 Feb 2023	EM2302400	0.012	39.5	0.035	25,000
BH10	BH10	14 Feb 2023	EM2302525	0.005	22.8	0.062	9,000
BH3	BH3	14 Feb 2023	EM2302525	0.01	49.9	0.09	<5,000
BH6	BH6	14 Feb 2023	EM2302525	0.003	0.41	0.043	<5,000
BH7	BH7	14 Feb 2023	EM2302525	0.035	85.1	0.07	<5,000
BH8	BH8	14 Feb 2023	EM2302525	0.102	162	0.098	9,000
BH2	BH2	17 Feb 2023	EM2302775	< 0.001	3.95	0.053	12,000
BH10	BH10	09 May 2023	EM2308222	0.003	7.1	0.028	18,000
BH2	BH2	10 May 2023	EM2308315	< 0.001	8.46	0.057	11,000
BH3	BH3	10 May 2023	EM2308315	0.003	68.9	0.045	18,000
BH4	BH4	10 May 2023	EM2308315	0.012	82.9	0.017	60,000
BH6	BH6	10 May 2023	EM2308315	0.001	0.12	0.034	11,000
BH7	BH7	10 May 2023	EM2308315	0.003	16.1	0.013	29,000
BH8	BH8	10 May 2023	EM2308315	0.011	51.2	0.009	55,000
BH14	BH14	11 May 2023	EM2308446	0.004	36.6	0.016	21,000

#1 Errata slip for ANZECC (2000), June 2005, nitrate trigger levels should be deleted and noted 'under review'. Calculations in NIWA (2002): Memorandum, Nitrate Guideline Values in ANZECC (2000) suggest that nitrate criteria are significantly underestimated. Environmental Standards

Australian and New Zealand Environment and Conservation Council, October 2000, ANZECC 2000 FW 95% Australian and New Zealand Environment and Conservation Council, October 2000, ANZECC 2000 Irrigation Australian and New Zealand Environment and Conservation Council, October 2000, ANZECC 2000 Livestock

										,		
									рН	EC	Solids	
				Temperature	Dissolved Oxygen	Redox Potential	Electrical Conductivity (Non Compensated)	ph (Field)	рн (Lab)	Electrical conductivity *(lab)	TDS	Alkalinity (Carbonate as CaCO3)
-				°C	ug/L	mV	μS/cm	-	-	uS/cm	mg/L	mg/L
EQL				0.1	10	0.1	1	0.01	0.01	1	10	1
Surface Water Quality	y Objective							6.5-8	6.5-8		2000	
ANZECC 2000 FW 95%	%											
ANZECC 2000 Irrigation	on											
ANZECC 2000 Livestoo	ck										2,000	
Field ID	Location Code	Date	Lab Report Number									
D/S BH3	Creek D/S BH3	31 Aug 2022	EM2216860	8.76	10,260	93.8	214.2	7.24	6.9	229	162	<1
Leachate	Leachate Pond	31 Aug 2022	EM2216860	14.4	3,940	-61.2	708.1	7.15	7.55	745	466	<1
Wetland	Wetland	31 Aug 2022	EM2216860	11.5	10,910	-44.18	481.9	7.13	7.56	544	313	<1
Dredge	Dredge Hole	31 Aug 2022	EM2216860	9.86	9,540	82.32	745.9	6.68	7.19	799	400	<1
U/S BH3	Creek U/S BH3	01 Sep 2022	EM2217005	8.9	10,650	26.43	218.8	7.52	7.22	230	216	<1
@ BH3	Creek @ BH3	01 Sep 2022	EM2217005	8.7	10,420	-36	215.8	7.55	7.44	228	217	<1
@ BH3	Creek @ BH3	16 Nov 2022	EM2222748	13.02	9,540	151.2	178.8	7.01	7.04	204	158	<1
U/S BH3	Creek U/S BH3	16 Nov 2022	EM2222748	13.1	9,570	145.6	178.9	7.02	7.04	207	154	<1
D/S BH3	Creek D/S BH3	16 Nov 2022	EM2222748	12.56	9,550	157.6	179.4	7.04	7.05	207	160	<1
Leachate	Leachate Pond	17 Nov 2022	EM2222858	14.1	3,780	-79	740.6	6.94	7.25	834	480	<1
Wetland	Wetland	17 Nov 2022	EM2222858	14.5	8,200	-69.2	300.2	6.89	6.99	361	236	<1
Dredge	Dredge Hole	18 Nov 2022	EM2222858	13.8	5,920	3.67	875	6.44	6.85	940	503	<1
@ BH3	Creek @ BH3	13 Feb 2023	EM2302400	15.55	690	2.5	799	6.04	7.1	782	477	<1
D/S BH3	Creek D/S BH3	13 Feb 2023	EM2302400	16.81	1,120	-7.7	550	6.66	7.06	545	341	<1
U/S BH3	Creek U/S BH3	13 Feb 2023	EM2302400	19.4	4,960	20.4	668	6.83	7.5	687	429	<1
Wetland	Wetland	14 Feb 2023	EM2302525	21.72	8,720	14.9	1,610	7.44	7.7	1,660	892	<1
Leachate	Leachate Pond	14 Feb 2023	EM2302525	23.13	12,090	-28.9	1,160	7.32	7.54	1,180	638	<1
Dredge	Dredge Hole	16 Feb 2023	EM2302773	22	7,530	63.6	914	6.85	6.93	976	518	<1
Leachate	Leachate Pond	09 May 2023	EM2308222	12.3	3570	46.3	900	6.84	7.58	950	518	<1
Wetland	Wetland	09 May 2023	EM2308222	13.3	320	-30.8	1170	6.94	6.92	1,060	768	<1
Dredge	Dredge Hole	09 May 2023	EM2308222	11.9	4.03	3.8	818	6.63	6.91	878	533	<1
U/S BH3	Creek U/S BH3	11 May 2023	EM2308446	9.9	4,920	43.6	622	6.71	7.1	700	537	<1
@ BH3	Creek @ BH3	11 May 2023	EM2308446	9.42	4,470	18.18	911	7.08	7.67	996	561	<1
D/S BH3	Creek D/S BH3	11 May 2023	EM2308446	9.6	5,710	94.4	648	6.91	7.21	695	470	<1

Environmental Standards

Australian and New Zealand Environment and Conservation Council, October 2000, ANZECC 2000 FW 95% Australian and New Zealand Environment and Conservation Council, October 2000, ANZECC 2000 Irrigation Australian and New Zealand Environment and Conservation Council, October 2000, ANZECC 2000 Livestock

^{#1} Errata slip for ANZECC (2000), June 2005, nitrate trigger levels should be deleted and noted 'under review'. Calculations in NIWA (2002): Memorandum, Nitrate Guideline Values in ANZECC (2000) suggest that nitrate criteria are significantly underestimated.

				Alka	linity					Majo	or lons	
				Alkalinity (Bicarbonate as CaCO3)	Alkalinity (Hydroxide) 'as CaCO3	Alkalinity (total) as CaCO3	Calcium (filtered)	Chloride	Magnesium (filtered)	Potassium (filtered)	Sodium (filtered)	Cations Total
				mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	meq/L
EQL				1	1	1	0.5	1	0.5	0.5	0.5	0.01
Surface Water Qualit	y Objective			Ī			1000		2000			
ANZECC 2000 FW 959	%											
ANZECC 2000 Irrigation								175			115	
ANZECC 2000 Livesto							1,000					
				•			,,,,,,					
Field ID	Location Code	Date	Lab Report Number									
D/S BH3	Creek D/S BH3	31 Aug 2022	EM2216860	28	<1	28	6	39	7	2	25	2.01
Leachate	Leachate Pond	31 Aug 2022	EM2216860	160	<1	160	23	132	17	28	72	6.39
Wetland	Wetland	31 Aug 2022	EM2216860	64	<1	64	9	123	12	6	67	4.5
Dredge	Dredge Hole	31 Aug 2022	EM2216860	30	<1	30	6	235	17	2	99	6.06
U/S BH3	Creek U/S BH3	01 Sep 2022	EM2217005	33	<1	33	6	34	7	2	24	1.97
@ BH3	Creek @ BH3	01 Sep 2022	EM2217005	35	<1	35	6	34	7	2	24	1.97
@ BH3	Creek @ BH3	16 Nov 2022	EM2222748	33	<1	33	6	31	7	2	19	1.75
U/S BH3	Creek U/S BH3	16 Nov 2022	EM2222748	32	<1	32	6	30	7	2	19	1.75
D/S BH3	Creek D/S BH3	16 Nov 2022	EM2222748	34	<1	34	6	31	7	2	19	1.75
Leachate	Leachate Pond	17 Nov 2022	EM2222858	171	<1	171	27	136	19	32	73	6.9
Wetland	Wetland	17 Nov 2022	EM2222858	66	<1	66	9	55	10	5	38	3.05
Dredge	Dredge Hole	18 Nov 2022	EM2222858	65	<1	65	12	248	24	3	118	7.78
@ BH3	Creek @ BH3	13 Feb 2023	EM2302400	90	<1	90	18	205	26	3	84	6.77
D/S BH3	Creek D/S BH3	13 Feb 2023	EM2302400	88	<1	88	17	122	18	3	55	4.8
U/S BH3	Creek U/S BH3	13 Feb 2023	EM2302400	82	<1	82	16	172	22	3	77	6.04
Wetland	Wetland	14 Feb 2023	EM2302525	244	<1	244	30	404	50	33	207	15.5
Leachate	Leachate Pond	14 Feb 2023	EM2302525	194	<1	194	40	264	30	24	130	10.7
Dredge	Dredge Hole	16 Feb 2023	EM2302773	58	<1	58	11	286	24	3	126	8.08
Leachate	Leachate Pond	09 May 2023	EM2308222	163	<1	163	29	210	23	22	100	8.55
Wetland	Wetland	09 May 2023	EM2308222	195	<1	195	33	236	26	25	108	9.12
Dredge	Dredge Hole	09 May 2023	EM2308222	49	<1	49	10	246	22	3	113	7.3
U/S BH3	Creek U/S BH3	11 May 2023	EM2308446	62	<1	62	16	189	23	3	84	6.42
@ BH3	Creek @ BH3	11 May 2023	EM2308446	187	<1	187	16	220	22	4	80	6.19
D/S BH3	Creek D/S BH3	11 May 2023	EM2308446	70	<1	70	28	186	31	19	108	9.13

Environmental Standards

Australian and New Zealand Environment and Conservation Council, October 2000, ANZECC 2000 FW 95% Australian and New Zealand Environment and Conservation Council, October 2000, ANZECC 2000 Irrigation Australian and New Zealand Environment and Conservation Council, October 2000, ANZECC 2000 Livestock

^{#1} Errata slip for ANZECC (2000), June 2005, nitrate trigger levels should be deleted and noted 'under review'. Calculations in NIWA (2002): Memorandum, Nitrate Guideline Values in ANZECC (2000) suggest that nitrate criteria are significantly underestimated.

								5			Sulfate as	
					1		<u> </u>	litrogen Form	is .	T	SO4	Inorg
				Anions Total	lonic Balance	Ammonia as N	Nitrate (as N)	Nitrite (as N)	Nitrite + Nitrate as N	Kjeldahl Nitrogen Total	Sulfate as SO4 - Turbidimetric (filtered)	COD
				meq/L	%	mg/L	mg/L	mg/L	mg/L	mg/L	ug/L	mg/L
EQL				0.01	0.01	0.01	0.01	0.01	0.01	0.1	1,000	10
Surface Water Qua	ality Objective					0.9	0.7				1,000,000	
ANZECC 2000 FW 9	95%						7.2 ^{#1}					
ANZECC 2000 Irriga	ation											
ANZECC 2000 Lives	stock											
Field ID	Location Code	Date	Lab Report Number									
D/S BH3	Creek D/S BH3	31 Aug 2022	EM2216860	1.85	4.33	<0.01	1.63	<0.01	1.63	1	9,000	35
Leachate	Leachate Pond	31 Aug 2022	EM2216860	7	4.54	3.78	0.05	0.01	0.06	6	4,000	147
Wetland	Wetland	31 Aug 2022	EM2216860	5.02	5.4	0.01	0.08	<0.01	0.08	0.8	13,000	37
Dredge	Dredge Hole	31 Aug 2022	EM2216860	7.52	10.8	<0.01	0.22	<0.01	0.22	0.7	14,000	15
U/S BH3	Creek U/S BH3	01 Sep 2022	EM2217005	1.78	4.94	<0.01	1.65	< 0.01	1.65	1	8,000	31
@ BH3	Creek @ BH3	01 Sep 2022	EM2217005	1.8	4.41	<0.01	1.68	< 0.01	1.68	0.8	7,000	29
@ BH3	Creek @ BH3	16 Nov 2022	EM2222748	1.6	-	0.01	0.73	<0.01	0.73	1.3	3,000	69
U/S BH3	Creek U/S BH3	16 Nov 2022	EM2222748	1.55	-	0.03	0.73	<0.01	0.73	1.2	3,000	69
D/S BH3	Creek D/S BH3	16 Nov 2022	EM2222748	1.62	-	0.03	0.72	<0.01	0.72	1.2	3,000	72
Leachate	Leachate Pond	17 Nov 2022	EM2222858	7.36	3.17	5.35	<0.01	0.02	0.02	5.5	5,000	108
Wetland	Wetland	17 Nov 2022	EM2222858	2.93	2.01	0.04	0.01	<0.01	0.01	0.9	3,000	45
Dredge	Dredge Hole	18 Nov 2022	EM2222858	8.61	5.02	0.01	0.11	<0.01	0.11	1.1	15,000	28
@ BH3	Creek @ BH3	13 Feb 2023	EM2302400	7.58	5.66	0.15	<0.01	<0.01	<0.01	0.8	<1,000	11
D/S BH3	Creek D/S BH3	13 Feb 2023	EM2302400	5.2	4.01	0.21	<0.01	<0.01	<0.01	1	<1,000	14
U/S BH3	Creek U/S BH3	13 Feb 2023	EM2302400	6.62	4.58	<0.01	0.14	<0.01	0.14	0.8	6,000	15
Wetland	Wetland	14 Feb 2023	EM2302525	16.3	2.56	0.01	<0.01	<0.01	<0.01	10.4	<1,000	374
Leachate	Leachate Pond	14 Feb 2023	EM2302525	11.4	2.95	6.26	0.06	0.04	0.1	6.6	3,000	53
Dredge	Dredge Hole	16 Feb 2023	EM2302773	9.56	8.38	<0.01	0.01	<0.01	0.01	0.7	16,000	47
Leachate	Leachate Pond	09 May 2023	EM2308222	9.26	4.05	4.11	0.01	0.01	0.02	3.8	4,000	34
Wetland	Wetland	09 May 2023	EM2308222	10.6	7.36	3.32	<0.01	<0.01	<0.01	3.8	1,000	<10
Dredge	Dredge Hole	09 May 2023	EM2308222	8.17	5.6	0.43	0.09	<0.01	0.09	1.1	12,000	21
U/S BH3	Creek U/S BH3	11 May 2023	EM2308446	6.72	2.24	0.1	0.09	<0.01	0.09	0.7	7,000	<10
@ BH3	Creek @ BH3	11 May 2023	EM2308446	9.96	23.3	0.11	0.05	0.01	0.06	0.7	1,000	15
11										1		

6.77

14.8

1.17

0.02

< 0.01

0.02

1.8

6,000

31

11 May 2023

EM2308446

Creek D/S BH3

Environmental Standards

D/S BH3

Australian and New Zealand Environment and Conservation Council, October 2000, ANZECC 2000 FW 95% Australian and New Zealand Environment and Conservation Council, October 2000, ANZECC 2000 Irrigation Australian and New Zealand Environment and Conservation Council, October 2000, ANZECC 2000 Livestock

^{#1} Errata slip for ANZECC (2000), June 2005, nitrate trigger levels should be deleted and noted 'under review'. Calculations in NIWA (2002): Memorandum, Nitrate Guideline Values in ANZECC (2000) suggest that nitrate criteria are significantly underestimated.

				anics		Metals		
				301 mg/L	Chromium (III+VI)	CO. mg/L	Juiz mg/L	Volatile Fatty Acids (as Acetic Acid)
EQL				1	0.001	0.05	0.005	5,000
Surface Water Qua	ality Objective				0.001		0.008	
ANZECC 2000 FW 9	95%						0.008	
ANZECC 2000 Irriga	ation				0.1		2	
ANZECC 2000 Lives	stock				1		20	
Field ID	Location Code	Date	Lab Report Number					
D/S BH3	Creek D/S BH3	31 Aug 2022	EM2216860	11	0.002	1.41	<0.005	10,000
Leachate	Leachate Pond	31 Aug 2022	EM2216860	38	0.005	18.3	0.033	14,000
Wetland	Wetland	31 Aug 2022	EM2216860	13	0.002	2.43	< 0.005	10,000

Field ID	Location Code	Date	Lab Report Number					
D/S BH3	Creek D/S BH3	31 Aug 2022	EM2216860	11	0.002	1.41	<0.005	10,000
Leachate	Leachate Pond	31 Aug 2022	EM2216860	38	0.005	18.3	0.033	14,000
Wetland	Wetland	31 Aug 2022	EM2216860	13	0.002	2.43	< 0.005	10,000
Dredge	Dredge Hole	31 Aug 2022	EM2216860	5	<0.001	2.16	0.007	11,000
U/S BH3	Creek U/S BH3	01 Sep 2022	EM2217005	10	0.002	1.28	< 0.005	10,000
@ BH3	Creek @ BH3	01 Sep 2022	EM2217005	10	0.002	1.2	< 0.005	10,000
@ BH3	Creek @ BH3	16 Nov 2022	EM2222748	20	0.005	2.82	0.012	16,000
U/S BH3	Creek U/S BH3	16 Nov 2022	EM2222748	19	0.003	2.54	0.012	22,000
D/S BH3	Creek D/S BH3	16 Nov 2022	EM2222748	20	0.004	2.56	0.013	23,000
Leachate	Leachate Pond	17 Nov 2022	EM2222858	29	0.006	23.5	0.036	28,000
Wetland	Wetland	17 Nov 2022	EM2222858	18	0.004	9.71	0.006	17,000
Dredge	Dredge Hole	18 Nov 2022	EM2222858	9	<0.001	2.45	0.005	25,000
@ BH3	Creek @ BH3	13 Feb 2023	EM2302400	11	<0.001	14.7	< 0.005	8,000
D/S BH3	Creek D/S BH3	13 Feb 2023	EM2302400	13	<0.001	13.8	< 0.005	14,000
U/S BH3	Creek U/S BH3	13 Feb 2023	EM2302400	10	<0.001	4.82	<0.005	11,000
Wetland	Wetland	14 Feb 2023	EM2302525	44	<0.001	7.65	0.01	17,000
Leachate	Leachate Pond	14 Feb 2023	EM2302525	13	<0.001	5.48	< 0.005	<5,000
Dredge	Dredge Hole	16 Feb 2023	EM2302773	6	<0.001	1.42	< 0.005	8,000
Leachate	Leachate Pond	09 May 2023	EM2308222	10	<0.001	1.42	< 0.005	26,000
Wetland	Wetland	09 May 2023	EM2308222	13	<0.001	69.4	< 0.005	38,000
Dredge	Dredge Hole	09 May 2023	EM2308222	7	<0.001	3.93	<0.005	13,000
U/S BH3	Creek U/S BH3	11 May 2023	EM2308446	7	<0.001	9.1	0.011	10,000
@ BH3	Creek @ BH3	11 May 2023	EM2308446	11	<0.001	2.68	0.01	16,000
D/S BH3	Creek D/S BH3	11 May 2023	EM2308446	7	<0.001	6.54	0.01	13,000

^{#1} Errata slip for ANZECC (2000), June 2005, nitrate trigger levels should be deleted and noted 'under review'. Calculations in NIWA (2002): Memorandum, Nitrate Guideline Values in ANZECC (2000) suggest that nitrate criteria are significantly underestimated.

Environmental Standards

Australian and New Zealand Environment and Conservation Council, October 2000, ANZECC 2000 FW 95% Australian and New Zealand Environment and Conservation Council, October 2000, ANZECC 2000 Irrigation Australian and New Zealand Environment and Conservation Council, October 2000, ANZECC 2000 Livestock

2022/2023 ANNUAL MONITORING REPORT – CRESWICK LANDFILL APPENDIX C - QA QC RESULTS

	Field ID	BH8	BLIND		BH8	CRESWICK SPLIT	
	Matrix Type					Water	
	Date						
	Lab Report Number	EM2216860	EM2216860	RPD	EM2216860	920032	RPD
Unit	EQL						
uS/cm	1	1,020	986	3	1,020	890	14
-	0.01	7.05	7.14	1	7.05	7.1	1
mg/L	10	521	518	1	521	480	8
mg/L	1	<1	<1	0	<1	<10	0
mg/L	1	242	242	0	242	240	1
mg/L	1	<1	<1	0	<1	<20	0
mg/L	1	242	242	0	242	240	1
mg/L	0.5	17	17	0	17	19	11
mg/L	1	139	139	0	139	130	7
mg/L	0.5	33	33	0	33	32	3
mg/L	0.5	4	4	0	4	3.7	8
mg/L	0.5	116	116	0	116	120	3
mg/L	0.01	3.70	3.78	2	3.70	4.2	13
mg/L	0.01	0.01	<0.01	0	0.01	<0.02	0
mg/L	0.1	5.4	5.4	0	5.4	4.6	16
mg/L	10	<10	<10	0	<10	69	149
ug/L	1,000	56,000	55,000	2	56,000	47,000	17
mg/L	1	21	28	29	21	25	17
mg/L	0.001	0.013	0.005	89	0.013	0.006	74
mg/L	0.001						
mg/L	0.05	70.0	68.0	3	70.0		
mg/L	0.05						
mg/L	0.005	0.072	0.070	3	0.072	0.061	17
mg/L	0.005						
ug/L	5,000	17,000	19,000	11	17,000	<5,000	109
	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Unit EQL	Matrix Type Date Lab Report Number Water 31 Aug 2022 Lab Report Number EM2216860 Unit EQL uS/cm 1 1,020 - 0.01 7.05 mg/L 10 521 mg/L 1 242 mg/L 1 242 mg/L 1 242 mg/L 1 139 mg/L 0.5 33 mg/L 0.5 4 mg/L 0.5 116 mg/L 0.01 3.70 mg/L 0.01 5.4 mg/L 0.01 56,000 mg/L 1 21 mg/L 0.001 0.013 mg/L 0.001 0.013 mg/L 0.005 70.0 mg/L 0.005 0.072 mg/L 0.005 0.072	Matrix Type Date Lab Report Number Water 31 Aug 2022 Water 31 Aug 2022 Water 51 Aug 2022 Standard 2022 EM2216860 EM2216860 Unit EQL US/cm 1 1,020 986 - 0.01 7.05 7.14 mg/L 1 <1	Matrix Type Date Lab Report Number Water Standard Standa	Matrix Type Date Lab Report Number Water Standard (Matrix Type Lab Report Number) Water EM2216860 Water Standard (Matrix Type EM2216860) RPD Water Standard (Matrix Type EM2216860) RPD EM2216860 RPD EM2216860 Unit EOL EM2216860 EM2216860 RPD EM2216860 EM2216860 RPD EM2216860 Unit EOL EM2216860 EM2216860 RPD EM2216860 T.00 C1 T.00 C1 T.00 C1 T.00 C1 T.00 T.00 T.00	Matrix Type Date Lab Report Number Water Date Lab Report Number Water Elab Report Number Water Standard Stan

^{*}RPDs have only been considered where a concentration is greater than 1 times the EQL.

1/4 RPD.xlsx

^{**}Elevated RPDs are highlighted as per QAQC Profile settings (Acceptable RPDs for each EQL multiplier range are: 81 (1 - 10 x EQL); 50 (10 - 30 x EQL); 30 (> 30 x EQL))

^{***}Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the row header relate to those used in the primary laboratory

		Field ID	BH8	BLIND		BH8	CRESWICK SPLIT	
		Matrix Type	Water	Water		Water	Water	
		Date	16 Nov 2022	16 Nov 2022		16 Nov 2022	16 Nov 2022	
		Lab Report Number	EM2222748	EM2222748	RPD	EM2222748	942675	RPD
	Unit	EQL						
Electrical conductivity *(lab)	uS/cm	1	875	901	3	875	870	1
pH (Lab)	-	0.01	7.06	7.15	1	7.06	8.6	20
Solids								
TDS	mg/L	10	455	468	3	455	450	1
Alkalinity								
Alkalinity (Carbonate as CaCO3)	mg/L	1	<1	<1	0	<1	25	185
Alkalinity (Bicarbonate as CaCO3)	mg/L	1	277	280	1	277	300	8
Alkalinity (Hydroxide) as CaCO3	mg/L	1	<1	<1	0	<1	<20	0
Alkalinity (total) as CaCO3	mg/L	1	277	280	1	277	330	17
Major Ions								
Calcium (filtered)	mg/L	0.5	15	15	0	15	14	7
Chloride	mg/L	1	100	100	0	100	110	10
Magnesium (filtered)	mg/L	0.5	31	31	0	31	28	10
Potassium (filtered)	mg/L	0.5	4	4	0	4	3	28
Sodium (filtered)	mg/L	0.5	101	102	1	101	110	9
Nitrogen Forms								
Ammonia as N	mg/L	0.01	4.56	4.63	2	4.56	3.6	24
Nitrate (as N)	mg/L	0.01	<0.01	<0.01	0	<0.01	<0.02	0
Kjeldahl Nitrogen Total	mg/L	0.1	4.9	4.5	9	4.9	4.9	0
Inorganics								
COD	mg/L	10	105	97	8	105	71	39
Sulfate as SO4 - Turbidimetric (filtered)	ug/L	1,000	28,000	30,000	7	28,000	21,000	28
TOC	mg/L	1	19	21	10	19	35	59
Metals								
Chromium (III+VI)	mg/L	0.001	0.010	0.014	33	0.010		
Chromium (III+VI) (filtered)	mg/L	0.001					<0.001	
Iron	mg/L	0.05	56.5	56.6	0	56.5		
Iron (filtered)	mg/L	0.05					< 0.05	
Zinc	mg/L	0.005	0.023	0.027	16	0.023		
Zinc (filtered)	mg/L	0.005					<0.005	
Volatile Fatty Acids (as Acetic Acid)	ug/L	5,000	31,000	30,000	3	31,000	<5,000	144

^{*}RPDs have only been considered where a concentration is greater than 1 times the EQL.

2 / 4 RPD.xlsx

^{**}Elevated RPDs are highlighted as per QAQC Profile settings (Acceptable RPDs for each EQL multipli

^{***}Interlab Duplicates are matched on a per compound basis as methods vary between laboratories

	Field ID		BLIND		BH14	CRESWICK SPLIT	
	Matrix Type	Water	Water		Water	Water	
	Date	13 Feb 2023	13 Feb 2023		13 Feb 2023	13 Feb 2023	
	Lab Report Number	EM2302400	EM2302400	RPD	EM2302400	963891	RPD
Unit	EQL						
uS/cm	1	1,330	1,320	1	1,330	1,300	2
=	0.01	6.65	6.64	0	6.65	6.9	4
mg/L	10	978	925	6	978	790	21
mg/L	1	<1	<1	0	<1	<10	0
mg/L	1	138	141	2	138	<20	149
mg/L	1	<1	<1	0	<1	<20	0
mg/L	1	138	141	2	138	<20	149
mg/L	0.5	21	22	5	21	22	5
mg/L	1	363	354	3	363	200	58
mg/L	0.5	39	39	0	39	38	3
mg/L	0.5	4	4	0	4	3.2	22
mg/L	0.5	163	158	3	163	160	2
mg/L	0.01	0.51	0.21	83	0.51	0.24	72
mg/L	0.01	0.01	0.01	0	0.01	< 0.02	0
mg/L	0.1	0.9	0.5	57	0.9	1.2	29
mg/L	10	90	100	11	90	42	73
ug/L	1,000	22,000	22,000	0	22,000	22,000	0
mg/L	1	16	15	6	16	19	17
mg/L	0.001	0.048	0.062	25	0.048	0.004	169
mg/L	0.001						
mg/L	0.05	47.5	54.3	13	47.5		
mg/L	0.05						
mg/L	0.005	0.059	0.065	10	0.059	0.020	99
mg/L	0.005						
ug/L	5,000	19,000	13,000	38	19,000	<5,000	117
	US/cm -	Unit EQL Us/cm 1	Date Lab Report Number 13 Feb 2023 Lab Report Number EM2302400 Unit EQL us/cm 1 1,330 - 0.01 6.65 mg/L 10 978 mg/L 1 <1	Date Lab Report Number Lab Report Number EM2302400 EM2302400	Date Lab Report Number 13 Feb 2023 13 Feb 2023 RPD Unit EQL uS/cm 1 1,330 1,320 1 - 0.01 6.65 6.64 0 mg/L 10 978 925 6 mg/L 1 <1	Date Lab Report Number 13 Feb 2023 EM2302400 EM2302400	Date Lab Report Number 13 Feb 2023 14 Feb 2023 14 Feb 2023 15 Feb 2023 15 Feb 2023 15 Feb 2023 14 Feb 2023 15 Feb 2023 15 Feb 2023 15 Feb 2023 15 Feb 2023 16 Feb 2023 17 Feb 2023 18 Feb 202

^{*}RPDs have only been considered where a concentration is greater than 1 times the EQL.

3/4 RPD.xlsx

^{**}Elevated RPDs are highlighted as per QAQC Profile settings (Acceptable RPDs for each EQL multipli

^{***}Interlab Duplicates are matched on a per compound basis as methods vary between laboratories

		Field ID	BH6	BLIND		BH6	CRESWICK SPLIT	_
		Matrix Type	Water	Water		Water	Water	
		Date	10 May 2023	10 May 2023		10 May 2023	10 May 2023	
		Lab Report Number	EM2308315	EM2308315	RPD	EM2308315	989018	RPD
	Unit	EQL						
Electrical conductivity *(lab)	uS/cm	1	674	680	1	674		
pH (Lab)	-	0.01	6.92	6.94	0	6.92		
Solids								
TDS	mg/L	10	425	355	18	425	280	41
Alkalinity								
Alkalinity (Carbonate as CaCO3)	mg/L	1	<1	<1	0	<1	<10	0
Alkalinity (Bicarbonate as CaCO3)	mg/L	1	10	11	10	10	<20	0
Alkalinity (Hydroxide) as CaCO3	mg/L	1	<1	<1	0	<1	<20	0
Alkalinity (total) as CaCO3	mg/L	1	10	11	10	10	<20	0
Major Ions								
Calcium (filtered)	mg/L	0.5	4	4	0	4	3.5	11
Chloride	mg/L	1	180	194	7	180	190	5
Magnesium (filtered)	mg/L	0.5	17	17	0	17	15	13
Potassium (filtered)	mg/L	0.5	1	1	0	1	1.3	26
Sodium (filtered)	mg/L	0.5	90	90	0	90	86	5
Nitrogen Forms								
Ammonia as N	mg/L	0.01	<0.01	<0.01	0	<0.01	0.03	100
Nitrate (as N)	mg/L	0.01	2.01	2.12	5	2.01	2.4	18
Kjeldahl Nitrogen Total	mg/L	0.1	0.4	0.4	0	0.4	0.3	29
Inorganics								
COD	mg/L	10	<10	<10	0	<10	<25	0
Sulfate as SO4 - Turbidimetric (filtered)	ug/L	1,000	20,000	19,000	5	20,000	19,000	5
TOC	mg/L	1	<1	<1	0	<1	<5	0
Metals								
Chromium (III+VI)	mg/L	0.001	0.001	<0.001	0	0.001	<0.001	0
Chromium (III+VI) (filtered)	mg/L	0.001						
Iron	mg/L	0.05	0.12	0.11	9	0.12		
Iron (filtered)	mg/L	0.05						
Zinc	mg/L	0.005	0.034	0.032	6	0.034	0.031	9
Zinc (filtered)	mg/L	0.005						
Volatile Fatty Acids (as Acetic Acid)	ug/L	5,000	11,000	8,000	32	11,000	<5,000	75

4/4 RPD.xlsx

^{*}RPDs have only been considered where a concentration is greater than 1 times the EQL.

**Elevated RPDs are highlighted as per QAQC Profile settings (Acceptable RPDs for each EQL multipli

^{***}Interlab Duplicates are matched on a per compound basis as methods vary between laboratories

		Field ID	RINSATE	RINSATE	RINSATE	RINSATE
		Matrix Type	Water	Water	Water	Water
		Date	31 Aug 2022	16 Nov 2022	14 Feb 2023	10 May 2023
		Lab Report Number	EM2216860	EM2222748	EM2302525	EM2308315
	Unit	EQL				
EC_						
Electrical conductivity *(lab)	uS/cm	1	9	<1	<1	2
NA						
Volatile Fatty Acids (as Acetic Acid)	ug/L	5,000	<5,000	<5,000	7,000	<10,000
Sulfate as SO4						
Sulfate as SO4 - Turbidimetric (filtered)	ug/L	1,000	<1,000	<1,000	<1,000	<1,000
pH						
pH (Lab)	-	0.01	5.28	5.40	5.49	6.32
Solids						
TDS	mg/L	10	<10	<10	<10	<10
Alkalinity						
Alkalinity (Carbonate as CaCO3)	mg/L	1	<1	<1	<1	<1
Alkalinity (Bicarbonate as CaCO3)	mg/L	1	1	<1	1	1
Alkalinity (Hydroxide) as CaCO3	mg/L	1	<1	<1	<1	<1
Alkalinity (total) as CaCO3	mg/L	1	1	<1	1	1
Major Ions						
Calcium (filtered)	mg/L	1	<1	<1	<1	<1
Chloride	mg/L	1	<1	<1	<1	<1
Magnesium (filtered)	mg/L	1	<1	<1	<1	<1
Potassium (filtered)	mg/L	1	<1	<1	<1	<1
Sodium (filtered)	mg/L	1	<1	<1	<1	<1
Cations Total	meq/L	0.01	<0.01	<0.01	<0.01	<0.01
Anions Total	meq/L	0.01	0.02	<0.01	0.02	0.02
Ionic Balance	%	0.01		<0.01		
Nitrogen Forms						
Ammonia as N	mg/L	0.01	<0.01	<0.01	<0.01	<0.01
Nitrate (as N)	mg/L	0.01	<0.01	<0.01	<0.01	<0.01
Nitrite (as N)	mg/L	0.01	<0.01	<0.01	<0.01	<0.01
Nitrite + Nitrate as N	mg/L	0.01	<0.01	<0.01	<0.01	<0.01
Kjeldahl Nitrogen Total	mg/L	0.1	<0.1	<0.1	<0.1	<0.1
Inorganics						
COD	mg/L	10	<10	<10	<10	<10
TOC	mg/L	1	3	<1	<1	<1
Metals						
Chromium (III+VI)	mg/L	0.001	<0.001	<0.001	<0.001	<0.001
Iron	mg/L	0.05	< 0.05	<0.05	< 0.05	< 0.05
Zinc	mg/L	0.005	0.011	< 0.005	<0.005	< 0.005

2022/2023 ANNUAL MONITORING REPORT – CRESWICK LANDFILL APPENDIX D - LABORATORY REPORTS

Cli	ient:			Ve	ntia				Job	Ref:			Cr	eswick	Landfil	I	
Conf	tact:			Robert (Callar	nder			PI	ease	e forw	vard f	to EL	JROF	INS	for ana	lysis
Addr	ess:		25-37 Hun	tingdale F	≀oad,	Burwood	, 3125										
Pho	one:	04275	529051	Fa	ıx:												
Er	nail:		saunders@ve .callander@ve														
P/O	No.:			Quote N		190924VE	NV									,	
T/A T	ime:											_					
Sample ID		Sampl	e Description		of ainers	Date Sampled	Time sampled	Matrix	PH	<u>ы</u>	00	TEMP	ORP	SWL			
Creswick SPLIT	Grou	ndwate	er _ ,	4		31/8/22	1028	u	6.71	1122	0.33	12.24	-96.6	2.25			
			101														
																	-
Ins	Sp struct	ecial	Please email	a signed	ору	of this shee	et to Burv	vood of	fice upo	n recei	ot.						
Reling	quishe	d By:	Compa	ny:		Date:		Time:		Rec	eived By	1:	Co	mpany:		Date:	Time:
A Cu			Vent	а	31	18/22	170				pron			11		119	10-10
Relind	quishe	d By:	Compa	ny:		Date:		Time:		Red	eived By	/:	Co	mpany:		Date:	Time:
Q.	C .		AC8 (19														
This form is fo	is form is for recording of sample data after prior consultation with an analyst regarding sampling proceder-ride pricing agreements, OHS requirements and our terms and conditions.					cedures a	nd does not	LAB	USE ONLY		Sample con		Sampl	es received und les adequately pr	amaged [Yes/No] eserved [Yes/No]		

Document: OF002 i1

As an Occupational Health and Safety consideration, it is a requirement of Ecowise Environmental (Victoria), that all samples

received be undamaged and prior advice given in writing of any potential health risks.

Samples within recommended holding times: [Yes/No] *Samples transported at appropriate temperature [Yes/No]

DATE: 02.09.22 TIME: 8:30

COURIER: YE !
TEMPERATURE OF SOME

NO

Environment Testing

www.eurofins.com.au

EnviroSales@eurofins.com

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne Geelong 6 Monterey Road Dandenong South Grovedale VIC 3175 VIC 3216 Tel: +61 3 8564 5000

19/8 Lewalan Street Tel: +61 3 8564 5000

Sydney 179 Magowar Road Girraween NSW 2145 Tel: +61 2 9900 8400 NATA# 1261 Site# 1254 NATA# 1261 Site# 1254 NATA# 1261 Site# 18217

Canberra Mitchell ACT 2911

Brisbane Unit 1.2 Dacre Street 1/21 Smallwood Place Murarrie QLD 4172 Tel: +61 2 6113 8091 Tel: +61 7 3902 4600

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 NATA# 1261 Site# 20794 NATA# 1261 Site# 25079

ABN: 91 05 0159 898

Perth 46-48 Banksia Road Welshpool WA 6106 Tel: +61 8 6253 4444 NATA# 2377 Site# 2370

NZBN: 9429046024954

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Penrose, Rolleston, Auckland 1061 Christchurch 7675 Tel: +64 9 526 45 51 Tel: 0800 856 450 IANZ# 1327 IANZ# 1290

Sample Receipt Advice

Company name:

Ventia Utility Services P/L (Burwood)

Contact name: Project name:

Robert Callander **CRESWICK LANDFILL**

Project ID:

Not provided

Turnaround time: Date/Time received

Sep 2, 2022 3:27 PM

Eurofins reference

920032

5 Day

Sample Information

- A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- Sample containers for volatile analysis received with zero headspace.
- Split sample sent to requested external lab.
- Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Notes

Contact

If you have any questions with respect to these samples, please contact your Analytical Services Manager:

Savini Suduweli on phone: or by email: SaviniSuduweli@eurofins.com

Results will be delivered electronically via email to Robert Callander - Robert.callander@ventia.com.au.

Note: A copy of these results will also be delivered to the general Ventia Utility Services P/L (Burwood) email address.

web: www.eurofins.com.au email: EnviroSales@eurofins.com

Eurofins Environment Testing Australia Pty Ltd

NATA# 1261 Site# 1254 NATA# 1261 Site# 1254 NATA# 1261 Site# 18217

ABN: 50 005 085 521

Melbourne Geelong 6 Monterey Road 19/8 Lewalan Street Dandenong South Grovedale VIC 3175 VIC 3216 Tel: +61 3 8564 5000 Tel: +61 3 8564 5000

Sydney 179 Magowar Road Girraween NSW 2145 Tel: +61 2 9900 8400 Canberra Unit 1,2 Dacre Street Mitchell ACT 2911 Tel: +61 2 6113 8091

Newcastle 1/21 Smallwood Place 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Tel: +61 7 3902 4600 Tel: +61 2 4968 8448 NATA# 1261 Site# 20794 NATA# 1261 Site# 25079

ABN: 91 05 0159 898 NZBN: 9429046024954

Perth 46-48 Banksia Road Welshpool WA 6106 Tel: +61 8 6253 4444 NATA# 2377 Site# 2370

Received:

Priority:

Contact Name:

Due:

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Tel: 0800 856 450 IANZ# 1290

Company Name:

Project Name:

Ventia Utility Services P/L (Burwood)

Address: Unit 11, 25-37 Huntingdale Rd Burwood

VIC 3125

CRESWICK LANDFILL

Order No.: Report #:

920032

Brisbane

Murarrie

QLD 4172

Phone: 03 9861 8169 03 9861 8101

Fax:

Eurofins Analytical Services Manager: Savini Suduweli

5 Day

Auckland

Penrose,

35 O'Rorke Road

Tel: +64 9 526 45 51

Sep 2, 2022 3:27 PM Sep 9, 2022

Robert Callander

Auckland 1061

IANZ# 1327

		Sa	mple Detail			Chemical Oxygen Demand (COD)	Conductivity (at 25 °C)	Nitrate (as N)	рН (at 25 °C)	Total Organic Carbon	Metals M8	Organic Nitrogen Set (as N)	Eurofins Suite B11E: CI/SO4/Alkalinity	Eurofins Suite B11C: Na/K/Ca/Mg	Total Dissolved Solids Dried at 180 °C ± 2 °C	Volatile Fatty Acids (VFA) by GC-MS
Melb	ourne Laborato	ory - NATA # 12	61 Site # 12	54		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Exte	rnal Laboratory															
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID											
1	CRESWICK SPLIT	Aug 31, 2022		Water	M22-Se0003910	Х	х	Х	Х	Х	х	х	Х	Х	х	Х
Test	Counts					1	1	1	1	1	1	1	1	1	1	1

Environment Testing

Ventia Utility Services P/L (Burwood) Unit 11, 25-37 Huntingdale Rd Burwood VIC 3125

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention: Robert Callander

Report 920032-W

Project name CRESWICK LANDFILL

Received Date Sep 02, 2022

Client Sample ID			CRESWICK SPLIT
Sample Matrix			Water M22-
Eurofins Sample No.			Se0003910
Date Sampled			Aug 31, 2022
Test/Reference	LOR	Unit	
Volatile Fatty Acids (VFA) by GC-MS	'	'	
Acetic Acid	5	mg/L	< 5
Propionic acid	5	mg/L	< 5
Isobutyric acid	5	mg/L	< 5
Butyric acid	5	mg/L	< 5
Isovaleric acid	5	mg/L	< 5
Valeric acid	5	mg/L	< 5
4-Methylvaleric acid	5	mg/L	< 5
Hexanoic acid	5	mg/L	< 5
Heptanoic acid	5	mg/L	< 5
Total VFA as Acetic Acid Equivalents	5	mg/L	< 5
Ammonia (as N)	0.01	mg/L	4.2
Chemical Oxygen Demand (COD)	25	mg/L	69
Chloride	1	mg/L	130
Conductivity (at 25 °C)	10	uS/cm	890
Nitrate (as N)	0.02	mg/L	< 0.02
Organic Nitrogen (as N)*	0.2	mg/L	0.4
pH (at 25 °C)	0.1	pH Units	7.1
Sulphate (as SO4)	5	mg/L	47
Total Dissolved Solids Dried at 180 °C ± 2 °C	10	mg/L	480
Total Kjeldahl Nitrogen (as N)	0.2	mg/L	4.6
Total Organic Carbon	5	mg/L	25
Alkalinity (speciated)			
Bicarbonate Alkalinity (as CaCO3)	20	mg/L	240
Carbonate Alkalinity (as CaCO3)	10	mg/L	< 10
Hydroxide Alkalinity (as CaCO3)	20	mg/L	< 20
Total Alkalinity (as CaCO3)	20	mg/L	240
Heavy Metals			
Arsenic	0.001	mg/L	0.019
Cadmium	0.0002	mg/L	< 0.0002
Chromium	0.001	mg/L	0.006
Copper	0.001	mg/L	0.003
Lead	0.001	mg/L	0.004
Mercury	0.0001	mg/L	< 0.0001
Nickel	0.001	mg/L	0.007
Zinc	0.005	mg/L	0.061

Environment Testing

Client Sample ID				CRESWICK SPLIT
Sample Matrix				Water
Eurofins Sample No.				M22- Se0003910
Date Sampled				Aug 31, 2022
Test/Reference		LOR	Unit	
Alkali Metals				
Calcium		0.5	mg/L	19
Magnesium	·	0.5	mg/L	34
Potassium		0.5	mg/L	4.0
Sodium		0.5	mg/L	120

Report Number: 920032-W

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Volatile Fatty Acids (VFA) by GC-MS	Melbourne	Sep 07, 2022	28 Day
- Method: LTM-ORG-2360 Determination of Volatile Fatty Acids in Water by GC-MS			
Chemical Oxygen Demand (COD)	Melbourne	Sep 06, 2022	28 Days
- Method: LTM-INO-4220 Determination of COD in Water			
Conductivity (at 25 °C)	Melbourne	Sep 02, 2022	28 Days
- Method: LTM-INO-4030 Conductivity			
Nitrate (as N)	Melbourne	Sep 02, 2022	28 Days
- Method: LTM-INO-4120 Analysis of NOx NO2 NH3 by FIA			
pH (at 25 °C)	Melbourne	Sep 02, 2022	0 Hours
- Method: LTM-GEN-7090 pH in water by ISE			
Total Organic Carbon	Melbourne	Sep 02, 2022	28 Days
- Method: LTM-INO-4060 Total Organic Carbon in water and soil			
Metals M8	Melbourne	Sep 02, 2022	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Eurofins Suite B11C: Na/K/Ca/Mg	Melbourne	Sep 08, 2022	180 Days
- Method: LTM-MET-3010 Alkali Metals by ICP-AES			
Ammonia (as N)	Melbourne	Sep 02, 2022	28 Days
- Method: APHA 4500-NH3 Ammonia Nitrogen by FIA			
Organic Nitrogen (as N)*	Melbourne	Sep 02, 2022	7 Days
- Method: APHA 4500 Organic Nitrogen (N)			
Total Kjeldahl Nitrogen (as N)	Melbourne	Sep 02, 2022	28 Days
- Method: APHA 4500-Norg B,D Total Kjeldahl Nitrogen by FIA			
Eurofins Suite B11E: Cl/SO4/Alkalinity			
Chloride	Melbourne	Sep 02, 2022	28 Days
- Method: LTM-INO-4090 Chloride by Discrete Analyser			
Sulphate (as SO4)	Melbourne	Sep 08, 2022	28 Days
- Method: LTM-INO-4110 Sulfate by Discrete Analyser			
Alkalinity (speciated)	Melbourne	Sep 08, 2022	14 Days
- Method: LTM-INO-4250 Alkalinity by Electrometric Titration			
Total Dissolved Solids Dried at 180 °C ± 2 °C	Melbourne	Sep 02, 2022	28 Days
- Method: LTM-INO-4170 Total Dissolved Solids in Water			

Repeat Samples

Description	Testing Site	Extracted	Holding Time
Volatile Fatty Acids (VFA) by GC-MS	Melbourne	Sep 07, 2022	28 Day
- Method: LTM-ORG-2360 Determination of Volatile Fatty Acids in Water by GC-MS			
Chemical Oxygen Demand (COD)	Melbourne	Sep 06, 2022	28 Days
- Method: LTM-INO-4220 Determination of COD in Water			
Conductivity (at 25 °C)	Melbourne	Sep 02, 2022	28 Days
- Method: LTM-INO-4030 Conductivity			
Nitrate (as N)	Melbourne	Sep 02, 2022	28 Days
- Method: LTM-INO-4120 Analysis of NOx NO2 NH3 by FIA			
pH (at 25 °C)	Melbourne	Sep 02, 2022	0 Hours
- Method: LTM-GEN-7090 pH in water by ISE			
Total Organic Carbon	Melbourne	Sep 02, 2022	28 Days
- Method: LTM-INO-4060 Total Organic Carbon in water and soil			
Metals M8	Melbourne	Sep 02, 2022	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Eurofins Suite B11C: Na/K/Ca/Mg	Melbourne	Sep 08, 2022	180 Days
- Method: LTM-MET-3010 Alkali Metals by ICP-AES			

Report Number: 920032-W

Description	Testing Site	Extracted	Holding Time
Ammonia (as N)	Melbourne	Sep 02, 2022	28 Days
- Method: APHA 4500-NH3 Ammonia Nitrogen by FIA			
Organic Nitrogen (as N)*	Melbourne	Sep 02, 2022	7 Days
- Method: APHA 4500 Organic Nitrogen (N)			
Total Kjeldahl Nitrogen (as N)	Melbourne	Sep 02, 2022	28 Days
- Method: APHA 4500-Norg B,D Total Kjeldahl Nitrogen by FIA			
Eurofins Suite B11E: CI/SO4/Alkalinity			
Chloride	Melbourne	Sep 02, 2022	28 Days
- Method: LTM-INO-4090 Chloride by Discrete Analyser			
Sulphate (as SO4)	Melbourne	Sep 08, 2022	28 Days
- Method: LTM-INO-4110 Sulfate by Discrete Analyser			
Alkalinity (speciated)	Melbourne	Sep 08, 2022	14 Days
- Method: LTM-INO-4250 Alkalinity by Electrometric Titration			
Total Dissolved Solids Dried at 180 °C ± 2 °C	Melbourne	Sep 02, 2022	28 Days

Date Reported: Sep 08, 2022

Page 4 of 10

Report Number: 920032-W

web: www.eurofins.com.au email: EnviroSales@eurofins.com

Eurofins Environment Testing Australia Pty Ltd

NATA# 1261 Site# 1254 NATA# 1261 Site# 1254 NATA# 1261 Site# 18217

ABN: 50 005 085 521

Melbourne Geelong 6 Monterey Road 19/8 Lewalan Street Dandenong South Grovedale VIC 3175 VIC 3216 Tel: +61 3 8564 5000 Tel: +61 3 8564 5000

Sydney Canberra 179 Magowar Road Unit 1.2 Dacre Street Girraween Mitchell NSW 2145 ACT 2911 Tel: +61 2 9900 8400 Tel: +61 2 6113 8091

Fax:

Brisbane Newcastle 1/21 Smallwood Place 4/52 Industrial Drive Murarrie Mayfield East NSW 2304 PO Box 60 Wickham 2293 QLD 4172 Tel: +61 7 3902 4600 Tel: +61 2 4968 8448 NATA# 1261 Site# 20794 NATA# 1261 Site# 25079

03 9861 8101

Eurofins ARL Pty Ltd Eurofins Environment Testing NZ Ltd ABN: 91 05 0159 898

Perth Auckland 46-48 Banksia Road 35 O'Rorke Road Welshpool Penrose, WA 6106 Auckland 1061 Tel: +61 8 6253 4444 Tel: +64 9 526 45 51 NATA# 2377 Site# 2370 IANZ# 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Tel: 0800 856 450 IANZ# 1290

Company Name:

Project Name:

Address:

Ventia Utility Services P/L (Burwood)

Unit 11, 25-37 Huntingdale Rd

Burwood

VIC 3125

CRESWICK LANDFILL

Order No.: Received: Sep 2, 2022 3:27 PM

Report #: 920032 Due: Sep 9, 2022 Phone: 03 9861 8169 **Priority:** 5 Day

> **Contact Name:** Robert Callander

Eurofins Analytical Services Manager: Savini Suduweli

NZBN: 9429046024954

		Sa	mple Detail			Chemical Oxygen Demand (COD)	Conductivity (at 25 °C)	Nitrate (as N)	pH (at 25 °C)	Total Organic Carbon	Metals M8	Organic Nitrogen Set (as N)	Eurofins Suite B11E: CI/SO4/Alkalinity	Eurofins Suite B11C: Na/K/Ca/Mg	Total Dissolved Solids Dried at 180 °C ± 2 °C	Volatile Fatty Acids (VFA) by GC-MS
Melk	ourne Laborato	ory - NATA # 12	61 Site # 12	54		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Exte	rnal Laboratory	<u>, </u>														
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID											
1	CRESWICK SPLIT	Aug 31, 2022		Water	M22-Se0003910	Х	Х	Х	Х	Х	Х	Х	Х	Х	х	Х
Test	Counts					1	1	1	1	1	1	1	1	1	1	1

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

Units

mg/k: milligrams per kilogram mg/k: milligrams per litre $\mu g/k$: micrograms per litre

ppm: parts per million **ppb**: parts per billion
%: Percentage

org/100 mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100 mL: Most Probable Number of organisms per 100 millilitres

Terms

APHA American Public Health Association

COC Chain of Custody

CP Client Parent - QC was performed on samples pertaining to this report
CRM Certified Reference Material (ISO17034) - reported as percent recovery.

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

LOR Limit of Reporting.

Laboratory Control Sample - reported as percent recovery.

Method Blank

In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

NCP

Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

SRA Sample Receipt Advice

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

TBTO Tributyltin oxide (bis-tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment however free tributyltin was measured

and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits.

TCLP Toxicity Characteristic Leaching Procedure
TEQ Toxic Equivalency Quotient or Total Equivalence

QSM US Department of Defense Quality Systems Manual Version 5.4

US EPA United States Environmental Protection Agency

WA DWER Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30% NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.4 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Eurofins Environment Testing 6 Monterey Road, Dandenong South, Victoria, Australia 3175 Page 6 of 10
ABN:50 005 085 521 Telephone: +61 3 8564 5000 Report Number: 920032-W

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank	•				
Volatile Fatty Acids (VFA) by GC-MS					
Acetic Acid	mg/L	< 5	5	Pass	
Propionic acid	mg/L	< 5	5	Pass	
Isobutyric acid	mg/L	< 5	5	Pass	
Butyric acid	mg/L	< 5	5	Pass	
Isovaleric acid	mg/L	< 5	5	Pass	
Valeric acid	mg/L	< 5	5	Pass	
4-Methylvaleric acid	mg/L	< 5	5	Pass	
Hexanoic acid	mg/L	< 5	5	Pass	
Heptanoic acid	mg/L	< 5	5	Pass	
Total VFA as Acetic Acid Equivalents	mg/L	< 5	5	Pass	
Method Blank	13, =			1 2.23	
Ammonia (as N)	mg/L	< 0.01	0.01	Pass	
Chemical Oxygen Demand (COD)	mg/L	< 25	25	Pass	
Chloride	mg/L	< 1	1	Pass	
Conductivity (at 25 °C)	uS/cm	< 10	10	Pass	
Nitrate (as N)	mg/L	< 0.02	0.02	Pass	
Sulphate (as SO4)	mg/L	< 5	5	Pass	
Total Dissolved Solids Dried at 180 °C ± 2 °C		< 10	10	Pass	
	mg/L	1			
Total Kjeldahl Nitrogen (as N)	mg/L	< 0.2	0.2 5	Pass	
Total Organic Carbon	mg/L	< 5] 5	Pass	
Method Blank		П			
Alkalinity (speciated)		-		_	-
Bicarbonate Alkalinity (as CaCO3)	mg/L	< 20	20	Pass	
Carbonate Alkalinity (as CaCO3)	mg/L	< 10	10	Pass	
Hydroxide Alkalinity (as CaCO3)	mg/L	< 20	20	Pass	
Total Alkalinity (as CaCO3)	mg/L	< 20	20	Pass	
Method Blank		Т		Г	
Heavy Metals				_	
Arsenic	mg/L	< 0.001	0.001	Pass	
Cadmium	mg/L	< 0.0002	0.0002	Pass	
Chromium	mg/L	< 0.001	0.001	Pass	
Copper	mg/L	< 0.001	0.001	Pass	
Lead	mg/L	< 0.001	0.001	Pass	
Mercury	mg/L	< 0.0001	0.0001	Pass	
Nickel	mg/L	< 0.001	0.001	Pass	
Zinc	mg/L	< 0.005	0.005	Pass	
Method Blank					
Alkali Metals					
Calcium	mg/L	< 0.5	0.5	Pass	
Magnesium	mg/L	< 0.5	0.5	Pass	
Potassium	mg/L	< 0.5	0.5	Pass	
Sodium	mg/L	< 0.5	0.5	Pass	
LCS - % Recovery					
Ammonia (as N)	%	103	70-130	Pass	
Chemical Oxygen Demand (COD)	%	86	70-130	Pass	
Chloride	%	109	70-130	Pass	
Conductivity (at 25 °C)	%	93	70-130	Pass	
Nitrate (as N)	%	91	70-130	Pass	
Sulphate (as SO4)	%	111	70-130	Pass	
Total Dissolved Solids Dried at 180 °C ± 2 °C	%	100	70-130	Pass	

Report Number: 920032-W

Test			Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Total Kjeldahl Nitrogen (as N)			%	111	70-130	Pass	
Total Organic Carbon			%	83	70-130	Pass	
LCS - % Recovery							
Alkalinity (speciated)							
Carbonate Alkalinity (as CaCO3)			%	96	70-130	Pass	
Total Alkalinity (as CaCO3)			%	97	70-130	Pass	
LCS - % Recovery							
Heavy Metals							
Arsenic			%	97	80-120	Pass	
Cadmium			%	100	80-120	Pass	
Chromium			%	97	80-120	Pass	
Copper			%	98	80-120	Pass	
Lead			%	98	80-120	Pass	
Mercury			%	99	80-120	Pass	
Nickel			%	99	80-120	Pass	
Zinc			%	97	80-120	Pass	
LCS - % Recovery							
Alkali Metals							
Calcium			%	108	80-120	Pass	
Magnesium			%	97	80-120	Pass	
Potassium	-		%	94	80-120	Pass	
Sodium	-		%	101	80-120	Pass	
		QA			Acceptance	Pass	Qualifying
Test	Lab Sample ID	Source	Units	Result 1	Limits	Limits	Code
Spike - % Recovery							
Volatile Fatty Acids (VFA) by GC	-MS			Result 1			
Isobutyric acid	M22-Se0009673	NCP	%	112	70-130	Pass	
Isovaleric acid	M22-Se0009673	NCP	%	114	70-130	Pass	
Valeric acid	M22-Se0009673	NCP	%	1 444	70 400		
4-Methylvaleric acid				114	70-130	Pass	
1 Would word	M22-Se0009673	NCP	%	108	70-130 70-130	Pass Pass	
Hexanoic acid	M22-Se0009673 M22-Se0009673	NCP NCP	% %	1			
				108	70-130	Pass	
Hexanoic acid	M22-Se0009673	NCP	%	108 99	70-130 70-130	Pass Pass	
Hexanoic acid Heptanoic acid	M22-Se0009673	NCP	%	108 99	70-130 70-130	Pass Pass	
Hexanoic acid Heptanoic acid	M22-Se0009673	NCP	%	108 99 97	70-130 70-130	Pass Pass	
Hexanoic acid Heptanoic acid Spike - % Recovery	M22-Se0009673 M22-Se0009673	NCP NCP	% %	108 99 97 Result 1	70-130 70-130 70-130	Pass Pass Pass	
Hexanoic acid Heptanoic acid Spike - % Recovery Total Kjeldahl Nitrogen (as N)	M22-Se0009673 M22-Se0009673	NCP NCP	% %	108 99 97 Result 1	70-130 70-130 70-130	Pass Pass Pass	
Hexanoic acid Heptanoic acid Spike - % Recovery Total Kjeldahl Nitrogen (as N) Spike - % Recovery	M22-Se0009673 M22-Se0009673	NCP NCP	% %	108 99 97 Result 1 72	70-130 70-130 70-130	Pass Pass Pass	
Hexanoic acid Heptanoic acid Spike - % Recovery Total Kjeldahl Nitrogen (as N) Spike - % Recovery Heavy Metals	M22-Se0009673 M22-Se0009673 M22-Se0001775	NCP NCP	% % %	108 99 97 Result 1 72	70-130 70-130 70-130 70-130	Pass Pass Pass	
Hexanoic acid Heptanoic acid Spike - % Recovery Total Kjeldahl Nitrogen (as N) Spike - % Recovery Heavy Metals Arsenic	M22-Se0009673 M22-Se0009673 M22-Se0001775 M22-Se0002879	NCP NCP	% % %	108 99 97 Result 1 72 Result 1 102	70-130 70-130 70-130 70-130 75-125	Pass Pass Pass Pass	
Hexanoic acid Heptanoic acid Spike - % Recovery Total Kjeldahl Nitrogen (as N) Spike - % Recovery Heavy Metals Arsenic Cadmium	M22-Se0009673 M22-Se0009673 M22-Se0001775 M22-Se0002879 M22-Se0002879	NCP NCP NCP	% % %	108 99 97 Result 1 72 Result 1 102 95	70-130 70-130 70-130 70-130 70-130 75-125 75-125	Pass Pass Pass Pass Pass	
Hexanoic acid Heptanoic acid Spike - % Recovery Total Kjeldahl Nitrogen (as N) Spike - % Recovery Heavy Metals Arsenic Cadmium Chromium	M22-Se0009673 M22-Se0009673 M22-Se0001775 M22-Se0002879 M22-Se0002879 M22-Se0002879	NCP NCP NCP NCP NCP NCP	% % % % %	108 99 97 Result 1 72 Result 1 102 95 97	70-130 70-130 70-130 70-130 70-130 75-125 75-125 75-125	Pass Pass Pass Pass Pass Pass Pass Pass	
Hexanoic acid Heptanoic acid Spike - % Recovery Total Kjeldahl Nitrogen (as N) Spike - % Recovery Heavy Metals Arsenic Cadmium Chromium Copper	M22-Se0009673 M22-Se0009673 M22-Se0001775 M22-Se0002879 M22-Se0002879 M22-Se0002879 M22-Se0002879	NCP NCP NCP NCP NCP NCP NCP	% % % % % %	108 99 97 Result 1 72 Result 1 102 95 97 92	70-130 70-130 70-130 70-130 70-130 75-125 75-125 75-125 75-125	Pass Pass Pass Pass Pass Pass Pass Pass	
Hexanoic acid Heptanoic acid Spike - % Recovery Total Kjeldahl Nitrogen (as N) Spike - % Recovery Heavy Metals Arsenic Cadmium Chromium Copper Lead	M22-Se0009673 M22-Se0009673 M22-Se0001775 M22-Se0002879 M22-Se0002879 M22-Se0002879 M22-Se0002879 M22-Se0002879 M22-Se0002879	NCP NCP NCP NCP NCP NCP NCP NCP	% % % % % % %	108 99 97 Result 1 72 Result 1 102 95 97 92 90	70-130 70-130 70-130 70-130 70-130 75-125 75-125 75-125 75-125 75-125	Pass Pass Pass Pass Pass Pass Pass Pass	
Hexanoic acid Heptanoic acid Spike - % Recovery Total Kjeldahl Nitrogen (as N) Spike - % Recovery Heavy Metals Arsenic Cadmium Chromium Copper Lead Mercury	M22-Se0009673 M22-Se0009673 M22-Se0009673 M22-Se0001775 M22-Se0002879 M22-Se0002879 M22-Se0002879 M22-Se0002879 M22-Se0002879 M22-Se0002879 M22-Se0002879	NCP NCP NCP NCP NCP NCP NCP NCP NCP	% % % % % % % %	Result 1 72 Result 1 102 95 97 92 90 100	70-130 70-130 70-130 70-130 70-130 75-125 75-125 75-125 75-125 75-125 75-125	Pass Pass Pass Pass Pass Pass Pass Pass	
Hexanoic acid Heptanoic acid Spike - % Recovery Total Kjeldahl Nitrogen (as N) Spike - % Recovery Heavy Metals Arsenic Cadmium Chromium Copper Lead Mercury Nickel	M22-Se0009673 M22-Se0009673 M22-Se0009673 M22-Se0001775 M22-Se0002879 M22-Se0002879 M22-Se0002879 M22-Se0002879 M22-Se0002879 M22-Se0002879 M22-Se0002879 M22-Se0002879	NCP	% % % % % % % %	108 99 97 Result 1 72 Result 1 102 95 97 92 90 100 94	70-130 70-130 70-130 70-130 70-130 75-125 75-125 75-125 75-125 75-125 75-125 75-125	Pass Pass Pass Pass Pass Pass Pass Pass	
Hexanoic acid Heptanoic acid Spike - % Recovery Total Kjeldahl Nitrogen (as N) Spike - % Recovery Heavy Metals Arsenic Cadmium Chromium Copper Lead Mercury Nickel Zinc	M22-Se0009673 M22-Se0009673 M22-Se0009673 M22-Se0001775 M22-Se0002879 M22-Se0002879 M22-Se0002879 M22-Se0002879 M22-Se0002879 M22-Se0002879 M22-Se0002879 M22-Se0002879	NCP	% % % % % % % %	108 99 97 Result 1 72 Result 1 102 95 97 92 90 100 94	70-130 70-130 70-130 70-130 70-130 75-125 75-125 75-125 75-125 75-125 75-125 75-125	Pass Pass Pass Pass Pass Pass Pass Pass	
Hexanoic acid Heptanoic acid Spike - % Recovery Total Kjeldahl Nitrogen (as N) Spike - % Recovery Heavy Metals Arsenic Cadmium Chromium Copper Lead Mercury Nickel Zinc Spike - % Recovery	M22-Se0009673 M22-Se0009673 M22-Se0009673 M22-Se0001775 M22-Se0002879 M22-Se0002879 M22-Se0002879 M22-Se0002879 M22-Se0002879 M22-Se0002879 M22-Se0002879 M22-Se0002879	NCP	% % % % % % % %	108 99 97 Result 1 72 Result 1 102 95 97 92 90 100 94 99	70-130 70-130 70-130 70-130 70-130 75-125 75-125 75-125 75-125 75-125 75-125 75-125	Pass Pass Pass Pass Pass Pass Pass Pass	
Hexanoic acid Heptanoic acid Spike - % Recovery Total Kjeldahl Nitrogen (as N) Spike - % Recovery Heavy Metals Arsenic Cadmium Chromium Copper Lead Mercury Nickel Zinc Spike - % Recovery Alkali Metals Calcium	M22-Se0009673 M22-Se0009673 M22-Se0009673 M22-Se0001775 M22-Se0002879 M22-Se0002879 M22-Se0002879 M22-Se0002879 M22-Se0002879 M22-Se0002879 M22-Se0002879 M22-Se0002879	NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	% % % % % % % %	Result 1 102 95 97 90 100 94 99 Result 1	70-130 70-130 70-130 70-130 70-130 75-125 75-125 75-125 75-125 75-125 75-125 75-125	Pass Pass Pass Pass Pass Pass Pass Pass	
Hexanoic acid Heptanoic acid Spike - % Recovery Total Kjeldahl Nitrogen (as N) Spike - % Recovery Heavy Metals Arsenic Cadmium Chromium Copper Lead Mercury Nickel Zinc Spike - % Recovery Alkali Metals	M22-Se0009673 M22-Se0009673 M22-Se0009673 M22-Se0001775 M22-Se0002879	NCP	% % % % % % % % % % %	108 99 97 Result 1 72 Result 1 102 95 97 92 90 100 94 99 Result 1 119	70-130 70-130 70-130 70-130 70-130 75-125 75-125 75-125 75-125 75-125 75-125 75-125	Pass Pass Pass Pass Pass Pass Pass Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Volatile Fatty Acids (VFA) by GC-N	IS			Result 1	Result 2	RPD			
Acetic Acid	M22-Se0009666	NCP	mg/L	< 5	< 5	<1	30%	Pass	
Propionic acid	M22-Se0009666	NCP	mg/L	< 5	< 5	<1	30%	Pass	
Isobutyric acid	M22-Se0009666	NCP	mg/L	< 5	< 5	<1	30%	Pass	
Butyric acid	M22-Se0009666	NCP	mg/L	< 5	< 5	<1	30%	Pass	
Isovaleric acid	M22-Se0009666	NCP	mg/L	< 5	< 5	<1	30%	Pass	
Valeric acid	M22-Se0009666	NCP	mg/L	< 5	< 5	<1	30%	Pass	
4-Methylvaleric acid	M22-Se0009666	NCP	mg/L	< 5	< 5	<1	30%	Pass	
Hexanoic acid	M22-Se0009666	NCP	mg/L	< 5	< 5	<1	30%	Pass	
Heptanoic acid	M22-Se0009666	NCP	mg/L	< 5	< 5	<1	30%	Pass	
Total VFA as Acetic Acid Equivalents	M22-Se0002897	NCP	mg/L	< 500	< 500	<1	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
Ammonia (as N)	M22-Se0003908	NCP	mg/L	5.8	5.8	<1	30%	Pass	
Chemical Oxygen Demand (COD)	M22-Au0070768	NCP	mg/L	< 25	< 25	<1	30%	Pass	
Chloride	M22-Se0000710	NCP	mg/L	66	66	23	30%	Pass	
Conductivity (at 25 °C)	M22-Se0000645	NCP	uS/cm	780	790	<1	30%	Pass	
Nitrate (as N)	M22-Se0003908	NCP	mg/L	25	25	<1	30%	Pass	
pH (at 25 °C)	M22-Se0000645	NCP	pH Units	8.2	8.2	pass	30%	Pass	
Sulphate (as SO4)	M22-Se0000710	NCP	mg/L	18	19	<1	30%	Pass	
Total Dissolved Solids Dried at 180 °C ± 2 °C	M22-Se0004488	NCP	mg/L	740	750	1.6	30%	Pass	
Total Kjeldahl Nitrogen (as N)	R22-Se0000145	NCP	mg/L	3.7	3.0	21	30%	Pass	
Total Organic Carbon	M22-Se0001049	NCP	mg/L	33	24	29	30%	Pass	
Duplicate									
Alkalinity (speciated)				Result 1	Result 2	RPD			
Bicarbonate Alkalinity (as CaCO3)	M22-Se0000645	NCP	mg/L	410	360	12	30%	Pass	
Carbonate Alkalinity (as CaCO3)	M22-Se0000645	NCP	mg/L	17	11	40	30%	Fail	Q15
Hydroxide Alkalinity (as CaCO3)	M22-Se0000645	NCP	mg/L	< 20	< 20	<1	30%	Pass	
Total Alkalinity (as CaCO3)	M22-Se0000645	NCP	mg/L	420	370	13	30%	Pass	
Duplicate									
Heavy Metals	·			Result 1	Result 2	RPD			
Arsenic	M22-Se0002879	NCP	mg/L	0.001	< 0.001	14	30%	Pass	
Cadmium	M22-Se0002879	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Chromium	M22-Se0002879	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Copper	M22-Se0002879	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Lead	M22-Se0002879	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Mercury	M22-Se0002879	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Nickel	M22-Se0002879	NCP	mg/L	0.001	0.001	2.8	30%	Pass	
Zinc	M22-Se0002879	NCP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Duplicate									
Alkali Metals				Result 1	Result 2	RPD			
Calcium	M22-Se0008426	NCP	mg/L	6.1	5.9	2.3	30%	Pass	
Magnesium	M22-Se0008426	NCP	mg/L	3.2	3.1	1.2	30%	Pass	
Potassium	M22-Se0008426	NCP	mg/L	2.0	2.1	4.3	30%	Pass	
Sodium	M22-Se0008426	NCP	mg/L	27	26	2.0	30%	Pass	

Comments

Sample Integrity

 Custody Seals Intact (if used)
 N/A

 Attempt to Chill was evident
 Yes

 Sample correctly preserved
 Yes

 Appropriate sample containers have been used
 Yes

 Sample containers for volatile analysis received with minimal headspace
 Yes

 Samples received within HoldingTime
 Yes

 Some samples have been subcontracted
 No

Qualifier Codes/Comments

Code Description

Q15 The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

Authorised by:

Catherine Wilson Analytical Services Manager
Joseph Edouard Senior Analyst-Organic
Mary Makarios Senior Analyst-Inorganic
Scott Beddoes Senior Analyst-Inorganic
Scott Beddoes Senior Analyst-Metal

Glenn Jackson General Manager

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please $\underline{\text{click here.}}$

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

CERTIFICATE OF ANALYSIS

Work Order : EM2216860

Client : VENTIA UTILITY SERVICES PTY LTD

Contact : ROBERT CALLANDER

Address : 25-37 HUNTINGDALE ROAD

BURWOOD VIC 3125

Telephone : ---

Project : Creswick Landfill 1 of 3

Order number : CRESWICK LANDFILL 1 OF 3

C-O-C number : ---Sampler : ---Site : ----

Quote number : ME/793/19

No. of samples received : 10
No. of samples analysed : 10

Page : 1 of 6

Laboratory : Environmental Division Melbourne

Contact : Shirley LeCornu

Address : 4 Westall Rd Springvale VIC Australia 3171

Telephone : +6138549 9630

Date Samples Received : 01-Sep-2022 10:10

Date Analysis Commenced : 01-Sep-2022

Issue Date : 08-Sep-2022 17:26

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Dilani FernandoLaboratory CoordinatorMelbourne Inorganics, Springvale, VICJarwis NheuNon-Metals Team LeaderMelbourne Inorganics, Springvale, VICNikki StepniewskiSenior Inorganic Instrument ChemistMelbourne Inorganics, Springvale, VIC

Samantha Smith Assistant Laboratory Manager Melbourne External Subcontracting, Springvale, VIC

Page : 2 of 6 Work Order : EM2216860

Client : VENTIA UTILITY SERVICES PTY LTD

Project · Creswick Landfill 1 of 3

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

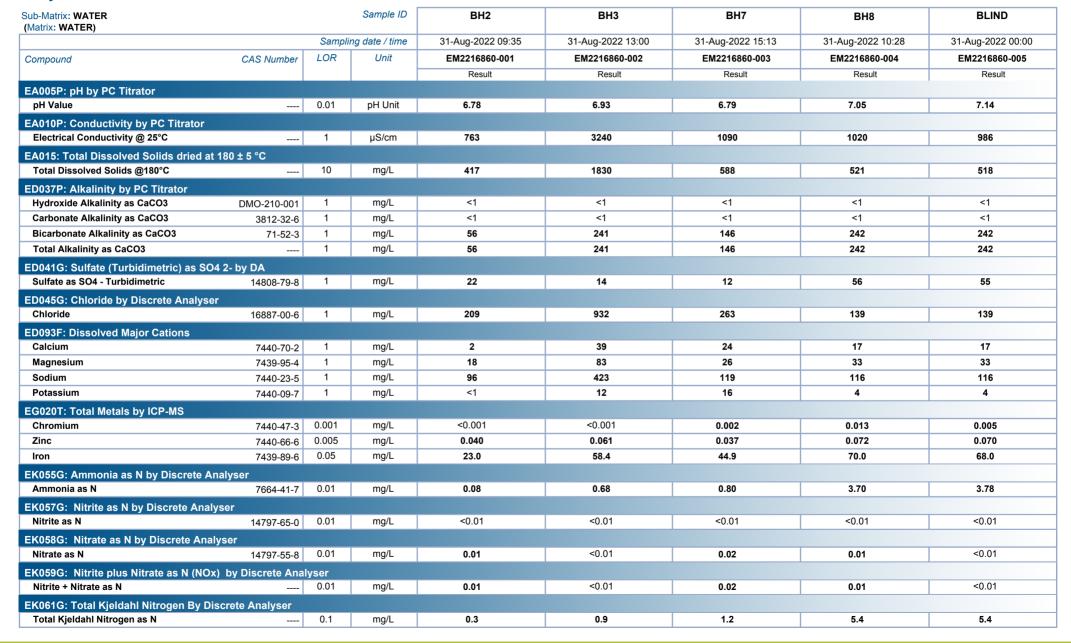
When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- EG020T: EM2216860 #6, the result for Total Zinc has been confirmed by re-preparation and re-analysis.
- Ionic Balance out of acceptable limits for samples #1, #4-5, #7 and #9-10 due to analytes not quantified in this report.
- Ionic balances were calculated using: major anions chloride, alkalinity and sulfate; and major cations calcium, magnesium, potassium and sodium.
- ED045G: The presence of Thiocyanate, Thiosulfate and Sulfite can positively contribute to the chloride result, thereby may bias results higher than expected. Results should be scrutinised accordingly.
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

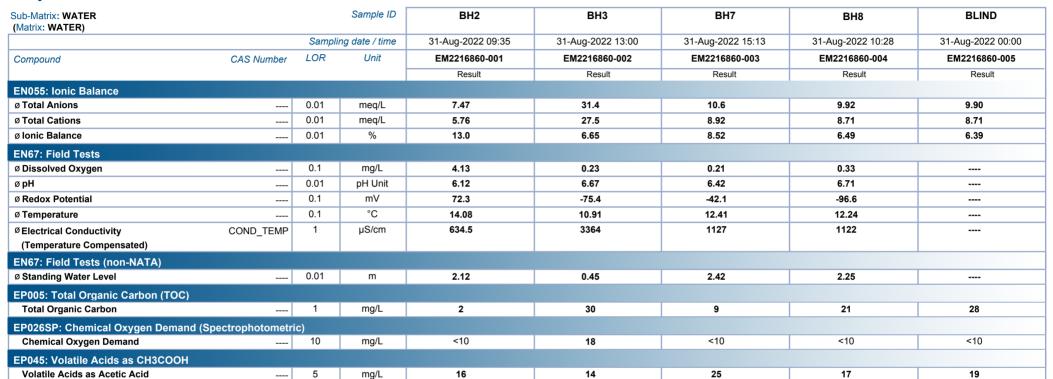


Page : 3 of 6 Work Order : EM2216860

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill 1 of 3

Analytical Results



Page : 4 of 6 Work Order : EM2216860

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill 1 of 3

Analytical Results

Page : 5 of 6 Work Order EM2216860

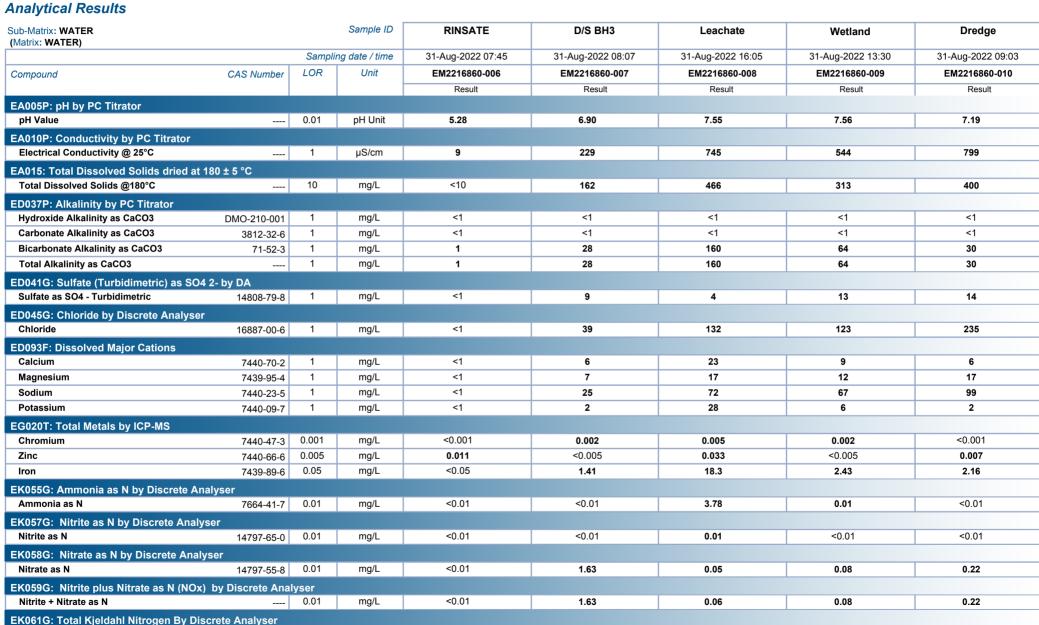
Client : VENTIA UTILITY SERVICES PTY LTD

Creswick Landfill 1 of 3 **Project**

Total Kjeldahl Nitrogen as N

0.1

mg/L


< 0.1

1.0

6.0

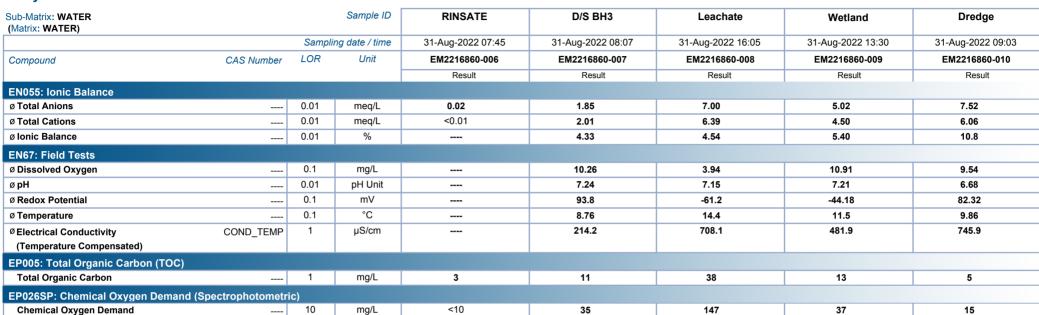
0.8

0.7

Page : 6 of 6 Work Order : EM2216860

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill 1 of 3


EP045: Volatile Acids as CH3COOH
Volatile Acids as Acetic Acid

5

mg/L

<5

Analytical Results

10

11

10

QUALITY CONTROL REPORT

Work Order : **EM2216860** Page : 1 of 7

Client : VENTIA UTILITY SERVICES PTY LTD Laboratory : Environmental Division Melbourne

Contact : ROBERT CALLANDER Contact : Shirley LeCornu

Address : 25-37 HUNTINGDALE ROAD Address : 4 Westall Rd Springvale VIC Australia 3171

BURWOOD VIC 3125

Telephone : +6138549 9630

Project : Creswick Landfill 1 of 3 Date Samples Received : 01-Sep-2022

Order number : CRESWICK LANDFILL 1 OF 3 Date Analysis Commenced : 01-Sep-2022

C-O-C number : ---Sampler : ---Site : ----

Quote number : ME/793/19

No. of samples received : 10

No. of samples analysed : 10

Accreditation No. 825
Accredited for compliance with ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

Issue Date

· 08-Sep-2022

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Dilani Fernando	Laboratory Coordinator	Melbourne Inorganics, Springvale, VIC

Jarwis NheuNon-Metals Team LeaderMelbourne Inorganics, Springvale, VICNikki StepniewskiSenior Inorganic Instrument ChemistMelbourne Inorganics, Springvale, VIC

Samantha Smith Assistant Laboratory Manager Melbourne External Subcontracting, Springvale, VIC

Page : 2 of 7 Work Order : EM2216860

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill 1 of 3

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: WATER						Laboratory L	Ouplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EA005P: pH by PC T	itrator (QC Lot: 4556011)								
EM2216860-002	BH3	EA005-P: pH Value		0.01	pH Unit	6.93	6.94	0.1	0% - 20%
EM2216866-001	Anonymous	EA005-P: pH Value		0.01	pH Unit	7.84	7.88	0.5	0% - 20%
EA010P: Conductivi	ty by PC Titrator (QC Lot: 4	556010)							
EM2216860-002	BH3	EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	3240	3130	3.5	0% - 20%
EM2216866-001	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	5090	5090	0.0	0% - 20%
EA015: Total Dissolv	ved Solids dried at 180 ± 5 °	C (QC Lot: 4559123)							
EM2216831-006	Anonymous	EA015H: Total Dissolved Solids @180°C		10	mg/L	746	692	7.6	0% - 20%
EM2216853-002	Anonymous	EA015H: Total Dissolved Solids @180°C		10	mg/L	2540	2490	2.0	0% - 20%
EM2216860-010	Dredge	EA015H: Total Dissolved Solids @180°C		10	mg/L	400	403	0.6	0% - 20%
EM2216866-010	Anonymous	EA015H: Total Dissolved Solids @180°C		10	mg/L	3750	3740	0.3	0% - 20%
ED037P: Alkalinity b	y PC Titrator (QC Lot: 4556	6008)							
EM2216860-002	BH3	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	241	241	0.0	0% - 20%
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	241	241	0.0	0% - 20%
EM2216850-002	Anonymous	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	28	27	4.5	0% - 20%
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	28	27	4.5	0% - 20%
ED037P: Alkalinity b	y PC Titrator (QC Lot: 4556	6012)							
EM2216866-001	Anonymous	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	418	408	2.5	0% - 20%
-	•		-						

Page : 3 of 7
Work Order : EM2216860

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill 1 of 3

Sub-Matrix: WATER						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
ED037P: Alkalinity	by PC Titrator (QC Lot:	: 4556012) - continued							
EM2216866-001	Anonymous	ED037-P: Total Alkalinity as CaCO3		1	mg/L	418	408	2.5	0% - 20%
ED041G: Sulfate (T	urbidimetric) as SO4 2-	by DA (QC Lot: 4556434)							
EM2216860-010	Dredge	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	14	14	0.0	0% - 50%
EM2216860-001	BH2	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	22	22	0.0	0% - 20%
ED045G: Chloride b	oy Discrete Analyser (Q	QC Lot: 4556433)							
EM2216860-001	BH2	ED045G: Chloride	16887-00-6	1	mg/L	209	208	0.0	0% - 20%
EM2216764-011	Anonymous	ED045G: Chloride	16887-00-6	1	mg/L	4110	4150	0.9	0% - 20%
ED093F: Dissolved	Major Cations (QC Lot	: 4556503)							
EM2216777-002	Anonymous	ED093F: Calcium	7440-70-2	1	mg/L	2	2	0.0	No Limit
		ED093F: Magnesium	7439-95-4	1	mg/L	2	2	0.0	No Limit
		ED093F: Sodium	7440-23-5	1	mg/L	23	23	0.0	0% - 20%
		ED093F: Potassium	7440-09-7	1	mg/L	4	4	0.0	No Limit
EM2216853-001	Anonymous	ED093F: Calcium	7440-70-2	1	mg/L	53	53	0.0	0% - 20%
		ED093F: Magnesium	7439-95-4	1	mg/L	101	100	0.0	0% - 20%
		ED093F: Sodium	7440-23-5	1	mg/L	937	936	0.0	0% - 20%
		ED093F: Potassium	7440-09-7	1	mg/L	269	268	0.4	0% - 20%
EG020T: Total Meta	als by ICP-MS (QC Lot:	4556445)							
EM2216792-002	Anonymous	EG020A-T: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Zinc	7440-66-6	0.005	mg/L	0.286	0.286	0.0	0% - 20%
		EG020A-T: Iron	7439-89-6	0.05	mg/L	0.23	0.23	0.0	No Limit
EM2216860-004	BH8	EG020A-T: Chromium	7440-47-3	0.001	mg/L	0.013	0.013	0.0	0% - 50%
		EG020A-T: Zinc	7440-66-6	0.005	mg/L	0.072	0.070	3.5	0% - 50%
		EG020A-T: Iron	7439-89-6	0.05	mg/L	70.0	70.4	0.6	0% - 20%
EK055G: Ammonia	as N by Discrete Analys	ser (QC Lot: 4554235)							
EM2216853-002	Anonymous	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	0.01	<0.01	0.0	No Limit
EM2216860-009	Wetland	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	0.01	<0.01	0.0	No Limit
EK057G: Nitrite as	N by Discrete Analyser	· (QC Lot: 4556432)							
EM2216911-001	Anonymous	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	0.31	0.31	0.0	0% - 20%
EM2216764-011	Anonymous	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	0.02	0.02	0.0	No Limit
EK059G: Nitrite plu	us Nitrate as N (NOx) by	y Discrete Analyser (QC Lot: 4554234)							
EM2216853-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	0.04	0.04	0.0	No Limit
EM2216860-008	Leachate	EK059G: Nitrite + Nitrate as N		0.01	mg/L	0.06	0.06	0.0	No Limit
EK061G: Total Kjel	dahl Nitrogen By Discre	ete Analyser (QC Lot: 4556123)							
EM2216834-002	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	0.5	0.5	0.0	No Limit
EM2216853-002	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	<0.1	<0.1	0.0	No Limit
EP005: Total Organ	nic Carbon (TOC) (QC L								
EM2216779-001	Anonymous	EP005: Total Organic Carbon		1	mg/L	<1	2	77.5	No Limit
EM2216820-002	Anonymous	EP005: Total Organic Carbon		1	mg/L	56	63	12.5	0% - 20%

Page : 4 of 7
Work Order : EM2216860

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill 1 of 3

Sub-Matrix: WATER				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)		
EP005: Total Organi	c Carbon (TOC) (QC Lot: 45	557364)									
EM2216860-009	Wetland	EP005: Total Organic Carbon		1	mg/L	13	13	0.0	0% - 50%		
EM2217005-001	Anonymous	EP005: Total Organic Carbon		1	mg/L	33	31	7.1	0% - 20%		
EP026SP: Chemical	Oxygen Demand (Spectrop	hotometric) (QC Lot: 4554462)									
EM2216779-001	Anonymous	EP026SP: Chemical Oxygen Demand		10	mg/L	<10	<10	0.0	No Limit		
EM2216853-001	Anonymous	EP026SP: Chemical Oxygen Demand		10	mg/L	1030	1030	0.5	0% - 20%		
EP026SP: Chemical	Oxygen Demand (Spectrop	hotometric) (QC Lot: 4554463)									
EM2216860-010	Dredge	EP026SP: Chemical Oxygen Demand		10	mg/L	15	13	11.4	No Limit		
EP045: Volatile Acid	ls as CH3COOH (QC Lot: 45	57322)									
EM2216691-001	Anonymous	EP045: Volatile Acids as Acetic Acid		5	mg/L	17	19	8.8	No Limit		
EM2216691-011	Anonymous	EP045: Volatile Acids as Acetic Acid		5	mg/L	<5	<5	0.0	No Limit		
EP045: Volatile Acid	Is as CH3COOH (QC Lot: 45	57323)									
EM2216860-002	BH3	EP045: Volatile Acids as Acetic Acid		5	mg/L	14	16	10.7	No Limit		
EM2217005-002	Anonymous	EP045: Volatile Acids as Acetic Acid		5	mg/L	14	16	10.7	No Limit		

Page : 5 of 7
Work Order : EM2216860

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill 1 of 3

Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EA005P: pH by PC Titrator (QCLot: 4556011)								
EA005-P: pH Value			pH Unit		7 pH Unit	100	98.8	101
					9 pH Unit	100	99.3	101
EA010P: Conductivity by PC Titrator (QCLot: 4556010)								
EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	<1	1412 μS/cm	107	85.0	119
EA015: Total Dissolved Solids dried at 180 ± 5 °C (QCLot: 4	559123)							
EA015H: Total Dissolved Solids @180°C		10	mg/L	<10	2000 mg/L	96.3	91.0	110
_				<10	2440 mg/L	106	81.6	118
				<10	293 mg/L	104	91.0	110
ED037P: Alkalinity by PC Titrator (QCLot: 4556008)								
ED037-P: Total Alkalinity as CaCO3			mg/L		200 mg/L	92.6	85.0	116
ED037P: Alkalinity by PC Titrator (QCLot: 4556012)								
ED037-P: Total Alkalinity as CaCO3			mg/L		200 mg/L	94.0	85.0	116
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA (QCLot: 4	556434)							
ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	<1	25 mg/L	106	85.8	117
				<1	500 mg/L	109	80.0	120
ED045G: Chloride by Discrete Analyser (QCLot: 4556433)								
ED045G: Chloride	16887-00-6	1	mg/L	<1	10 mg/L	101	85.0	115
				<1	1000 mg/L	107	85.0	122
ED093F: Dissolved Major Cations (QCLot: 4556503)								
ED093F: Calcium	7440-70-2	1	mg/L	<1	50 mg/L	104	80.0	120
ED093F: Magnesium	7439-95-4	1	mg/L	<1	50 mg/L	101	80.0	120
ED093F: Sodium	7440-23-5	1	mg/L	<1	50 mg/L	107	80.0	120
ED093F: Potassium	7440-09-7	1	mg/L	<1	50 mg/L	105	80.0	120
EG020T: Total Metals by ICP-MS (QCLot: 4556445)								
EG020A-T: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	101	86.9	112
EG020A-T: Zinc	7440-66-6	0.005	mg/L	<0.005	0.1 mg/L	97.8	86.7	117
EG020A-T: Iron	7439-89-6	0.05	mg/L	<0.05	0.5 mg/L	103	92.8	118
EK055G: Ammonia as N by Discrete Analyser (QCLot: 4554	235)							
EK055G: Ammonia as N	7664-41-7	0.01	mg/L	<0.01	1 mg/L	95.4	84.1	116
EK057G: Nitrite as N by Discrete Analyser (QCLot: 4556432	2)							
EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	0.5 mg/L	104	90.9	112
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analys	er (QCLot: 455	4234)						
EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	0.5 mg/L	102	90.0	117

Page : 6 of 7
Work Order : EM2216860

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill 1 of 3

Sub-Matrix: WATER			Method Blank (MB)	Laboratory Control Spike (LCS) Report					
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EK061G: Total Kjeldahl Nitrogen By Discrete Analyser (QC	Lot: 4556123)								
EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	<0.1	5 mg/L	101	70.0	117	
EP005: Total Organic Carbon (TOC) (QCLot: 4557363)									
EP005: Total Organic Carbon		1	mg/L	<1	100 mg/L	94.0	81.2	110	
EP005: Total Organic Carbon (TOC) (QCLot: 4557364)									
EP005: Total Organic Carbon		1	mg/L	<1	100 mg/L	93.6	81.2	110	
EP026SP: Chemical Oxygen Demand (Spectrophotometric)	(QCLot: 455446	52)							
EP026SP: Chemical Oxygen Demand		10	mg/L	<10	500 mg/L	99.8	89.7	111	
EP026SP: Chemical Oxygen Demand (Spectrophotometric)	(QCLot: 455446	i3)							
EP026SP: Chemical Oxygen Demand		10	mg/L	<10	500 mg/L	99.8	89.7	111	
EP045: Volatile Acids as CH3COOH (QCLot: 4557322)									
EP045: Volatile Acids as Acetic Acid		5	mg/L	<5	175 mg/L	103	85.5	116	
EP045: Volatile Acids as CH3COOH (QCLot: 4557323)									
EP045: Volatile Acids as Acetic Acid		5	mg/L	<5	175 mg/L	99.5	85.5	116	

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER			Matrix Spike (MS) Report									
				Spike	SpikeRecovery(%)	Acceptable L	imits (%)					
Laboratory sample ID	Sample ID	Method: Compound	Low	High								
ED041G: Sulfate (1	041G: Sulfate (Turbidimetric) as SO4 2- by DA (QCLot: 4556434)											
EM2216860-002	ВН3	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	100 mg/L	98.5	70.0	130					
ED045G: Chloride	by Discrete Analyser (QCLot: 4556433)											
EM2216764-012	Anonymous	ED045G: Chloride	16887-00-6	400 mg/L	# Not	70.0	142					
					Determined							
EG020T: Total Met	als by ICP-MS (QCLot: 4556445)											
EM2216792-002	Anonymous	EG020A-T: Chromium	7440-47-3	1 mg/L	111	78.9	119					
		EG020A-T: Zinc	7440-66-6	1 mg/L	103	74.0	120					
EK055G: Ammonia	as N by Discrete Analyser (QCLot: 4554235)											
EM2216860-001	BH2	EK055G: Ammonia as N	7664-41-7	1 mg/L	96.8	70.0	130					
EK057G: Nitrite as	N by Discrete Analyser (QCLot: 4556432)											
EM2216911-002	Anonymous	EK057G: Nitrite as N	14797-65-0	0.5 mg/L	# Not	80.0	114					
					Determined							
EK059G: Nitrite pl	us Nitrate as N (NOx) by Discrete Analyser(QCLot: 455	4234)										
EM2216853-002	Anonymous	EK059G: Nitrite + Nitrate as N		0.5 mg/L	91.9	70.0	130					

Page : 7 of 7
Work Order : EM2216860

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill 1 of 3

Sub-Matrix: WATER			Matrix Spike (MS) Report						
				Spike	SpikeRecovery(%)	Acceptable L	imits (%)		
Laboratory sample ID	Sample ID	Method: Compound	Concentration	MS	Low	High			
EK061G: Total Kje	Idahl Nitrogen By Discrete Analyser (QCLot: 4556123)								
EM2216834-003	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		5 mg/L	96.6	70.0	130		
EP005: Total Organic Carbon (TOC) (QCLot: 4557363)									
EM2216779-002	Anonymous	EP005: Total Organic Carbon		100 mg/L	101	76.6	125		
EP005: Total Orga	nic Carbon (TOC) (QCLot: 4557364)								
EM2216860-010	Dredge	EP005: Total Organic Carbon		100 mg/L	109	76.6	125		
EP026SP: Chemic	EP026SP: Chemical Oxygen Demand (Spectrophotometric) (QCLot: 4554462)								
EM2216779-002	Anonymous	EP026SP: Chemical Oxygen Demand		500 mg/L	120	70.0	130		

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **EM2216860** Page : 1 of 9

Client : VENTIA UTILITY SERVICES PTY LTD Laboratory : Environmental Division Melbourne

 Contact
 : ROBERT CALLANDER
 Telephone
 : +6138549 9630

 Project
 : Creswick Landfill 1 of 3
 Date Samples Received
 : 01-Sep-2022

 Site
 : --- Issue Date
 : 08-Sep-2022

Sampler : --- No. of samples received : 10

Order number : CRESWICK LANDFILL 1 OF 3 No. of samples analysed : 10

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- Matrix Spike outliers exist please see following pages for full details.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers: Frequency of Quality Control Samples

Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Page : 2 of 9
Work Order : EM2216860

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill 1 of 3

Outliers : Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: WATER

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Matrix Spike (MS) Recoveries							
ED045G: Chloride by Discrete Analyser	EM2216764012	Anonymous	Chloride	16887-00-6	Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.
EK057G: Nitrite as N by Discrete Analyser	EM2216911002	Anonymous	Nitrite as N	14797-65-0	Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.

Outliers: Analysis Holding Time Compliance

Matrix: WATER

Matrix: WATER							
Method		E.	xtraction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Days	Date analysed	Due for analysis	Days
				overdue			overdue
EA005P: pH by PC Titrator							
Clear Plastic Bottle - Natural							
BH2,	BH3,				02-Sep-2022	31-Aug-2022	2
BH7,	BH8,						
BLIND,	RINSATE,						
D/S BH3,	Leachate,						
Wetland,	Dredge						

Outliers : Frequency of Quality Control Samples

Matrix: WATER

Quality Control Sample Type	Co	unt	Rate (%)		Quality Control Specification
Method	QC	Regular	Actual	Expected	
Laboratory Duplicates (DUP)					
Total Kjeldahl Nitrogen as N By Discrete Analyser	2	21	9.52	10.00	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)					
Total Kjeldahl Nitrogen as N By Discrete Analyser	1	21	4.76	5.00	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)					
Total Kjeldahl Nitrogen as N By Discrete Analyser	1	21	4.76	5.00	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)					
Chemical Oxygen Demand (COD) (Spectrophotometric)	1	21	4.76	5.00	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	1	21	4.76	5.00	NEPM 2013 B3 & ALS QC Standard

Page : 3 of 9
Work Order : EM2216860

Client : VENTIA UTILITY SERVICES PTY LTD

Project · Creswick Landfill 1 of 3

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: WATER

Evaluation: × = Holding time breach; ✓ = Within holding time.

Method		Sample Date	E)	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA005P: pH by PC Titrator								
Clear Plastic Bottle - Natural (EA005-P)								
BH2,	BH3,	31-Aug-2022				02-Sep-2022	31-Aug-2022	×
BH7,	BH8,							
BLIND,	RINSATE,							
D/S BH3,	Leachate,							
Wetland,	Dredge							
EA010P: Conductivity by PC Titrator								
Clear Plastic Bottle - Natural (EA010-P)								
BH2,	BH3,	31-Aug-2022				02-Sep-2022	28-Sep-2022	✓
BH7,	BH8,							
BLIND,	RINSATE,							
D/S BH3,	Leachate,							
Wetland,	Dredge							
EA015: Total Dissolved Solids dried at 180 ± 5 °C	C							
Clear Plastic Bottle - Natural (EA015H)								
BH2,	BH3,	31-Aug-2022				05-Sep-2022	07-Sep-2022	✓
BH7,	BH8,							
BLIND,	RINSATE,							
D/S BH3,	Leachate,							
Wetland,	Dredge							
ED037P: Alkalinity by PC Titrator								
Clear Plastic Bottle - Natural (ED037-P)								
BH2,	ВНЗ,	31-Aug-2022				02-Sep-2022	14-Sep-2022	✓
BH7,	BH8,							
BLIND,	RINSATE,							
D/S BH3,	Leachate,							
Wetland,	Dredge							

Page : 4 of 9
Work Order : EM2216860

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill 1 of 3

Matrix: WATER					Evaluation	ı: × = Holding time	breach ; ✓ = Withi	n holding time.
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA								
Clear Plastic Bottle - Natural (ED041G)								
BH2,	BH3,	31-Aug-2022				03-Sep-2022	28-Sep-2022	✓
BH7,	BH8,							
BLIND,	RINSATE,							
D/S BH3,	Leachate,							
Wetland,	Dredge							
ED045G: Chloride by Discrete Analyser								
Clear Plastic Bottle - Natural (ED045G)								
BH2,	BH3,	31-Aug-2022				03-Sep-2022	28-Sep-2022	✓
BH7,	BH8,							
BLIND,	RINSATE,							
D/S BH3,	Leachate,							
Wetland,	Dredge							
ED093F: Dissolved Major Cations								
Clear Plastic Bottle - Natural (ED093F)								
BH2,	BH3,	31-Aug-2022				03-Sep-2022	07-Sep-2022	✓
BH7,	BH8,							
BLIND,	RINSATE,							
D/S BH3,	Leachate,							
Wetland,	Dredge							
EG020T: Total Metals by ICP-MS					!			
Clear Plastic Bottle - Nitric Acid; Unfiltered (EG020A	т)							
BH2,	ВНЗ,	31-Aug-2022	02-Sep-2022	27-Feb-2023	✓	02-Sep-2022	27-Feb-2023	✓
BH7,	BH8,							
BLIND,	RINSATE,							
D/S BH3,	Leachate,							
Wetland,	Dredge							
EK055G: Ammonia as N by Discrete Analyser								
Clear Plastic Bottle - Sulfuric Acid (EK055G)								
BH2,	BH3,	31-Aug-2022				02-Sep-2022	28-Sep-2022	✓
BH7,	BH8,							
BLIND,	RINSATE,							
D/S BH3,	Leachate,							
Wetland,	Dredge							
EK057G: Nitrite as N by Discrete Analyser								
Clear Plastic Bottle - Natural (EK057G)								
BH2,	BH3,	31-Aug-2022				02-Sep-2022	02-Sep-2022	✓
BH7,	BH8,							
BLIND,	RINSATE,							
D/S BH3,	Leachate,							
Wetland,	Dredge							
	2.0030							

Page : 5 of 9
Work Order : EM2216860

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill 1 of 3

Matrix: WATER					Evaluation	n: 🗴 = Holding time	breach; ✓ = Withi	n holding time
Method		Sample Date	E.	xtraction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EK059G: Nitrite plus Nitrate as N (NOx) by Di	iscrete Analyser							
Clear Plastic Bottle - Sulfuric Acid (EK059G)								
BH2,	BH3,	31-Aug-2022				01-Sep-2022	28-Sep-2022	✓
BH7,	BH8,							
BLIND,	RINSATE,							
D/S BH3,	Leachate,							
Wetland,	Dredge							
EK061G: Total Kjeldahl Nitrogen By Discrete	Analyser							
Clear Plastic Bottle - Sulfuric Acid (EK061G)				00.0			00.0	
BH2,	BH3,	31-Aug-2022	05-Sep-2022	28-Sep-2022	✓	05-Sep-2022	28-Sep-2022	✓
BH7,	BH8,							
BLIND,	RINSATE,							
D/S BH3,	Leachate,							
Wetland,	Dredge							
EP005: Total Organic Carbon (TOC)								
Amber TOC Vial - Sulfuric Acid (EP005)								
BH2,	BH3,	31-Aug-2022				02-Sep-2022	28-Sep-2022	✓
BH7,	BH8,							
BLIND,	RINSATE,							
D/S BH3,	Leachate,							
Wetland,	Dredge							
EP026SP: Chemical Oxygen Demand (Spectro	ophotometric)							
Clear Plastic Bottle - Sulfuric Acid (EP026SP)								
BH2,	BH3,	31-Aug-2022				01-Sep-2022	28-Sep-2022	✓
BH7,	BH8,							
BLIND,	RINSATE,							
D/S BH3,	Leachate,							
Wetland,	Dredge							
EP045: Volatile Acids as CH3COOH							:	
Clear Plastic Bottle - Natural (EP045)								
BH2,	BH3,	31-Aug-2022				02-Sep-2022	14-Sep-2022	✓
BH7,	BH8,							
BLIND,	RINSATE,							
D/S BH3,	Leachate,							
Wetland,	Dredge							
	2.0490							

Page : 6 of 9
Work Order : EM2216860

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill 1 of 3

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: WATER

Evaluation: x = Quality Control frequency not within specification: $\sqrt{}$ = Quality Control frequency within specification.

Matrix: WATER				Evaluatio	n: 🗴 = Quality Co	ontrol frequency	not within specification; ✓ = Quality Control frequency within specification
Quality Control Sample Type		C	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Alkalinity by Auto Titrator	ED037-P	3	23	13.04	10.00	1	NEPM 2013 B3 & ALS QC Standard
Ammonia as N by Discrete analyser	EK055G	2	11	18.18	10.00	1	NEPM 2013 B3 & ALS QC Standard
Chemical Oxygen Demand (COD) (Spectrophotometric)	EP026SP	3	21	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G	2	16	12.50	10.00	1	NEPM 2013 B3 & ALS QC Standard
Conductivity by Auto Titrator	EA010-P	2	11	18.18	10.00	1	NEPM 2013 B3 & ALS QC Standard
Major Cations - Dissolved	ED093F	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	12	16.67	10.00	1	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	2	19	10.53	10.00	✓	NEPM 2013 B3 & ALS QC Standard
pH by Auto Titrator	EA005-P	2	13	15.38	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	2	10	20.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Dissolved Solids (High Level)	EA015H	4	40	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	2	21	9.52	10.00	x	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Organic Carbon	EP005	4	35	11.43	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Volatile Acids as CH3COOH	EP045	4	35	11.43	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Alkalinity by Auto Titrator	ED037-P	2	23	8.70	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Ammonia as N by Discrete analyser	EK055G	1	11	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Chemical Oxygen Demand (COD) (Spectrophotometric)	EP026SP	2	21	9.52	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G	2	16	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Conductivity by Auto Titrator	EA010-P	1	11	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Major Cations - Dissolved	ED093F	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	12	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
pH by Auto Titrator	EA005-P	2	13	15.38	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	2	10	20.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Dissolved Solids (High Level)	EA015H	3	40	7.50	7.50	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	21	4.76	5.00	sc	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Organic Carbon	EP005	2	35	5.71	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Volatile Acids as CH3COOH	EP045	2	35	5.71	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Ammonia as N by Discrete analyser	EK055G	1	11	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Chemical Oxygen Demand (COD) (Spectrophotometric)	EP026SP	2	21	9.52	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G	1	16	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Conductivity by Auto Titrator	EA010-P	1	11	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Page : 7 of 9
Work Order : EM2216860

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill 1 of 3

Matrix: WATER				Evaluatio	n: × = Quality Co	ntrol frequency	not within specification; ✓ = Quality Control frequency within specification
Quality Control Sample Type		Count		Rate (%)			Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
Method Blanks (MB) - Continued							
Major Cations - Dissolved	ED093F	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	12	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
litrite as N by Discrete Analyser	EK057G	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	1	10	10.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Dissolved Solids (High Level)	EA015H	2	40	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
otal Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	21	4.76	5.00	æ	NEPM 2013 B3 & ALS QC Standard
otal Metals by ICP-MS - Suite A	EG020A-T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
otal Organic Carbon	EP005	2	35	5.71	5.00	✓	NEPM 2013 B3 & ALS QC Standard
/olatile Acids as CH3COOH	EP045	2	35	5.71	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
Ammonia as N by Discrete analyser	EK055G	1	11	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Chemical Oxygen Demand (COD) (Spectrophotometric)	EP026SP	1	21	4.76	5.00	Je.	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G	1	16	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard
litrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	12	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
litrite as N by Discrete Analyser	EK057G	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	1	10	10.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
otal Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	21	4.76	5.00	Je.	NEPM 2013 B3 & ALS QC Standard
otal Metals by ICP-MS - Suite A	EG020A-T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Organic Carbon	EP005	2	35	5.71	5.00	√	NEPM 2013 B3 & ALS QC Standard

Page : 8 of 9
Work Order : EM2216860

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill 1 of 3

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
pH by Auto Titrator	EA005-P	WATER	In house: Referenced to APHA 4500 H+ B. This procedure determines pH of water samples by automated ISE. This method is compliant with NEPM Schedule B(3)
Conductivity by Auto Titrator	EA010-P	WATER	In house: Referenced to APHA 2510 B. This procedure determines conductivity by automated ISE. This method is compliant with NEPM Schedule B(3)
Total Dissolved Solids (High Level)	EA015H	WATER	In house: Referenced to APHA 2540C. A gravimetric procedure that determines the amount of `filterable` residue in an aqueous sample. A well-mixed sample is filtered through a glass fibre filter (1.2um). The filtrate is evaporated to dryness and dried to constant weight at 180+/-5C. This method is compliant with NEPM Schedule B(3)
Alkalinity by Auto Titrator	ED037-P	WATER	In house: Referenced to APHA 2320 B This procedure determines alkalinity by automated measurement (e.g. PC Titrate) on a settled supernatant aliquot of the sample using pH 4.5 for indicating the total alkalinity end-point. This method is compliant with NEPM Schedule B(3)
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	WATER	In house: Referenced to APHA 4500-SO4. Dissolved sulfate is determined in a 0.45um filtered sample. Sulfate ions are converted to a barium sulfate suspension in an acetic acid medium with barium chloride. Light absorbance of the BaSO4 suspension is measured by a photometer and the SO4-2 concentration is determined by comparison of the reading with a standard curve. This method is compliant with NEPM Schedule B(3)
Chloride by Discrete Analyser	ED045G	WATER	In house: Referenced to APHA 4500 CI - G.The thiocyanate ion is liberated from mercuric thiocyanate through sequestration of mercury by the chloride ion to form non-ionised mercuric chloride. In the presence of ferric ions the liberated thiocynate forms highly-coloured ferric thiocynate which is measured at 480 nm.
Major Cations - Dissolved	ED093F	WATER	In house: Referenced to APHA 3120 and 3125; USEPA SW 846 - 6010 and 6020; Cations are determined by either ICP-AES or ICP-MS techniques. This method is compliant with NEPM Schedule B(3) Sodium Adsorption Ratio is calculated from Ca, Mg and Na which determined by ALS in house method QWI-EN/ED093F. This method is compliant with NEPM Schedule B(3) Hardness parameters are calculated based on APHA 2340 B. This method is compliant with NEPM Schedule B(3)
Total Metals by ICP-MS - Suite A	EG020A-T	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Ammonia as N by Discrete analyser	EK055G	WATER	In house: Referenced to APHA 4500-NH3 G Ammonia is determined by direct colorimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)
Nitrite as N by Discrete Analyser	EK057G	WATER	In house: Referenced to APHA 4500-NO2- B. Nitrite is determined by direct colourimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)
Nitrate as N by Discrete Analyser	EK058G	WATER	In house: Referenced to APHA 4500-NO3- F. Nitrate is reduced to nitrite by way of a chemical reduction followed by quantification by Discrete Analyser. Nitrite is determined seperately by direct colourimetry and result for Nitrate calculated as the difference between the two results. This method is compliant with NEPM Schedule B(3)
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	WATER	In house: Referenced to APHA 4500-NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by Chemical Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)

Page : 9 of 9
Work Order : EM2216860

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill 1 of 3

Analytical Methods	Method	Matrix	Method Descriptions
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	WATER	In house: Referenced to APHA 4500-Norg D (In house). An aliquot of sample is digested using a high temperature Kjeldahl digestion to convert nitrogenous compounds to ammonia. Ammonia is determined colorimetrically by discrete analyser. This method is compliant with NEPM Schedule B(3)
Ionic Balance by PCT DA and Turbi SO4 DA	* EN055 - PG	WATER	In house: Referenced to APHA 1030F. This method is compliant with NEPM Schedule B(3)
Field Tests (performed by external sampler)	* EN67-B02	WATER	Field determinations as per methods described in APHA or supplied by client. The analysis is performed in the field by non-ALS samplers. ALS NATA accreditation does not apply for this service.
Total Organic Carbon	EP005	WATER	In house: Referenced to APHA 5310 B, The automated TOC analyzer determines Total and Inorganic Carbon by IR cell. TOC is calculated as the difference. This method is compliant with NEPM Schedule B(3)
Chemical Oxygen Demand (COD) (Spectrophotometric)	EP026SP	WATER	In house: Referenced to APHA 5220 D. Samples are digested with a known excess of an acidic potassium dichromate solution using silver sulfate as a catalyst. The chromium is reduced from the Cr (VI) oxidation state to the Cr (III) state by the oxygen present in the organic material. Both of these chromium species are coloured and absorb in the visible region of (400nm & 600nm) the spectrum. The oxidisable organic matter can be calculated in terms of oxygen equivalents.
Volatile Acids as CH3COOH	EP045	WATER	In house: Referenced to APHA 5560 C. Steam distillable acids are captured in caustic solution and determined titremetrically. This method is compliant with NEPM Schedule B(3)
Preparation Methods	Method	Matrix	Method Descriptions
TKN/TP Digestion	EK061/EK067	WATER	In house: Referenced to APHA 4500 Norg - D; APHA 4500 P - H. This method is compliant with NEPM Schedule B(3)
Digestion for Total Recoverable Metals	EN25	WATER	In house: Referenced to USEPA SW846-3005. Method 3005 is a Nitric/Hydrochloric acid digestion procedure used to prepare surface and ground water samples for analysis by ICPAES or ICPMS. This method is compliant with NEPM Schedule B(3)

Contact:		Client:		Ventia	*			Job Ref:	#:		Cres	swick	Ĺ	c Landfill 1 c	Creswick Landfill 1 of 3
Phone: 0427529051	S	ontact:		Robert Calla	nder			F		EQUIR	ED AS	-	PER (PER QUOTE	PER QUOTE ME/41
Phone: 0427529051	Ac	ddress:	25-37 Hunti	ngdale Road	, Burwood	1, 3125									
Fmail: issac.saunders@ventia.com.au	4		0427529051	Fax :											
PIO No. T/A Time: Quote No.			isaac.saunders@ven robert.callander@ver	tia.com.au	1	4									
TIA Time: Sample Description	Δ.	-		Quote No.:	ME/412/16	<u> </u>									
Groundwater Bore	//L	4 Time:			3					(
Groundwater Bore C 31/8/12 C C 12 C 24 25 24 25 Groundwater Bore C 21/8/12 Oq35 U C 12 C 24 25 Groundwater Bore C 21/8/12 Oq35 U C C 24 25 4 12 Groundwater Bore C 21/8/12 C C C C C C C Groundwater Bore C 21/8/12 C C C C C C Groundwater Bore C 21/8/12 C C C C C C Groundwater Bore C 21/8/12 C C C C C C Groundwater Bore C 21/8/12 C C C C C Groundwater Bore C 21/8/12 C C C C C C Groundwater Bore C C C C C C C C Groundwater Bore C C C C C C C C C Groundwater Bore C C C C C C C C C	Sample		Sample Description	No of Containers		Time	Matrix	er e		TEMF	ОКР	TMS			
Groundwater Bore	BH1	Ground	water Bore	0	31/8/22	1	1	-		possible	. bore	location	6		en lost to read
Groundwater Bore Caroundwater Caroundwater Bore Caroundwater Caro	BH2	Ground	water Bore		31/8/22	0935			1.5 6.1						
Groundwater Bore φ 31/8/22 1513 ω ζ.ψ2 1127 0.21 12.ψ1 - ψ2.1 Groundwater Bore ψ 31/8/22 1513 ω ζ.ψ2 1122 ο.33 12.¼ - ψ2.1 Groundwater Bore ψ 31/8/22 1628 ω ξ.η2 1122 ο.33 12.¼ - ψ2.6 Special Instructions: Please email a signed copy of this sheet to Burwood office upon receipt. Time: Received By: Con Relinquished By: Company: Date: Time: Received By: Con MMM Ventia 31/8/12 120 Mmm Quality Coupational Health and Safety consideration, it is a requirement of Ecowise Environmental (Victoria), that all samples Mmm Quality	BH3	Ground	water Bore	t	31/4/2	1308			364 0.2			0.45	10		
Groundwater Bore 4 31/8/22 1513 2 6.42 1127 0.21 12.41 -42.1 Groundwater Bore 4 31/8/22 10.28 2 6.74 1122 0.21 12.41 -42.1 Groundwater Bore 4 31/8/22 10.28 2 6.74 1122 0.21 12.41 -42.1 Groundwater Bore 4 31/8/22 10.28 2 6.74 1122 0.21 12.41 -42.1 Groundwater Bore 4 31/8/22 10.28 2 6.74 1122 0.21 12.41 -42.1 Groundwater Bore 4 31/8/22 10.28 2 1.27 0.21 12.41 -42.1 Groundwater Bore 5 1122 0.21 12.41 -42.1 Special Please email a signed copy of this sheet to Burwood office upon receipt. Relinquished By: Company: Date: 1700	BH4	Ground	water Bore									٠		בו ב ב	Melbourne
Groundwater Bore	ВН6	Ground	water Bore												Work Order Reference
1122 6.33 12.24 -96.6 On receipt. Received By: Con (A.	3 BH7	Ground	water Bore	t	31/8/22	1513				-	1-42.1	_			_
Received By: Con Received By: Con Received By: Con The USE ONLY Sample condition	HB H8	Ground	water Bore	t		820)					-				
Receipt. Received By: Con Manner Con t LAB USE ONLY Sample condit	ВНВ	Ground	water Bore		1482										
Receipt. Received By: Com Manner Com t LAB USE ONLY Sample condit					A.,										
Received By: Con		Spe Instructio		signed copy	of this shee	t to Burw	ood offic	e ubou re	ceipt.					Te Te	Telephone : + 61-3-8549 9600
t LAB USE ONLY Sample condit	Re	inquished	8		ate:		Lime:		Received	By:	ၓ	ompany:			Date:
t <u>LAB USE ONLY</u> Sample condi	Me	while	Ventia	31	18/22	1700			Mar	4	9	T			199
	This form i	s for recording	of sample data after prior con	sultation with an and	lyst regarding s	sampling proc	edures and o		AB USE ON	<u>ILY</u>	Sample cor	nditions:		Sample	Samples received undamaged [Yes/No]
	As an Occi	upational Healt	h and Safety consideration, it is	s a requirement of E	cowise Environ	mental (Victor	ia), that all sa	seldui				Samples	>	samples within recomi	Samples within recommended holding times: [Yes/No]

		3
		5
		U
	1	N
4		7
		10
		-

O	Client:		Ventia			Job Ref:	Ref:		J	Creswick Landfill 2 of	≓	2 of 3
Cor	Contact:	Rc	Robert Callander	nder			TESTS	1	JIRED	REQUIRED AS PER QU	O	QUOTE ME/412/16
Add	Address:	25-37 Huntingdale Road, Burwood, 3125	dale Road,	Burwoo	d, 3125							
ď	Phone:	0427529051	Fax:						-			
Ш	Email:	isaac.saunders@ventia.com.au	com.au									
0/0	- ON O/O	Operi. caliander (avenila. colli. au	Oloto No :			T						
2			Ole No									
T/A]	T/A Time:	u, e										
Sample		Sample Description	No of Containers	Date Sampled	Time	НА	EC	DO	TEMF	TMS		
BH10	Groun	Groundwater bore										
BH13	Groun	Groundwater bore										
LB1	Leach	Leachate bore										
LB2	Leach	Leachate bore										-
LB3	Leach	Leachate bore					ON	SAMPLE	- SWL OF	ONLY		
BLIND	Blind	Blind dup (analysed by ALS)	£	31/8/22								-
RINSATE		Rinsate blank	٤	31/9/12	545							
2	Special Instructions:	Special Please email a signed copy of this sheet to	ned copy o	of this she	0	Burwood upon receipl	of.					
Relinc	Relinquished By:	d By: Company:	0	Date:	Time:		Receiv	Received By:		Company:	٥	Date:
3	1 Gillender	Ventia	3/18	31/8/12	0041		1	Moun		支		
This form is fo over-ride prici As an Occupa	for recordin cing agreem ational Heal	This form is for recording of sample data after prior consultation with an analyst regarding sampling procedures and does not over-ride pricing agreements, OHS requirements and our terms and conditions. As an Occupational Health and Safety consideration, it is a requirement of Ecowise Environmental (Victoria), that all samples	ation with an ana ms and conditio equirement of Ec	lyst regarding ns. cowise Enviro	sampling procedures	s and does not at all samples	LAB USE ONLY	E ONLY	Samp	Sample conditions:	tions: Samples received undamaged [Yes/No] Samples adequately preserved [Yes/No] Samples within recommended holding times: [Yes/No]	ed un itely hold

Contact: Robert Callander Fax: Fobert Callander Fax:	S	Client:		Ventia				Job Ref:	<u></u>		ō	Creswick Landfill			
Phone: 0427529051	Cor	tact:		Robert Calla	nder			쁘	STS R	EQUIR	ED AS	PER QUO	TE ME/4	12/1	9
Figure Email:	Add	ress:	25-37 Hunt	ingdale Road	, Burwood	1, 3125									
Sample Description Containers Sampled Creek Sample Creek	4		27529051	Fax:											-
A Time: Sample Description No of Sampled Sampled	Ш		ac.saunders@ver ert.callander@ver	ntia.com.au											
Sample Description	P/0	-		Quote No.:											
Sample Description No of Containers Sampled Sampled Time T	T/A 1	ime:								c					
Creek Sample Cre	Sample	San	nple Description	No of Containers		Time				TEMF	ОКР	7MS			
Creek Sample	U/S BH3	Creek Sal	mple												
Surface water sample 4 31/8/22 6807 C 3-24 214.2 10.26 8.76 93.8 Burface water sample 4 31/8/22 1330 C 3-24 14.2 19.10 11.5 44.18 Surface water sample 4 31/8/22 0403 C 3-24 145.2 19.26 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2	@ BH3	Creek Sal	mple												
Surface water sample L 31/8/22 1336 L 2.2 L 4.3 14.1 -61.2 -61.	D/S BH3	Creek Sal	mple	4	31/8/22	0		7.24 211	4.2 10.2	100	93.8	1			
Surface water sample Leachate	Surface w	vater sample		21 10/2	1606		-	29	11. 1.		1			_	
345.9 9.54 9.86 92.32	Wetland	Surface w	vater sample	t.	31/8/22			+	2.1.9			1			+
Received By: Company: Received By: Company: Many Company: LAB USE ONLY Sample conditions: Samples within	Dredge	Surface w	vater sample	- 4	3,18/22	0903			5.9 9.5						
Received By: Company:	l ü	Specia		signed copy c	of this shee	t to Burw	ood offic	e upon re	ceipt.						
LAB USE ONLY Sample conditions:	Relin	uished By			late:		Time:		Received	By:	ပိ	трапу:	Date		-
LAB USE ONLY Sample conditions: 8	A Call	ande/	Ventia		3/22	7	0		May	Z		(m)			
	This form is fo over-ride prici As an Occupat	or recording of sing agreements, ional Health and	ample data after prior con OHS requirements and ou d Safety consideration, it i	sultation with an and use terms and conditions and sonditions a requirement of E	alyst regarding sins.	sampling proc mental (Victor	edures and c ia), that all sa		AB USE ON	77	Sample con	S les within	ples received un ples adequately commended hold	ndamage preserve ling times	bed ::

Contact:	ਹ	Client:		Ventia				Job Ref:	Ref:			Cre	Creswick Landfill	Landfil			
C	Con	tact:	R	obert Callar	nder			P	ease	forw	ard to	o EU	ROF	SNI	for and	alvsis	
D D D D D D D D D D D D D D D D D D D	Addr	ess:	25-37 Hunting	Idale Road,	Burwood	1, 3125					5		·))			
D D D D D D D D D D D D D D D D D D D	Ph		7529051	Fax:													
D D D D D D D D D D D D D D D D D D D	ũ	-	ac.saunders@ventia	.com.au													
D	P/0	-	JQ.	-	190924VE	N											
C	T/A T	ime:															
1122 0.33 12.24 -96.6	Sample ID	Sam	Iple Description	No of Containers	Date Sampled	Time	Matrix	На	EC	DO	TEMF	ОКР	7MS				
nreceipt. Received By: Con Received By: Con Received By: Con Received By: Sample condi	Creswick SPLIT	Groundwa	ater	4	31/8/22	8201						+	52.2				
Received By: Con Received By: Con Received By: Con																	
Received By: Con Received By: Con Received By: Con Received By: Con TAB USE ONLY Sample condi																	
Received By: Con Received By: Con Received By: Con TAB USE ONLY Sample condi																	
Received By: Con Received By: Con t LAB USE ONLY Sample condi	l sul	Special tructions:		gned copy o	of this shee	et to Burw	ood offic	uodn əc	receipt.								
Received By: Con t LAB USE ONLY Sample condi	Reling	uished By:		۵	ate:		Time:		Recei	ved By:		Con	pany:		Date:	Time:	::
Received By: Con Con	AGI	ander	Ventia	31/	22/8	1700	O		2	row	٦	E	-		ela	02.07	0
t LAB USE ONLY Sample condi	Relinc	uished By:		٥	ate:		Time:		Recei	ved By:		Con	npany:		Date:	Time:	.:
	This form is for over-ride pricin As an Occupati received be un	r recording of sa ig agreements, C ional Health and Jamaged and pri	ample data after prior consult OHS requirements and our tel Safety consideration, it is a lior advice given in writing of	ation with an anal rms and condition requirement of Ec any potential hea	lyst regarding sols.	sampling proc mental (Victor	edures and ia), that all s	does not	LAB US	E ONLY	Sal	mple condit	tions: Samples wit	Sample Sample: thin recom	s received und s adequately pr mended holdin	amaged [Yes eserved [Yes g times: [Yes perature [Yes	N 0 0 0

Document: OF002 i1

Samples transported at appropriate temperature [Yes/No]

CHAIN OF CUSTODY

(Client:			Ve	ntia	-			Job	Ref:	-		Cres	wick Laı	ndfill 1 d	of 3	
Co	ntact:			Robert	Callar	nder				TEST	SREC	UIRE	DAS	PER C	UOTE	ME/41	2/16
Ad	dress:		25-37 Hun	ntingdale	Road,	Burwood	l, 3125								0		
P	hone:	0427	529051	F	ax:												
	Email:		.saunders@ve t.callander@ve				-										
P/	O No.:			Quote N		ME/412/16	3										
T/A	Time:					-										-	
Sample ID		Sample	e Description		o of ainers	Date Sampled	Time sampled	Matrix	H	EC	8	TEMP	ORP	SWL			
BH1	Groun	dwate	Bore		0	31/8/22	and the second second	P	No	samp	e po	ssible.	bore	locatio.	~ lost	to rock	resurfacing
BH2	Groun	dwate	Bore	L	,	31/8/22	0935	·w	6.12	634.5	4-13	14.08	72.3	2.12			
ВН3	Groun	dwate	Bore	4		31/8/22		ω	6.67	,	0.23	10.91	-75-4	0.45			hat Division
BH4	Groun	dwate	Bore											,		elbourne	tal Division
ВН6	Groun	ındwater Bore														Work Order	Reference 216860
ВН7	Groun	dwate	Bore	4		31/8/22	1513	W	6.42	1127	0.21	12.41	-42.1	2.42			10000
ВН8	Groun	dwate	Bore	4		31/8/22	16	V	6.71	1122	0.33	12.24	-96.6	2.25			
ВН9	Groun	dwate	Bore														
	0		DI			,	11 5	1 66		<u> </u>			<u>L</u> ,		L ,	elephone : + 61-3	8-8549 9600
. 1	Sp nstruct	ecial ions:	Please email	a signed of	сору с	ot this shee	et to Bury	vood off	ice upo	n receip	τ.				1	еверлопе . + от-с	
Reli	nquishe	d By:	Compa	ny:	D	ate:		Time:		Rece	eived By	' :	Co	mpany:	1	Date:	Time:
110	whit		Ventia		31/	18/22	1700	٥.		1	non	_	A	m		1/9	10-10
over-ride pri	icing agreei	ments, Ol	ple data after prior c IS requirements and safety consideration,	our terms and	conditio	ns.		h.		LABU	ISE ONLY		Sample con		Sample	s adequately	ndamaged [Yes/No] preserved [Yes/No] ing times: [Yes/No]

received be undamaged and prior advice given in writing of any potential health risks.

			manuscriptures con the constitution	V-	4:				Lab	D.f.		AND AND A 18	C===	wick Lar	4611 J =	£ 2	
Ci	ient:			Ve	ntia				Job	Ket:			Cres	SWICK Lar	iuiiii 2 0	13	
Con	tact:			Robert	Callar	nder				TES	TS REC	QUIR	ED AS	PERG	UOTE	ME/412/	<mark>16</mark>
Addı	ess:		25-37 Hun	tingdale l	Road,	Burwood	l, 3125										
Ph	one:	04275	529051	F	ax:	<i></i>											
Eı	nail:		saunders@ve														
		rober	callander@ve														
	No.:			Quote N	0.:												
T/A T	ime:		Ť									0					8
Sample ID		Sampl	le Description		o of ainers	Date Sampled	Time sampled		PH	EC	8	TEMP	ORP	SWL			
BH10	Grou	ndwate	er bore	Deliver Colleges (Newson Street)		6 ESTRO-101 ATT ATT ATT ATT ATT ATT ATT ATT ATT AT											
BH13	Grou	ndwate	er bore														
LB1	Leac	hate bo	ore														
LB2	Leac	hate bo	ore														
LB3	Leac	hate bo	ore					- 11		N	IO SAMPL	E – SV	VL ONLY				
BLIND	Dlind	dus (analysed by Al	6)													
			analysed by Al	-3) 4		31/8/22											
RINSATE	Rinsa	ate bla	nk	L	t	31/2/22	745										
															3 9		
		ecial	Please email	a signed	сору с	of this shee	et to Burw	ood up	on rece	pt.							
7.5.50	structi										n					Deter	Time:
4	quishe		Compa Ventia	ny:		ate:		Time:		Re	ceived By		- C	ompany:		Date:	Time.
A Cal	land	e/ .	venua		31/8	8/22	170	00			Moon			from	Annual Control (1919)		
This form is fo	r recordii ng agreer	ng of sam	ple data after prior c	onsultation wi	h an ana	alyst regarding	sampling prod	cedures ar	nd does not	LAE	B USE ONLY		Sample co		Samples	s received undams adequately pres	erved [Yes/No]
As an Occupa	tional Hea	alth and S	afety consideration,	it is a requiren	ent of E	cowise Enviror	mental (Victo	ria), that a	II samples							mended holding t	

As an Occupational Health and Safety consideration, it is a requirement of Ecowise Environmental (Victoria), that all samples received be undamaged and prior advice given in writing of any potential health risks. Document: OF002 i1

CI	ient:		Ven	tia				Job	Ref:			Cr	eswick	Landfill			
Con	tact:		Robert Ca	allande	er				TEST	SREC	UIRE	DAS	PER (QUOTE	ME/4	12/1	6
Addı	ress:	25-37 Hun	tingdale Ro	ad, Bu	urwood	l, 3125			Brassaction and a								
Ph	one:	0427529051	Fax	:													
E	mail:	isaac.saunders@ve															
P/O	No.:	robert.callander@ve	Quote No.														
T/A T			4														
Sample ID		Sample Description	No c Contair		Date Sampled	Time sampled		H	S	00	TEMP	ORP	SWL				
U/S BH3	Creek	Sample					St.										1
@ BH3	Creek	Sample					A.										
D/S BH3	Creek	Sample	4	3	31/8/22	0807	W	7.24	214.2	10-26	8.76	93.8	_				
Leachate	Surfa	ce water sample	4	3	31 /8/22	1605	ω	7.15	708.1	3.94	14.4	-61.2	_				
Wetland	Surfa	ce water sample	4		01/8/22	- 23	W	7.21	481.9			-44.18	-				
Dredge	Surfa	ce water sample	4		18/22		W		745.9		9.86	87.32)				
																-	+
Ins	Spe struction	Please email	a signed co	py of th	his shee	et to Burw	ood of	fice upo	n receip	t.							
Relino	quished		ny:	Date	e:		Time:		Rece	ived By	':	Co	mpany:		Date	e:	Time:
A Call	ande/	Ventia		31/8/2	n	17	00			voor	n		M	M			
over-ride prici	s form is for recording of sample data after prior consultation with an analyst regarding sampling proceder-ride pricing agreements, OHS requirements and our terms and conditions. an Occupational Health and Safety consideration, it is a requirement of Ecowise Environmental (Victoria eived be undamaged and prior advice given in writing of any potential health risks.						LABU	ISE ONLY		Sample cond	Samples	Sample within recom	s adequately mended hol	preser	ged [Yes/No] ved [Yes/No] nes: [Yes/No] ture [Yes/No]		

Samples within recommended holding times: [Yes/No] Samples transported at appropriate temperature [Yes/No]

CHAIN OF CUSTODY

CI	ient:	SUMPLEMENT		Ven	tia				Job	Ref:			Cr	eswick	Landfill		
Con	tact:			Robert C	allaı	nder			D	logs	o for	vard :	to El	IDO	INIC	for ana	alveie
Addı	ress:		25-37 Hur	tingdale R	oad,	Burwood	l, 3125			icasi	e ioiv	varu	io Ec	INOI	IIVO	ioi alia	alysis
Ph	one:	0427	529051	Fax	c :						7						
Eı	mail:		.saunders@ve t.callander@ve														
P/O	No.:	rober	i.callander@v	Quote No		190924VE	NV										
T/A T	ime:																
Sample ID		Samp	le Description	No Contai		Date Sampled	Time sampled	Matrix	Н	EC	00	TEMP	ORP	SWL		-	
Creswick SPLIT	Grou	ndwat	er	4		31/8/22	1028	ω	6.7(1122	0.33	12.24	-96.6	2.25			
										v							
			W //														
Ins	Spe structi	ecial ons:	Please email	a signed co	ру с	 of this shee	t to Burw	ood off	ice upo	n recei	ot.						
Relino	quished	By:	Compa	ny:	D	ate:		Time:		Rec	eived By	/ :	Co	mpany:		Date:	Time:
A Cal	lande	/	Venti	a	31/	18/22	170	00			mon	a	Ar	11		019	10-10
Relino	quished	By:	Compa	ny:	D	ate:		Time:		Rec	eived By	' :	Co	mpany:		Date:	Time:
			ple data after prior c IS requirements and				sampling prod	cedures an	d does not	LAB	USE ONLY		Sample con	ditions:			lamaged [Yes/No]

As an Occupational Health and Safety consideration, it is a requirement of Ecowise Environmental (Victoria), that all samples received be undamaged and prior advice given in writing of any potential health risks.

CERTIFICATE OF ANALYSIS

Work Order : EM2217005

Client : VENTIA UTILITY SERVICES PTY LTD

Contact : ROBERT CALLANDER

Address : 25-37 HUNTINGDALE ROAD

BURWOOD VIC 3125

Telephone : ---

Project : Creswick Landfill 2 of 3
Order number : CRESWICK LANDFILL 2-3

C-O-C number : ---Sampler : ---Site : ----

Quote number : ME/793/19

No. of samples received : 6
No. of samples analysed : 6

Page : 1 of 6

Laboratory : Environmental Division Melbourne

Contact : Peter Ravlic

Address : 4 Westall Rd Springvale VIC Australia 3171

Telephone : +6138549 9645

Date Samples Received : 02-Sep-2022 10:45

Date Analysis Commenced : 02-Sep-2022

Issue Date : 08-Sep-2022 16:07

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Jarwis NheuNon-Metals Team LeaderMelbourne Inorganics, Springvale, VICNikki StepniewskiSenior Inorganic Instrument ChemistMelbourne Inorganics, Springvale, VIC

Samantha Smith Assistant Laboratory Manager Melbourne External Subcontracting, Springvale, VIC

Page : 2 of 6 Work Order : EM2217005

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill 2 of 3

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

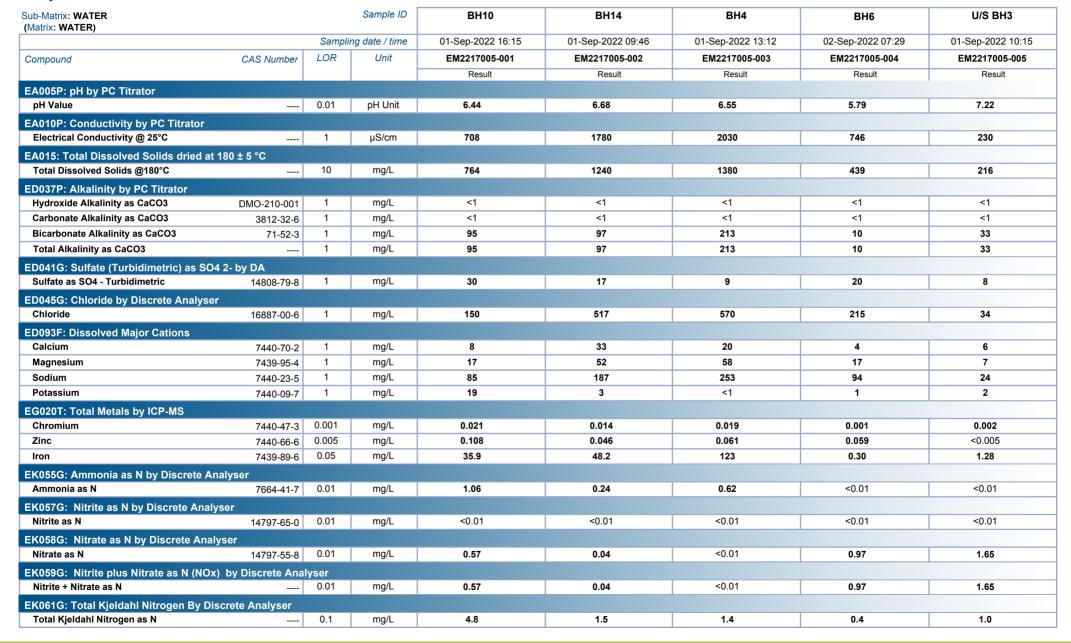
Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting


- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- EA015H: EM2217005 #1, #5-6: TDS by method EA-015 may bias high due to the presence of fine particulate matter, which may pass through the prescribed GF/C paper.
- Ionic Balance out of acceptable limits for samples #1 and #4-6 due to analytes not quantified in this report.
- lonic balances were calculated using: major anions chloride, alkalinity and sulfate; and major cations calcium, magnesium, potassium and sodium.
- EK061G: EM2216879 #4 Poor duplicate precision for total kjeldahl nitrogen due to sample heterogeneity. Confirmed by re-extraction and re-analysis.
- ED045G: The presence of Thiocyanate, Thiosulfate and Sulfite can positively contribute to the chloride result, thereby may bias results higher than expected. Results should be scrutinised accordingly.
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

Page : 3 of 6 Work Order : EM2217005

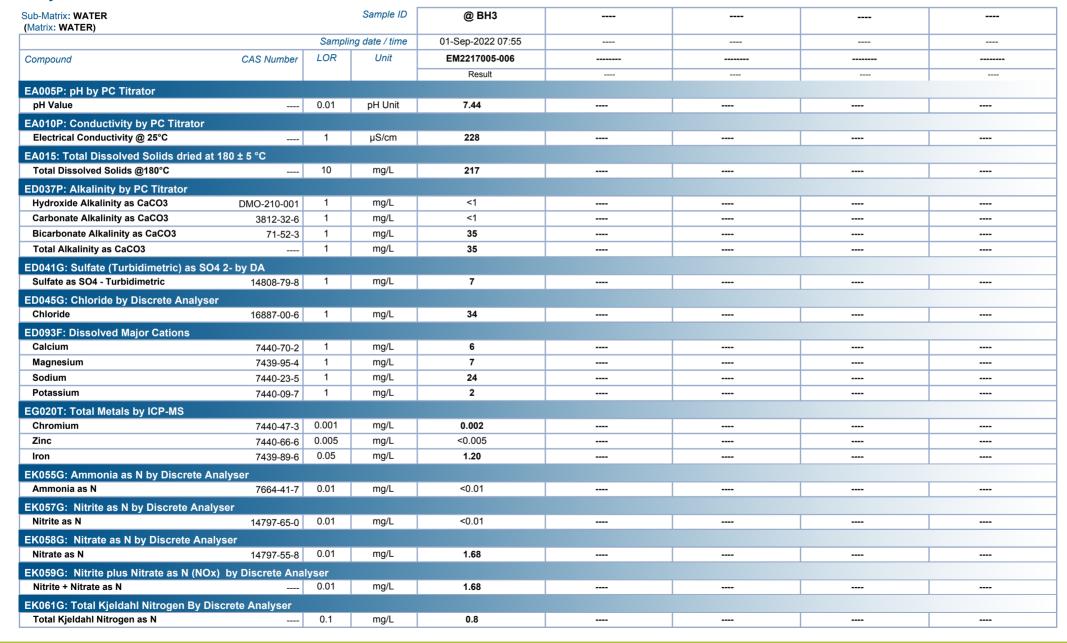
Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill 2 of 3

Page : 4 of 6
Work Order : EM2217005

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill 2 of 3



Page : 5 of 6 Work Order : EM2217005

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill 2 of 3

Page : 6 of 6
Work Order : EM2217005

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill 2 of 3

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	@ BH3	 	
		Sampli	ng date / time	01-Sep-2022 07:55	 	
Compound	CAS Number	LOR	Unit	EM2217005-006	 	
				Result	 	
EN055: Ionic Balance						
ø Total Anions		0.01	meq/L	1.80	 	
ø Total Cations		0.01	meq/L	1.97	 	
ø Ionic Balance		0.01	%	4.41	 	
EN67: Field Tests						
ø Dissolved Oxygen		0.1	mg/L	10.42	 	
ø pH		0.01	pH Unit	7.55	 	
ø Redox Potential		0.1	mV	-36.0	 	
ø Temperature		0.1	°C	8.70	 	
Ø Electrical Conductivity	COND_TEMP	1	μS/cm	215.8	 	
(Temperature Compensated)						
EP005: Total Organic Carbon (TOC)						
Total Organic Carbon		1	mg/L	10	 	
EP026SP: Chemical Oxygen Demand (S	Spectrophotometr	ic)				
Chemical Oxygen Demand		10	mg/L	29	 	
EP045: Volatile Acids as CH3COOH						
Volatile Acids as Acetic Acid		5	mg/L	10	 	

QUALITY CONTROL REPORT

Work Order : EM2217005

: VENTIA UTILITY SERVICES PTY LTD

Contact : ROBERT CALLANDER

Address : 25-37 HUNTINGDALE ROAD

BURWOOD VIC 3125

Telephone : ---

Client

Project : Creswick Landfill 2 of 3
Order number : CRESWICK LANDFILL 2-3

C-O-C number : ---Sampler : ---Site : ----

Quote number : ME/793/19

No. of samples received : 6
No. of samples analysed : 6

Page : 1 of 7

Laboratory : Environmental Division Melbourne

Contact : Peter Ravlic

Address : 4 Westall Rd Springvale VIC Australia 3171

 Telephone
 : +6138549 9645

 Date Samples Received
 : 02-Sep-2022

 Date Analysis Commenced
 : 02-Sep-2022

 Issue Date
 : 08-Sep-2022

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Jarwis NheuNon-Metals Team LeaderMelbourne Inorganics, Springvale, VICNikki StepniewskiSenior Inorganic Instrument ChemistMelbourne Inorganics, Springvale, VIC

Samantha Smith Assistant Laboratory Manager Melbourne External Subcontracting, Springvale, VIC

Page : 2 of 7
Work Order : EM2217005

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill 2 of 3

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: WATER						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EA005P: pH by PC T	itrator (QC Lot: 4565016)								
EM2217005-005	U/S BH3	EA005-P: pH Value		0.01	pH Unit	7.22	7.32	1.4	0% - 20%
EM2217005-001	BH10	EA005-P: pH Value		0.01	pH Unit	6.44	6.62	2.8	0% - 20%
EA010P: Conductivit	ty by PC Titrator (QC Lot: 45	665017)							
EM2217005-005	U/S BH3	EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	230	227	1.4	0% - 20%
EM2217005-001	BH10	EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	708	722	1.9	0% - 20%
EA015: Total Dissolv	ved Solids dried at 180 ± 5 °C	(QC Lot: 4564625)							
EM2216916-006	Anonymous	EA015H: Total Dissolved Solids @180°C		10	mg/L	959	895	6.9	0% - 20%
EM2216999-002	Anonymous	EA015H: Total Dissolved Solids @180°C		10	mg/L	1370	1380	0.9	0% - 20%
EM2217005-006	@ BH3	EA015H: Total Dissolved Solids @180°C		10	mg/L	217	198	8.9	0% - 20%
EM2217083-001	Anonymous	EA015H: Total Dissolved Solids @180°C		10	mg/L	2350	2390	1.7	0% - 20%
ED037P: Alkalinity b	y PC Titrator (QC Lot: 45650)15)							
EM2216764-011	Anonymous	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	403	403	0.0	0% - 20%
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	403	403	0.0	0% - 20%
EM2217005-001	BH10	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	95	89	6.2	0% - 20%
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	95	89	6.2	0% - 20%
ED041G: Sulfate (Tu	rbidimetric) as SO4 2- by DA	(QC Lot: 4558578)							
EM2217037-001	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	94	94	0.0	0% - 20%
EM2216953-001	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	28	27	0.0	0% - 20%
ED045G: Chloride by	/ Discrete Analyser (QC Lot	4558579)							

Page : 3 of 7
Work Order : EM2217005

Client : VENTIA UTILITY SERVICES PTY LTD

Sub-Matrix: WATER						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
ED045G: Chloride b	y Discrete Analyser	(QC Lot: 4558579) - continued							
EM2217028-002	Anonymous	ED045G: Chloride	16887-00-6	1	mg/L	63	64	1.8	0% - 20%
EM2216953-001	Anonymous	ED045G: Chloride	16887-00-6	1	mg/L	306	314	2.6	0% - 20%
ED093F: Dissolved	Major Cations (QC L	ot: 4557489)							
EM2216954-002	Anonymous	ED093F: Calcium	7440-70-2	1	mg/L	26	26	0.0	0% - 20%
		ED093F: Magnesium	7439-95-4	1	mg/L	28	28	0.0	0% - 20%
		ED093F: Sodium	7440-23-5	1	mg/L	54	55	0.0	0% - 20%
		ED093F: Potassium	7440-09-7	1	mg/L	4	4	0.0	No Limit
EM2217005-005	U/S BH3	ED093F: Calcium	7440-70-2	1	mg/L	6	6	0.0	No Limit
		ED093F: Magnesium	7439-95-4	1	mg/L	7	7	0.0	No Limit
		ED093F: Sodium	7440-23-5	1	mg/L	24	24	0.0	0% - 20%
		ED093F: Potassium	7440-09-7	1	mg/L	2	2	0.0	No Limit
EG020T: Total Meta	ils by ICP-MS (QC Lo	ıt: 4562157)							
EM2216805-062	Anonymous	EG020A-T: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	0.0	No Limit
		EG020A-T: Iron	7439-89-6	0.05	mg/L	<0.05	<0.05	0.0	No Limit
EM2217042-001	Anonymous	EG020A-T: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	0.0	No Limit
		EG020A-T: Iron	7439-89-6	0.05	mg/L	0.41	0.41	0.0	No Limit
EK055G: Ammonia	as N by Discrete Ana	llyser (QC Lot: 4559907)							
EM2216916-005	Anonymous	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	<0.01	<0.01	0.0	No Limit
EM2216871-001	Anonymous	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	0.02	<0.01	87.4	No Limit
EK055G: Ammonia	as N by Discrete Ana	llyser (QC Lot: 4559910)							
EM2217005-003	BH4	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	0.62	0.58	7.3	0% - 20%
EM2217060-003	Anonymous	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	4.77	5.68	17.5	0% - 20%
EK057G: Nitrite as	N by Discrete Analys	er (QC Lot: 4558577)							
EM2216916-016	Anonymous	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	0.06	0.06	0.0	No Limit
EM2217005-005	U/S BH3	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	0.0	No Limit
EK059G: Nitrite plu	us Nitrate as N (NOx)	by Discrete Analyser (QC Lot: 4559909)							
EM2217001-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	0.62	0.63	0.0	0% - 20%
EM2217028-002	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	7.04	7.09	0.7	0% - 20%
	,	crete Analyser (QC Lot: 4558560)			3				
EM2216690-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	2.2	2.2	0.0	0% - 20%
EM2216879-004	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	2.4	# 3.2	31.7	0% - 20%
	,	crete Analyser (QC Lot: 4558561)		V. 1	9, _		0.2	V 1	0,0 20,0
EM2217005-003	BH4			0.1	mg/l	1.4	1.3	7.9	0% - 50%
EM2217005-003 EM2217058-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L mg/L	0.6	0.3	52.8	0% - 50% No Limit
	-	EK061G: Total Kjeldahl Nitrogen as N		U. I	my/L	0.0	0.3	J2.0	INO LIIIIIL
	ic Carbon (TOC) (QC	,				40	40	0.0	00/ 500/
EM2216860-009	Anonymous	EP005: Total Organic Carbon		1	mg/L	13	13	0.0	0% - 50%

Page : 4 of 7
Work Order : EM2217005

Client : VENTIA UTILITY SERVICES PTY LTD

Sub-Matrix: WATER				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)		
EP005: Total Organic	Carbon (TOC) (QC Lot: 455	7364) - continued									
EM2217005-001	BH10	EP005: Total Organic Carbon		1	mg/L	33	31	7.1	0% - 20%		
EP026SP: Chemical (Oxygen Demand (Spectroph	otometric) (QC Lot: 4557356)									
EM2216954-001	Anonymous	EP026SP: Chemical Oxygen Demand		10	mg/L	<10	<10	0.0	No Limit		
EM2217005-003	BH4	EP026SP: Chemical Oxygen Demand		10	mg/L	142	144	1.4	0% - 50%		
EP045: Volatile Acids	as CH3COOH (QC Lot: 455	7323)									
EM2216860-002	Anonymous	EP045: Volatile Acids as Acetic Acid		5	mg/L	14	16	10.7	No Limit		
EM2217005-002	BH14	EP045: Volatile Acids as Acetic Acid		5	mg/L	14	16	10.7	No Limit		

Page : 5 of 7
Work Order : EM2217005

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill 2 of 3

Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Acceptable	e Limits (%)
Method: Compound CAS	Number	LOR	Unit	Result	Concentration	LCS	Low	High
EA005P: pH by PC Titrator (QCLot: 4565016)								
EA005-P: pH Value			pH Unit		7 pH Unit	100	98.8	101
					9 pH Unit	100	99.3	101
EA010P: Conductivity by PC Titrator (QCLot: 4565017)								
EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	<1	1412 μS/cm	103	85.0	119
EA015: Total Dissolved Solids dried at 180 ± 5 °C (QCLot: 456462	25)							
EA015H: Total Dissolved Solids @180°C		10	mg/L	<10	2000 mg/L	103	91.0	110
2.00.00.00.00.00.00.00.00.00.00.00.00.00				<10	2440 mg/L	108	81.6	118
				<10	293 mg/L	104	91.0	110
ED037P: Alkalinity by PC Titrator (QCLot: 4565015)								
ED037-P: Total Alkalinity as CaCO3			mg/L		200 mg/L	96.8	85.0	116
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA (QCLot: 455857	(8)							
	8-79-8	1	mg/L	<1	25 mg/L	107	85.8	117
				<1	500 mg/L	104	80.0	120
ED045G: Chloride by Discrete Analyser (QCLot: 4558579)					_			
	37-00-6	1	mg/L	<1	10 mg/L	105	85.0	115
EBO 100. Official				<1	1000 mg/L	101	85.0	122
ED093F: Dissolved Major Cations (QCLot: 4557489)					-			
	0-70-2	1	mg/L	<1	50 mg/L	104	80.0	120
	9-95-4	1	mg/L	<1	50 mg/L	97.0	80.0	120
<u> </u>	0-23-5	1	mg/L	<1	50 mg/L	102	80.0	120
	0-09-7	1	mg/L	<1	50 mg/L	96.9	80.0	120
EG020T: Total Metals by ICP-MS (QCLot: 4562157)								
	0-47-3	0.001	mg/L	<0.001	0.1 mg/L	95.8	86.9	112
	0-66-6	0.005	mg/L	<0.005	0.1 mg/L	102	86.7	117
200207(1.2.110	9-89-6	0.05	mg/L	<0.05	0.5 mg/L	95.8	92.8	118
EK055G: Ammonia as N by Discrete Analyser (QCLot: 4559907)								
<u> </u>	64-41-7	0.01	mg/L	<0.01	1 mg/L	104	84.1	116
			9/ =	0.0.1	9.2		• • • • • • • • • • • • • • • • • • • •	
EK055G: Ammonia as N by Discrete Analyser (QCLot: 4559910)	64-41-7	0.01	ma/l	<0.01	1 mg/L	106	84.1	116
	, ,,,,,	0.01	mg/L	~0.01	i iliy/L	100	U 4 . I	110
EK057G: Nitrite as N by Discrete Analyser (QCLot: 4558577)	7.05.0	0.04		-0.04	0.5	407	00.0	446
EK057G: Nitrite as N 1479	7-65-0	0.01	mg/L	<0.01	0.5 mg/L	107	90.9	112
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser (Q	CLot: 4559							
EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	0.5 mg/L	104	90.0	117

Page : 6 of 7
Work Order : EM2217005

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill 2 of 3

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report					
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)		
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High		
EK061G: Total Kjeldahl Nitrogen By Discrete Analyser (C	QCLot: 4558560)									
EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	<0.1	5 mg/L	114	70.0	117		
EK061G: Total Kjeldahl Nitrogen By Discrete Analyser (C	QCLot: 4558561)									
EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	<0.1	5 mg/L	106	70.0	117		
EP005: Total Organic Carbon (TOC) (QCLot: 4557364)										
EP005: Total Organic Carbon		1	mg/L	<1	100 mg/L	93.6	81.2	110		
EP026SP: Chemical Oxygen Demand (Spectrophotometri	ic) (QCLot: 455	7356)								
EP026SP: Chemical Oxygen Demand		10	mg/L	<10	500 mg/L	98.4	89.7	111		
EP045: Volatile Acids as CH3COOH (QCLot: 4557323)										
EP045: Volatile Acids as Acetic Acid		5	mg/L	<5	175 mg/L	99.5	85.5	116		

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER			Γ	Ма	trix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Acceptable L	imits (%)
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA (QCLot: 4558578)						
EM2217005-001	BH10	ED041G: Sulfate as SO4 - Turbidimetric 1	14808-79-8	100 mg/L	98.3	70.0	130
ED045G: Chloride	by Discrete Analyser (QCLot: 4558579)						
EM2217005-001	BH10	ED045G: Chloride	16887-00-6	400 mg/L	103	70.0	142
EG020T: Total Me	tals by ICP-MS (QCLot: 4562157)						
EM2216805-062	Anonymous	EG020A-T: Chromium 7	7440-47-3	1 mg/L	100	78.9	119
		EG020A-T: Zinc 7	7440-66-6	1 mg/L	100.0	74.0	120
EK055G: Ammoni	a as N by Discrete Analyser (QCLot: 4559907)						
EM2216871-002	Anonymous	EK055G: Ammonia as N	7664-41-7	1 mg/L	107	70.0	130
EK055G: Ammoni	a as N by Discrete Analyser (QCLot: 4559910)						
EM2217005-004	BH6	EK055G: Ammonia as N 7	7664-41-7	1 mg/L	126	70.0	130
EK057G: Nitrite a	s N by Discrete Analyser (QCLot: 4558577)						
EM2216916-017	Anonymous	EK057G: Nitrite as N	14797-65-0	0.5 mg/L	81.0	80.0	114
EK059G: Nitrite p	lus Nitrate as N (NOx) by Discrete Analyser (QCLot: 455	59909)					
EM2217001-002	Anonymous	EK059G: Nitrite + Nitrate as N		0.5 mg/L	94.2	70.0	130
EK061G: Total Kje	eldahl Nitrogen By Discrete Analyser (QCLot: 4558560)						
EM2216871-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		5 mg/L	116	70.0	130
EK061G: Total Kje	eldahl Nitrogen By Discrete Analyser (QCLot: 4558561)						

Page : 7 of 7
Work Order : EM2217005

Client : VENTIA UTILITY SERVICES PTY LTD

Sub-Matrix: WATER			Ma				
				Spike	SpikeRecovery(%)	Acceptable i	Limits (%)
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EK061G: Total Kjel	dahl Nitrogen By Discrete Analyser(QCLot: 4558561)-	continued					
EM2217058-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		5 mg/L	97.8	70.0	130
EP005: Total Organ	ic Carbon (TOC) (QCLot: 4557364)						
EM2216860-010	Anonymous	EP005: Total Organic Carbon		100 mg/L	109	76.6	125
EP026SP: Chemica	l Oxygen Demand (Spectrophotometric) (QCLot: 45573	56)					
EM2216954-002	Anonymous	EP026SP: Chemical Oxygen Demand		2500 mg/L	100	70.0	130

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **EM2217005** Page : 1 of 9

Client : VENTIA UTILITY SERVICES PTY LTD Laboratory : Environmental Division Melbourne

 Contact
 : ROBERT CALLANDER
 Telephone
 : +6138549 9645

 Project
 : Creswick Landfill 2 of 3
 Date Samples Received
 : 02-Sep-2022

 Site
 : --- Issue Date
 : 08-Sep-2022

Sampler : ---- No. of samples received : 6

Order number : CRESWICK LANDFILL 2-3 No. of samples analysed : 6

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- Duplicate outliers exist please see following pages for full details.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers: Frequency of Quality Control Samples

NO Quality Control Sample Frequency Outliers exist.

Page : 2 of 9
Work Order : EM2217005

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill 2 of 3

Outliers: Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: WATER

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Duplicate (DUP) RPDs							
EK061G: Total Kjeldahl Nitrogen By Discrete Analyser	EM2216879004	Anonymous	Total Kjeldahl Nitrogen		31.7 %	0% - 20%	RPD exceeds LOR based limits
			as N				

Outliers: Analysis Holding Time Compliance

Matrix: WATER

WATER							
Method		Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Days	Date analysed	Due for analysis	Days
				overdue			overdue
EA005P: pH by PC Titrator							
Clear Plastic Bottle - Natural							
BH10,	BH14,				07-Sep-2022	01-Sep-2022	6
BH4,	U/S BH3,						
@ BH3							
Clear Plastic Bottle - Natural							
BH6					07-Sep-2022	02-Sep-2022	5

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: WATER

Evaluation: × =	= Holdina	time	breach:	✓	= Within	holding	time.
-----------------	-----------	------	---------	---	----------	---------	-------

Analysis		
Due for analysis	Evaluation	
01-Sep-2022	x	
02-Sep-2022	*	
_	02-Sep-2022	

Page : 3 of 9
Work Order : EM2217005

Client : VENTIA UTILITY SERVICES PTY LTD

Extraction / Prep Date Extraction / Prep Date extracted Due for extracted	07-Sep-2022 07-Sep-2022 07-Sep-2022	Analysis Due for analysis 29-Sep-2022 30-Sep-2022 08-Sep-2022	Evaluation
EA010P: Conductivity by PC Titrator Clear Plastic Bottle - Natural (EA010-P) BH10, BH4, U/S BH3, BH3 Clear Plastic Bottle - Natural (EA010-P) BH6 D2-Sep-2022 EA015: Total Dissolved Solids dried at 180 ± 5 °C Clear Plastic Bottle - Natural (EA015H) BH10, BH14, U/S BH3, BH14, U/S BH3, BH14, O1-Sep-2022 ED037P: Alkalinity by PC Titrator	 07-Sep-2022 07-Sep-2022	29-Sep-2022 30-Sep-2022 08-Sep-2022	✓ ✓
Clear Plastic Bottle - Natural (EA010-P) BH10,	 07-Sep-2022 07-Sep-2022	30-Sep-2022 08-Sep-2022	✓
BH10, BH4, U/S BH3, Clear Plastic Bottle - Natural (EA010-P) BH6 EA015: Total Dissolved Solids dried at 180 ± 5 °C Clear Plastic Bottle - Natural (EA015H) BH10, BH4, U/S BH3, BH3 Clear Plastic Bottle - Natural (EA015H) BH6 Clear Plastic Bottle - Natural (EA015H) BH6 Clear Plastic Bottle - Natural (EA015H) BH7 BH8 BH9 Clear Plastic Bottle - Natural (EA015H) BH9 BH9 Clear Plastic Bottle - Natural (EA015H) BH6 Clear Plastic Bottle - Natural (EA015H) BH6 Clear Plastic Bottle - Natural (EA015H) BH6	 07-Sep-2022 07-Sep-2022	30-Sep-2022 08-Sep-2022	✓
BH4,	 07-Sep-2022 07-Sep-2022	30-Sep-2022 08-Sep-2022	✓
@ BH3 Clear Plastic Bottle - Natural (EA010-P) BH6 02-Sep-2022 EA015: Total Dissolved Solids dried at 180 ± 5 °C Clear Plastic Bottle - Natural (EA015H) BH10, BH14, 01-Sep-2022 BH4, U/S BH3, @ BH3 Clear Plastic Bottle - Natural (EA015H) BH6 02-Sep-2022 ED037P: Alkalinity by PC Titrator	 07-Sep-2022	08-Sep-2022	
Clear Plastic Bottle - Natural (EA010-P) BH6	 07-Sep-2022	08-Sep-2022	
BH6 02-Sep-2022 EA015: Total Dissolved Solids dried at 180 ± 5 °C Clear Plastic Bottle - Natural (EA015H) BH10, BH14, 01-Sep-2022 BH4, U/S BH3, @ BH3 Clear Plastic Bottle - Natural (EA015H) BH6 02-Sep-2022 ED037P: Alkalinity by PC Titrator	 07-Sep-2022	08-Sep-2022	
EA015: Total Dissolved Solids dried at 180 ± 5 °C Clear Plastic Bottle - Natural (EA015H) BH10, BH4, U/S BH3, @ BH3 Clear Plastic Bottle - Natural (EA015H) BH6 02-Sep-2022 ED037P: Alkalinity by PC Titrator	 07-Sep-2022	08-Sep-2022	
Clear Plastic Bottle - Natural (EA015H) BH10,			✓
BH10, BH14, U/S BH3, U/S BH3, U/S BH3, U/S BH3 Clear Plastic Bottle - Natural (EA015H) BH6 ED037P: Alkalinity by PC Titrator			✓
BH4, U/S BH3, @ BH3 Clear Plastic Bottle - Natural (EA015H) BH6 02-Sep-2022 ED037P: Alkalinity by PC Titrator			✓
@ BH3 Clear Plastic Bottle - Natural (EA015H) BH6 02-Sep-2022 ED037P: Alkalinity by PC Titrator	 07-Sep-2022	00.0	
Clear Plastic Bottle - Natural (EA015H) BH6 02-Sep-2022 ED037P: Alkalinity by PC Titrator	 07-Sep-2022	00.0	
BH6 02-Sep-2022 ED037P: Alkalinity by PC Titrator	 07-Sep-2022	00.0	
ED037P: Alkalinity by PC Titrator	 07-Sep-2022	00 0 000	1
		09-Sep-2022	✓
Clear Plastic Rottle - Natural (FD037-P)			
Picui i lustic Bottic - Itutului (EBVVI-I)			
BH10, BH14, 01-Sep-2022	 07-Sep-2022	15-Sep-2022	✓
BH4, U/S BH3,			
@ BH3			
Clear Plastic Bottle - Natural (ED037-P)			
BH6 02-Sep-2022	 07-Sep-2022	16-Sep-2022	✓
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA			
Clear Plastic Bottle - Natural (ED041G)			
BH10, BH14, 01-Sep-2022	 05-Sep-2022	29-Sep-2022	✓
BH4, U/S BH3,			
@ BH3			
Clear Plastic Bottle - Natural (ED041G)			
BH6 02-Sep-2022	 05-Sep-2022	30-Sep-2022	✓
ED045G: Chloride by Discrete Analyser			
Clear Plastic Bottle - Natural (ED045G)			
BH10, BH14, 01-Sep-2022	 05-Sep-2022	29-Sep-2022	✓
BH4, U/S BH3,			
@ BH3			
Clear Plastic Bottle - Natural (ED045G)			
BH6 02-Sep-2022	 05-Sep-2022	30-Sep-2022	✓
ED093F: Dissolved Major Cations			
Clear Plastic Bottle - Natural (ED093F)			
BH10, BH14, 01-Sep-2022	 06-Sep-2022	08-Sep-2022	✓
BH4, U/S BH3,			
@ BH3			
Clear Plastic Bottle - Natural (ED093F)			
BH6 02-Sep-2022	 06-Sep-2022	09-Sep-2022	✓

Page : 4 of 9
Work Order : EM2217005

Client : VENTIA UTILITY SERVICES PTY LTD

Matrix: WATER					Evaluation	: x = Holding time	breach ; ✓ = Withi	n holding time.
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EG020T: Total Metals by ICP-MS								
Clear Plastic Bottle - Nitric Acid; Unfiltered (EG020A-T)								
BH10,	BH14,	01-Sep-2022	06-Sep-2022	28-Feb-2023	✓	06-Sep-2022	28-Feb-2023	✓
BH4,	U/S BH3,							
@ BH3								
Clear Plastic Bottle - Nitric Acid; Unfiltered (EG020A-T)								
BH6		02-Sep-2022	06-Sep-2022	01-Mar-2023	✓	06-Sep-2022	01-Mar-2023	✓
EK055G: Ammonia as N by Discrete Analyser								
Clear Plastic Bottle - Sulfuric Acid (EK055G)								
BH10,	BH14,	01-Sep-2022				06-Sep-2022	29-Sep-2022	✓
BH4,	U/S BH3,							
@ BH3								
Clear Plastic Bottle - Sulfuric Acid (EK055G)								
BH6		02-Sep-2022				06-Sep-2022	30-Sep-2022	✓
EK057G: Nitrite as N by Discrete Analyser								
Clear Plastic Bottle - Natural (EK057G)								
BH10,	BH14,	01-Sep-2022				03-Sep-2022	03-Sep-2022	✓
BH4,	U/S BH3,							
@ BH3								
Clear Plastic Bottle - Natural (EK057G)								
BH6		02-Sep-2022				03-Sep-2022	04-Sep-2022	✓
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Ana	lyser							
Clear Plastic Bottle - Sulfuric Acid (EK059G)								
BH10,	BH14,	01-Sep-2022				06-Sep-2022	29-Sep-2022	✓
BH4,	U/S BH3,							
@ BH3								
Clear Plastic Bottle - Sulfuric Acid (EK059G)								
BH6		02-Sep-2022				06-Sep-2022	30-Sep-2022	✓
EK061G: Total Kjeldahl Nitrogen By Discrete Analyser								
Clear Plastic Bottle - Sulfuric Acid (EK061G)								
BH10,	BH14,	01-Sep-2022	07-Sep-2022	29-Sep-2022	✓	07-Sep-2022	29-Sep-2022	✓
BH4,	U/S BH3,							
@ BH3								
Clear Plastic Bottle - Sulfuric Acid (EK061G)								
BH6		02-Sep-2022	07-Sep-2022	30-Sep-2022	✓	07-Sep-2022	30-Sep-2022	✓
EP005: Total Organic Carbon (TOC)								
Amber TOC Vial - Sulfuric Acid (EP005)								
BH10,	BH14,	01-Sep-2022				02-Sep-2022	29-Sep-2022	✓
BH4,	U/S BH3,							
@ BH3								
Amber TOC Vial - Sulfuric Acid (EP005)								
BH6		02-Sep-2022				02-Sep-2022	30-Sep-2022	✓

Page : 5 of 9
Work Order : EM2217005

Client : VENTIA UTILITY SERVICES PTY LTD

Matrix: WATER					Evaluation	n: 🗴 = Holding time	breach ; ✓ = Withi	n holding time
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP026SP: Chemical Oxygen Dema	and (Spectrophotometric)							
Clear Plastic Bottle - Sulfuric Acid	(EP026SP)							
BH10,	BH14,	01-Sep-2022				02-Sep-2022	29-Sep-2022	✓
BH4,	U/S BH3,							
@ BH3								
Clear Plastic Bottle - Sulfuric Acid	(EP026SP)							
BH6		02-Sep-2022				02-Sep-2022	30-Sep-2022	✓
EP045: Volatile Acids as CH3COO	Н							
Clear Plastic Bottle - Natural (EP04	5)							
BH10,	BH14,	01-Sep-2022				02-Sep-2022	15-Sep-2022	✓
BH4,	U/S BH3,							
@ BH3								
Clear Plastic Bottle - Natural (EP04	5)							
BH6		02-Sep-2022				02-Sep-2022	16-Sep-2022	✓

Page 6 of 9 Work Order EM2217005

VENTIA UTILITY SERVICES PTY LTD Client

Creswick Landfill 2 of 3 Project

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to

the expected rate. A listing of breaches is provided in the Summary of Outliers.

the expected	Tale. A list	iliy oi bicac	ries is brovio	ded iii tile 30	illillially Ol	Outileis

Matrix: WATER				Evaluation	n: × = Quality Co	not within specification; ✓ = Quality Control frequency within specification	
Quality Control Sample Type		Co	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	ОC	Regular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Alkalinity by Auto Titrator	ED037-P	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Ammonia as N by Discrete analyser	EK055G	4	31	12.90	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Chemical Oxygen Demand (COD) (Spectrophotometric)	EP026SP	2	13	15.38	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Conductivity by Auto Titrator	EA010-P	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Major Cations - Dissolved	ED093F	2	13	15.38	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	19	10.53	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
pH by Auto Titrator	EA005-P	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Dissolved Solids (High Level)	EA015H	4	40	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	4	37	10.81	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Organic Carbon	EP005	2	15	13.33	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Volatile Acids as CH3COOH	EP045	2	15	13.33	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Alkalinity by Auto Titrator	ED037-P	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Ammonia as N by Discrete analyser	EK055G	2	31	6.45	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Chemical Oxygen Demand (COD) (Spectrophotometric)	EP026SP	1	13	7.69	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Conductivity by Auto Titrator	EA010-P	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Major Cations - Dissolved	ED093F	1	13	7.69	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
pH by Auto Titrator	EA005-P	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Dissolved Solids (High Level)	EA015H	3	40	7.50	7.50	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	2	37	5.41	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Organic Carbon	EP005	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Volatile Acids as CH3COOH	EP045	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Ammonia as N by Discrete analyser	EK055G	2	31	6.45	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Chemical Oxygen Demand (COD) (Spectrophotometric)	EP026SP	1	13	7.69	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G	1	20	5.00	5.00	√	NEPM 2013 B3 & ALS QC Standard
Conductivity by Auto Titrator	EA010-P	1	20	5.00	5.00	√	NEPM 2013 B3 & ALS QC Standard

Page : 7 of 9
Work Order : EM2217005

Client : VENTIA UTILITY SERVICES PTY LTD

Matrix: WATER				Evaluatio	n: × = Quality Co	entrol frequency	not within specification; ✓ = Quality Control frequency within specification
Quality Control Sample Type		С	ount	Rate (%)			Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
Method Blanks (MB) - Continued							
Major Cations - Dissolved	ED093F	1	13	7.69	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Dissolved Solids (High Level)	EA015H	2	40	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	2	37	5.41	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Organic Carbon	EP005	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Volatile Acids as CH3COOH	EP045	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
Ammonia as N by Discrete analyser	EK055G	2	31	6.45	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Chemical Oxygen Demand (COD) (Spectrophotometric)	EP026SP	1	13	7.69	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	2	37	5.41	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Organic Carbon	EP005	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Page : 8 of 9
Work Order : EM2217005

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill 2 of 3

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
pH by Auto Titrator	EA005-P	WATER	In house: Referenced to APHA 4500 H+ B. This procedure determines pH of water samples by automated ISE. This method is compliant with NEPM Schedule B(3)
Conductivity by Auto Titrator	EA010-P	WATER	In house: Referenced to APHA 2510 B. This procedure determines conductivity by automated ISE. This method is compliant with NEPM Schedule B(3)
Total Dissolved Solids (High Level)	EA015H	WATER	In house: Referenced to APHA 2540C. A gravimetric procedure that determines the amount of `filterable` residue in an aqueous sample. A well-mixed sample is filtered through a glass fibre filter (1.2um). The filtrate is evaporated to dryness and dried to constant weight at 180+/-5C. This method is compliant with NEPM Schedule B(3)
Alkalinity by Auto Titrator	ED037-P	WATER	In house: Referenced to APHA 2320 B This procedure determines alkalinity by automated measurement (e.g. PC Titrate) on a settled supernatant aliquot of the sample using pH 4.5 for indicating the total alkalinity end-point. This method is compliant with NEPM Schedule B(3)
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	WATER	In house: Referenced to APHA 4500-SO4. Dissolved sulfate is determined in a 0.45um filtered sample. Sulfate ions are converted to a barium sulfate suspension in an acetic acid medium with barium chloride. Light absorbance of the BaSO4 suspension is measured by a photometer and the SO4-2 concentration is determined by comparison of the reading with a standard curve. This method is compliant with NEPM Schedule B(3)
Chloride by Discrete Analyser	ED045G	WATER	In house: Referenced to APHA 4500 CI - G.The thiocyanate ion is liberated from mercuric thiocyanate through sequestration of mercury by the chloride ion to form non-ionised mercuric chloride. In the presence of ferric ions the liberated thiocynate forms highly-coloured ferric thiocynate which is measured at 480 nm.
Major Cations - Dissolved	ED093F	WATER	In house: Referenced to APHA 3120 and 3125; USEPA SW 846 - 6010 and 6020; Cations are determined by either ICP-AES or ICP-MS techniques. This method is compliant with NEPM Schedule B(3) Sodium Adsorption Ratio is calculated from Ca, Mg and Na which determined by ALS in house method QWI-EN/ED093F. This method is compliant with NEPM Schedule B(3) Hardness parameters are calculated based on APHA 2340 B. This method is compliant with NEPM Schedule B(3)
Total Metals by ICP-MS - Suite A	EG020A-T	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Ammonia as N by Discrete analyser	EK055G	WATER	In house: Referenced to APHA 4500-NH3 G Ammonia is determined by direct colorimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)
Nitrite as N by Discrete Analyser	EK057G	WATER	In house: Referenced to APHA 4500-NO2- B. Nitrite is determined by direct colourimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)
Nitrate as N by Discrete Analyser	EK058G	WATER	In house: Referenced to APHA 4500-NO3- F. Nitrate is reduced to nitrite by way of a chemical reduction followed by quantification by Discrete Analyser. Nitrite is determined seperately by direct colourimetry and result for Nitrate calculated as the difference between the two results. This method is compliant with NEPM Schedule B(3)
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	WATER	In house: Referenced to APHA 4500-NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by Chemical Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)

Page : 9 of 9
Work Order : EM2217005

Client : VENTIA UTILITY SERVICES PTY LTD

Analytical Methods	Method	Matrix	Method Descriptions
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	WATER	In house: Referenced to APHA 4500-Norg D (In house). An aliquot of sample is digested using a high temperature Kjeldahl digestion to convert nitrogenous compounds to ammonia. Ammonia is determined colorimetrically by discrete analyser. This method is compliant with NEPM Schedule B(3)
Ionic Balance by PCT DA and Turbi SO4 DA	* EN055 - PG	WATER	In house: Referenced to APHA 1030F. This method is compliant with NEPM Schedule B(3)
Field Tests (performed by external sampler)	* EN67-B02	WATER	Field determinations as per methods described in APHA or supplied by client. The analysis is performed in the field by non-ALS samplers. ALS NATA accreditation does not apply for this service.
Total Organic Carbon	EP005	WATER	In house: Referenced to APHA 5310 B, The automated TOC analyzer determines Total and Inorganic Carbon by IR cell. TOC is calculated as the difference. This method is compliant with NEPM Schedule B(3)
Chemical Oxygen Demand (COD) (Spectrophotometric)	EP026SP	WATER	In house: Referenced to APHA 5220 D. Samples are digested with a known excess of an acidic potassium dichromate solution using silver sulfate as a catalyst. The chromium is reduced from the Cr (VI) oxidation state to the Cr (III) state by the oxygen present in the organic material. Both of these chromium species are coloured and absorb in the visible region of (400nm & 600nm) the spectrum. The oxidisable organic matter can be calculated in terms of oxygen equivalents.
Volatile Acids as CH3COOH	EP045	WATER	In house: Referenced to APHA 5560 C. Steam distillable acids are captured in caustic solution and determined titremetrically. This method is compliant with NEPM Schedule B(3)
Preparation Methods	Method	Matrix	Method Descriptions
TKN/TP Digestion	EK061/EK067	WATER	In house: Referenced to APHA 4500 Norg - D; APHA 4500 P - H. This method is compliant with NEPM Schedule B(3)
Digestion for Total Recoverable Metals	EN25	WATER	In house: Referenced to USEPA SW846-3005. Method 3005 is a Nitric/Hydrochloric acid digestion procedure used to prepare surface and ground water samples for analysis by ICPAES or ICPMS. This method is compliant with NEPM Schedule B(3)

BURWOOD VIC 3125

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order : EM2217005

Client : VENTIA UTILITY SERVICES PTY LTD Laboratory : Environmental Division Melbourne

Contact : ROBERT CALLANDER Contact : Peter Ravlic

Address : 25-37 HUNTINGDALE ROAD Address : 4 Westall Rd Springvale VIC Australia

3171

 Telephone
 : --- Telephone
 : +6138549 9645

 Facsimile
 : --- Facsimile
 : +61-3-8549 9626

Project : Creswick Landfill 2 of 3 Page : 1 of 3

 Order number
 : --- Quote number
 : EM2016THISER0010 (ME/793/19)

 C-O-C number
 : --- QC Level
 : NEPM 2013 B3 & ALS QC Standard

Site : ----Sampler :

oumpier .

Dates

Date Samples Received : 02-Sep-2022 10:45 Issue Date : 02-Sep-2022 Client Requested Due : 09-Sep-2022 Scheduled Reporting Date : 09-Sep-2022

Date

Delivery Details

 Mode of Delivery
 : Client Drop Off
 Security Seal
 : Not Available

 No. of coolers/boxes
 : 1
 Temperature
 : 1.4°C - Ice present

Receipt Detail : No. of samples received / analysed : 6 / 6

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- Please direct any queries related to sample condition / numbering / breakages to Client Services.
- Sample Disposal Aqueous (3 weeks), Solid (2 months) from receipt of samples.
- Analytical work for this work order will be conducted at ALS Springvale.
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The laboratory will process these samples unless instructions are received from you indicating you do not wish to proceed. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.

: 02-Sep-2022 Issue Date

Page

2 of 3 EM2217005 Amendment 0 Work Order

Client : VENTIA UTILITY SERVICES PTY LTD

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

process necessal tasks. Packages as the determinatasks, that are included in the sampling default 00:00 on	ry for the executi may contain ad ation of moisture uded in the package. time is provided, the date of sampling date wi	the sampling time will g. If no sampling date ll be assumed by the ckets without a time	WATER - EA005P pH (Auto Titrator)	WATER - EA010P Electrical Conductivity (Auto Titrator)	WATER - EK055G Ammonia as N By Discrete Analyser	WATER - EK058G Nitrate as N by Discrete Analyser	WATER - EK061G Total Kjeldahl Nitrogen as N (TKN) By Discrete	WATER - EP005 Total Organic Carbon (TOC)	WATER - EP045 Volatile Acids as CH3COOH
EM2217005-001	01-Sep-2022 16:15	BH10	✓	✓	✓	✓	✓	✓	✓
EM2217005-002	01-Sep-2022 09:46	BH14	✓	✓	✓	✓	✓	✓	✓
EM2217005-003	02-Sep-2022 13:12	BH4	✓	✓	✓	✓	✓	✓	✓
EM2217005-004	01-Sep-2022 07:29	BH6	✓	✓	✓	✓	✓	✓	✓
EM2217005-005	01-Sep-2022 10:55	U/S BH3	✓	✓	✓	✓	✓	✓	✓
EM2217005-006	01-Sep-2022 07:55	@ BH3	✓	✓	✓	✓	✓	✓	✓
Matrix: WATER <i>Laboratory sample ID</i>	Sampling date / time	Sample ID	WATER - EA015H Total Dissolved Solids - Standard Level	WATER - EG020T Total Metals by ICP/MS (including digestion)	WATER - EN67-B02 Field Tests (performed by external sampler)	WATER - EP026SP Chemical Oxygen Demand (COD)	WATER - NT-01 & 02 Ca, Mg, Na, K, Cl, SO4, Alkalinity		
EM2217005-001	01-Sep-2022 16:15	BH10	✓	✓	✓	✓	✓		
EM2217005-002	01-Sep-2022 09:46	BH14	✓	✓	✓	✓	✓		
EM2217005-003	02-Sep-2022 13:12	BH4	✓	✓	✓	✓	✓		
EM2217005-004	01-Sep-2022 07:29	BH6	✓	✓	✓	✓	✓		
EM2217005-005	01-Sep-2022 10:55	U/S BH3	✓	✓	✓	✓	✓		
EM2217005-006	01-Sep-2022 07:55	@ BH3	✓	✓	✓	✓	✓		

Proactive Holding Time Report

The following table summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory.

Matrix: WATER

Evaluation: **x** = Holding time breach ; ✓ = Within holding time.

Method		Due for	Due for	Samples R	eceived	Instructions Received		
Client Sample ID(s)	Container	extraction analysis		Date	Evaluation	Date	Evaluation	
EA005-P: pH by Au	to Titrator							
@ BH3	Clear Plastic Bottle - Natural		01-Sep-2022	02-Sep-2022	×			
BH10	Clear Plastic Bottle - Natural		01-Sep-2022	02-Sep-2022	×			
BH14	Clear Plastic Bottle - Natural		01-Sep-2022	02-Sep-2022	*			
BH6	Clear Plastic Bottle - Natural		01-Sep-2022	02-Sep-2022	*			
U/S BH3	Clear Plastic Bottle - Natural		01-Sep-2022	02-Sep-2022	*			

: 02-Sep-2022 Issue Date

Page

3 of 3 EM2217005 Amendment 0 Work Order

- Purchase Order Request Letter (PO_Request)

Client : VENTIA UTILITY SERVICES PTY LTD

Requested Deliverables

Email	Nicole.Robins@ventia.com
Email	Isaac.Saunders@ventia.com.au
Email	robert.callander@ventia.com.au
	Email

Email

robert.callander@ventia.com.au

Contact:			ventia				Job Ref:	Ref:			Cresv	Creswick Landfill 2 of 3	dfill 2 o	of 3	
	#	Ro	Robert Callander	ıder				TESTS	REG	REQUIRED	DAS	AS PER Q	NOTE	QUOTE ME/412/16	9
Address:	S:	25-37 Huntingdale Road, Burwood, 3	dale Road,	Burwood	1, 3125										
Phone:	e: 0427529051	29051	Fax:												
Email:	-	isaac.saunders@ventia.com.au	com.au												_ :
P/O No.:	1	Qu	Quote No.:										ш≥	Environmental Division Melbourne	livision
T/A Time:	 •						1			(Work Order Reference	7005
Sample ID	Sample	Sample Description	No of Containers	Date Sampled	Time		НА	EC	DO	TEMP	ОВР	JWS			
BH10 Gr	Groundwater bore	bore .	7	1/4/22	1615	3	5-99	169	0.35	12.61	9.96	2.26			
BH14 Gr	Groundwater bore	bore bore	t	16/22	376	3	6.42	00		~	-30.7	23			
1344	~	11	t	1/5/12	1312	3			50.0	12.70	-82.3	75.7	_	Telephone : + 61-3-8549 9600	0096
LB1 Le	Leachate bore	9.	1/												
LB2 Le	Leachate bore	e													
LB3 Le	Leachate bore 🌞	ə.						NO.	SAMPLE	- SWL ONLY	ONLY				
BH6 6	Ground water	vater bore	t	2/9/22	6260	3	5.03	713	0.34	13.82	242.0 11.72	11.72			
BLIND BI	lind dup (an	Blind dup (analysed by ALS)		Towns											
RINSATE RI	Rinsate blank	¥		1											
3				WHILE STREET	r.	a trans	8								
1	Special	Please email a signed copy of this sheet to	ined copy of	f this shee		odn pod	Burwood upon receipt	ot.							
Instru	Instructions:						Ä								
Relinquished By:	hed By:	Company:	Ď	Date:		Time:		Recei	Received By:	1	Cor	Company:		Date:	Time:
A Callander		Ventia	1/4/22	22/	0401	Q		KSF	11		ALS			219/22 1	10.45
This form is for recc over-ride pricing ag As an Occupational received be undama	ording of sample greements, OHS Health and Safe	This form is for recording of sample data after prior consultation with an analyst regarding sampling procedures and does not over-ride pricing agreements, OHS requirements and our terms and conditions. As an Occupational Health and Safety consideration, it is a requirement of Ecowise Environmental (Victoria), that all samples received be undamaged and prior advice given in writing of any potential health risks.	ation with an anal ms and condition equirement of Eco	yst regarding is. owise Environ th risks.	sampling proc	edures and ia), that all	d does not samples	LAB US	LAB USE ONLY	Š	Sample conditions: Sample	itions: Samples wi es trans	Samples Samples Ithin recom	tions: Samples received undamaged [Yes/No] Samples adequately preserved [Yes/No] Samples within recommended holding times: [Yes/No] es transported at appropriate temperature [Yes/No]	ged [Yes/Noved [Yes/Noves: [Yes/Noves [Yes/N

Contact: Address: 26-37 Huntingdale Road, Burwood, 3125 Phone:		Client:		Ventia				Job Ref:	Ref:			ວັ	Creswick Landfill	Landfill		
Time	လ	ntact:	œ	obert Calla	nder			•	TESTS	REG	UIRE	DAS	PER G	UOTE	ME/412	1/16
Time	Ade	dress:	25-37 Huntin	gdale Road,	, Burwood	1, 3125										
Time E C C E E C E E E E	Δ.	hone:	0427529051	Fax:												
Time E D D		Email:	isaac.saunders@ventik	a.com.au												
Fime Fime F C C E E C E E E E E	P/C	O No.:	g	note No.:												
Time	T/A	Time:									(
122 1015 U 7.57 218.8 10.65 8.90 26.4 122 1015 U 7.55 218.8 10.42 8.70 -36.6 10.42 8.70 -36.6 10.42 8.70 -36.6 10.42 8.70 -36.6 10.42 8.70 -36.6 10.42 8.70 -36.6 10.42 8.70 -36.6 10.42 8.70 -36.6 10.42 8.70 -36.6 10.42 8.70 -36.6 10.42 8.70 -36.6 10.42 8.70 10.42 8.70 10.42	Sample		Sample Description	No of Containers		Time		НА	EC	DO	TEMP	ЧЯО	٦MS			
122 1015 U 7.55 215.8 10.42 8.70 -36.0	U/S BH3	Cree	k Sample	٠	1/4/15	5501	2		-	10.65	8.90	26.43	L			
sheet to Burwood office upon receipt. Time: Received By: Control of the control of the samples of the control	@ BH3	Cree	k Sample	٦	1/4/22	1015			215.8			-36.b	1			
sheet to Burwood office upon receipt. Time: Received By: Control of the control of the samples of the control of the samples of the control	D/S BH3	Cree	k Sample													
sheet to Burwood office upon receipt. Time: Received By: Control of the control																
sheet to Burwood office upon receipt. Time: Received By: Control of the control	Leachate		ace water sample													
sheet to Burwood office upon receipt. Time: Received By: Color and does not LAB USE ONLY Sample convironmental (Victoria), that all samples	Wetland	Surfa	ace water sample													
Sheet to Burwood office upon receipt. Time: Received By: All ding sampling procedures and does not wironmental (Victoria), that all samples	Dredge	Surfa	ace water sample													
Sheet to Burwood office upon receipt. Time: Received By: C. All All Sample convironmental (Victoria), that all samples					1											
Time: Received By: Co	=	Sp.		igned copy o	of this shee	et to Burw	ood offi	ce upon	receipt.							
ding sampling procedures and does not LAB USE ONLY Sample co	Relir	ndnishe		٥	ate:		Time:		Receiv	/ed By:		Con	npany:		Date:	Time:
ding sampling procedures and does not LAB USE ONLY Sample co	D A	iallan		7/	5	1001	2		B		A	87			2/9/22	10.45
	This form is over-ride pric As an Occup received be u	for recordir sing agreen ational Hea ındamaged	ng of sample data after prior consunents, OHS requirements and our talth and Safety consideration, it is a land prior advice given in writing o	Itation with an ana erms and conditio ≀ requirement of E f any potential he	alyst regarding sins. cowise Environalth risks.	sampling proc mental (Victor	edures and	l does not samples	LAB US	E ONLY	Š	Imple condi	tions: Samples wi mples trans	Samples Samples a ithin recomm	received undar adequately pres ended holding propriate tempe	naged [Yes/No] served [Yes/No] times: [Yes/No] rature [Yes/No]

Document: OF002 i1

CI	ient:			Ver	ntia	***************************************			Job	Ref:			Cresv	vick Lar	ndfill 2 of 3
Con	tact:			Robert C	allar	der				TEST	SREC	UIRE	DAS	PER C	UOTE ME/412/16
Addr	ess:		25-37 Hun	tingdale R	oad,	Burwood	l, 3125								
Ph	one:	0427	529051	Fa	x:										
Er	nail:		.saunders@ve						1						
P/O	No.:	rober	t.callander@ve	Quote No					-		-				Environmental Division Melbourne
T/A T	ime:								-						Work Order Reference EM2217005
Sample ID		Samp	le Description	No Conta		Date Sampled	Time sampled		HH	EC	00	TEMP	ORP	SWL	
BH10	Grou	ndwat	er bore	4		1/9/22	1615	W	5-99	691	0.35	12-61	96.6	2.26	
BH124	Grou	ndwat	er bore	4		1/9/22	946	w	6.47	1608		10.68		223	
1344		N	14	4		1/9/22	1312	W	6-36	2378		12-70	-82.3	4.52	Telephone: +61-3-8549 9600
LB1	Leac	hate be	ore												
LB2	Leac	hate be	ore												
LB3	Leac	hate b	ore 🤲							NC	SAMPL	E – SWL	ONLY		
BH 6	Gn	banc	wester bore	- 4		2/9/22	0729	W	5.03	713	0.34	13.82	242.0	11.72	
BLIND	Blind	dup (a	analysed by AL	.S)		June High									
RINSATE	Rinsa	ate bla	nk		No. of Parties	-									
	J-6-1		*IF				2 17	. 4	29-						
Ins	Sp structi	ecial ons:	Please email	a signed co	ору о	f this shee	et to Burw	ood up	on rece	ipt.			7		
Relino		-	Compar	ıy:		ate:		Time:			eived By	:	Co	mpany:	Date: Time:
A Ca	lland	er	Ventia		2/9	122	104	0	1:	KS	F		ALS		219122 10:45
over-ride pricir As an Occupat	ng agreer ional Hea	nents, OF	iple data after prior co HS requirements and afety consideration, or advice given in writ	our terms and co	ondition	ns. cowise Environ				LABU	JSE ONLY	S	Sample cond	Samples w	Samples received undamaged [Yes/No] Samples adequately preserved [Yes/No] vithin recommended holding times: [Yes/No] sported at appropriate temperature [Yes/No]

2-4 Westall Rd, Springvale VIC 3171

CI	ient:			Ve	entia				Job	Ref:			Cr	eswick	Landfill	I		
				11722.50									O.	COWICK	Landin	•		
Con	tact:			Robert	Callar	nder				TEST	SREC	QUIRE	DAS	PER C	QUOTE	E ME/4	12/1	6
Addı	ress:		25-37 Hun	ntingdale	Road,	Burwood	1, 3125							arter con and the				233
Ph	one:	0427	529051	F	ax:													T
Eı	mail:	isaac	.saunders@ve	entia.com.	<u>au</u>													
		rober	t.callander@ve	entia.com.	<u>au</u>													
P/O	No.:			Quote N	lo.:													
T/A T	ime:																	
Sample ID		Samp	le Description		o of tainers	Date Sampled	Time sampled		H	EC	00	TEMP	ORP	SWL				
U/S BH3	-	k Samı		· (+	1/9/22	1055	U	7.52	218.8	10.65	8.90	26.43					
@ BH3	Cree	k Sam	ole	4		1/9/22	1015	W	7.55	215.8	10.42		-36.0	_				
D/S BH3	Creel	k Sam	ole						7 3 3		75 (5	3.72	30					
Leachate	Surfa	ce wat	ter sample															
Wetland	Surfa	ce wat	ter sample															
Dredge	Surfa	ce wat	ter sample															
									-							-		-
Ins	Spe structi	ecial ons:	Please email	a signed o	сору о	f this shee	t to Burw	ood off	fice upo	n receipt					100			
Relino	uished	d By:	Compai	ny:	Da	ate:		Γime:		Rece	ived By:	:	Cor	mpany:		Date		Time:
A Ce	allan	de/	Ventia		1/	9/22	v O t	p 0		RS	/		18			2/9/2	22	10.45
As an Occupat	ig agreen ional Hea	Ith and S	ple data after prior co IS requirements and afety consideration, i r advice given in writ	our terms and it is a requirem	condition ent of Ec	s. owise Environ				LAB U	SE ONLY	The State of	ample cond	Samples w	Samples ithin recom	es received un s adequately mended hold ppropriate ter	preserving tim	/ed [Yes/No] es: [Yes/No]

CI	ient:	=		Ve	ntia		-		Job	Ref:			Cı	reswick	Landfi	II		
Con	tact:			Robert					P	lease	e forv	vard	to El	JROI	INS	for a	nalv	sis
Addı	ress:		25-37 Hun	tingdale	Road,	Burwood	1, 3125								** ***			0.0
Ph	one:	04275	529051	F	ax:													
Eı	mail:		dwards@vent															
			vao@ventia.co															
D/O		robert	callander@ve			100004)/5	·		-						L	Non	120	
	No.:			Quote N	lo.: 1	190924VE	.NV								A	492	015	
T/A T	ime:											<u>_</u>				11	18	
Sample		Samn	e Description		o of	Date	Time	Matrix	품	O	0	TEMP	ORP	SWL		Mrs	gg~	-
ID		Campi	e Description	Con	ainers	Sampled	sampled	Matrix		EC	Ď	F	0	S		11	hir	
Creswick	Grou	ndwate	er	7		10/11/20	1446	W	6.54	1000	60.0	14.	Gac	1.87		18	1110	
SPLIT				L		16/11/20	1446	<u> </u>	6.54	1000	0.03	14.1	-98.9	1.07	,	80.025	- 20	
															1			
ļ															9. 2			
 									DAT		11/22				,			-
 									TIM		15 pm							
										JRIER:	URE 10	1.						-
									I tolv	EMP TO		(YES)	NO		-			•
								*		100	L:		,,,,					
		ecial	Please email	Invoices t	Nico	le.robins@	ventia.co	<u>om</u>		V	longy	V.						
	structi		Lucy.edwards							_								
Relind	quished	d By:	Compar	ny:	D	ate:		Time:		Rece	eived By	:	Со	mpany:	,	Dat	e:	Time:
A Ca	lane	e/	Ventia	a	16/	11/22	170	SO.		Sa			ALS			17/11/	22 1	105
Relind	quished	By:	Compar	ny:	D	ate:		Time:		Rece	eived By	:	Co	mpany:		Dat	e:	Time:
VL	- 0		ALS		18	/11/22	4	:22										
			ole data after prior co S requirements and c				sampling proce	edures and	does not	LAB	USE ONLY	(Sample cor	nditions:		ples received		
As an Occupat	ional Hea	Ith and Sa	afety consideration, it advice given in writi	t is a requirem	ent of Eco	owise Environ	mental (Victori	ia), that all	samples						within reco	les adequate	olding tim	

Environment Testing

www.eurofins.com.au

EnviroSales@eurofins.com

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 Tel: +61 3 8564 5000 Geelong 19/8 Lewalan Street Grovedale VIC 3216 Tel: +61 3 8564 5000

Sydney 179 Magowar Road Girraween NSW 2145 Tel: +61 2 9900 8400 NATA# 1261 Site# 1254 NATA# 1261 Site# 1254 NATA# 1261 Site# 18217

Canberra Mitchell ACT 2911

Brisbane Unit 1.2 Dacre Street 1/21 Smallwood Place Murarrie QLD 4172 Tel: +61 2 6113 8091 Tel: +61 7 3902 4600

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 NATA# 1261 Site# 20794 NATA# 1261 Site# 25079

ABN: 91 05 0159 898

Perth 46-48 Banksia Road Welshpool WA 6106 Tel: +61 8 6253 4444 NATA# 2377 Site# 2370

NZBN: 9429046024954

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Penrose, Rolleston, Auckland 1061 Christchurch 7675 Tel: +64 9 526 45 51 Tel: 0800 856 450 IANZ# 1327 IANZ# 1290

Sample Receipt Advice

Company name:

Ventia Utility Services P/L (Burwood)

Contact name:

Robert Callander **CRESWICK LANDFILL**

Project name: Project ID:

Not provided

Turnaround time: Date/Time received

5 Day Nov 18, 2022 5:15 PM

Eurofins reference

942675

Sample Information

A detailed list of analytes logged into our LIMS, is included in the attached summary table.

All samples have been received as described on the above COC.

COC has been completed correctly.

Attempt to chill was evident.

Appropriately preserved sample containers have been used.

All samples were received in good condition.

Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.

Appropriate sample containers have been used.

Sample containers for volatile analysis received with zero headspace.

Split sample sent to requested external lab.

Some samples have been subcontracted.

N/A Custody Seals intact (if used).

Notes

Contact

If you have any questions with respect to these samples, please contact your Analytical Services Manager:

Savini Suduweli on phone: or by email: SaviniSuduweli@eurofins.com

Results will be delivered electronically via email to Robert Callander - Robert.callander@ventia.com.au.

Note: A copy of these results will also be delivered to the general Ventia Utility Services P/L (Burwood) email address.

web: www.eurofins.com.au email: EnviroSales@eurofins.com

Eurofins Environment Testing Australia Pty Ltd

NATA# 1261 Site# 1254 NATA# 1261 Site# 1254 NATA# 1261 Site# 18217

ABN: 50 005 085 521

Melbourne Geelong 6 Monterey Road 19/8 Lewalan Street Dandenong South Grovedale VIC 3175 VIC 3216 Tel: +61 3 8564 5000 Tel: +61 3 8564 5000

Sydney 179 Magowar Road Girraween NSW 2145 Tel: +61 2 9900 8400 Canberra Unit 1,2 Dacre Street Mitchell ACT 2911 Tel: +61 2 6113 8091

Newcastle 1/21 Smallwood Place 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Tel: +61 2 4968 8448 NATA# 1261 Site# 20794 NATA# 1261 Site# 25079

Perth 46-48 Banksia Road Welshpool WA 6106 Tel: +61 8 6253 4444 NATA# 2377 Site# 2370

NZBN: 9429046024954 Auckland

Eurofins ARL Pty Ltd Eurofins Environment Testing NZ Ltd

Penrose,

Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Auckland 1061 Christchurch 7675 Tel: 0800 856 450 Tel: +64 9 526 45 51 IANZ# 1327 IANZ# 1290

Company Name:

Project Name:

Ventia Utility Services P/L (Burwood)

Address: Unit 11, 25-37 Huntingdale Rd

Burwood

VIC 3125

CRESWICK LANDFILL

Order No.: Report #:

942675

Phone: 03 9861 8169 03 9861 8101 Fax:

Brisbane

Murarrie

QLD 4172

Tel: +61 7 3902 4600

Received: Nov 18, 2022 5:15 PM

Due: Nov 25, 2022 **Priority:** 5 Day

ABN: 91 05 0159 898

Contact Name: Robert Callander

Eurofins Analytical Services Manager: Savini Suduweli

																			1113 AI	٠
		Sa	ımple Detail			Chemical Oxygen Demand (COD)	Chromium (filtered)	Conductivity (at 25 °C)	Dissolved Oxygen	Iron (filtered)	Nitrate (as N)	pH (at 25 °C)	Total Organic Carbon	Zinc (filtered)	Organic Nitrogen Set (as N)	Eurofins Suite B11E: CI/SO4/Alkalinity	Eurofins Suite B11C: Na/K/Ca/Mg	Total Dissolved Solids Dried at 180 °C ± 2 °C	Volatile Fatty Acids (VFA) by GC-MS	
Mel	bourne Laborato	ory - NATA # 12	61 Site # 12	54		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
Ext	ernal Laboratory	/																		
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID															
1	CRESWICK SPLIT	Nov 16, 2022	2:46PM	Water	M22-No0046553	Х	х	Х	Х	х	х	х	Х	Х	х	Х	Х	х	х	
Tes	t Counts					1	1	1	1	1	1	1	1	1	1	1	1	1	1	

Environment Testing

Ventia Utility Services P/L (Burwood) Unit 11, 25-37 Huntingdale Rd Burwood VIC 3125

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention: Robert Callander

Report 942675-W

Project name CRESWICK LANDFILL

Received Date Nov 18, 2022

			CDECMICK
Client Sample ID			CRESWICK SPLIT
Sample Matrix			Water
Eurofina Comple No			M22-
Eurofins Sample No.			No0046553
Date Sampled			Nov 16, 2022
Test/Reference	LOR	Unit	
Volatile Fatty Acids (VFA) by GC-MS			
Acetic Acid	5	mg/L	< 5
Propionic acid	5	mg/L	< 5
Isobutyric acid	5	mg/L	< 5
Butyric acid	5	mg/L	< 5
Isovaleric acid	5	mg/L	< 5
Valeric acid	5	mg/L	< 5
4-Methylvaleric acid	5	mg/L	< 5
Hexanoic acid	5	mg/L	< 5
Heptanoic acid	5	mg/L	< 5
Total VFA as Acetic Acid Equivalents	5	mg/L	< 5
Ammonia (as N)	0.01	mg/L	3.6
Chemical Oxygen Demand (COD)	25	mg/L	71
Chloride	1	mg/L	110
Conductivity (at 25 °C)	10	uS/cm	870
Dissolved Oxygen	0.01	mg/L	7.7
Nitrate (as N)	0.02	mg/L	< 0.02
Organic Nitrogen (as N)*	0.2	mg/L	1.3
pH (at 25 °C)	0.1	pH Units	8.6
Sulphate (as SO4)	5	mg/L	21
Total Dissolved Solids Dried at 180 °C ± 2 °C	10	mg/L	450
Total Kjeldahl Nitrogen (as N)	0.2	mg/L	4.9
Total Organic Carbon	5	mg/L	35
Alkalinity (speciated)			
Bicarbonate Alkalinity (as CaCO3)	20	mg/L	300
Carbonate Alkalinity (as CaCO3)	10	mg/L	25
Hydroxide Alkalinity (as CaCO3)	20	mg/L	< 20
Total Alkalinity (as CaCO3)	20	mg/L	330
Heavy Metals	•		
Chromium (filtered)	0.001	mg/L	< 0.001
Iron (filtered)	0.05	mg/L	< 0.05
Zinc (filtered)	0.005	mg/L	< 0.005

Report Number: 942675-W

Environment Testing

Client Sample ID			CRESWICK SPLIT
Sample Matrix			Water
Eurofins Sample No.			M22- No0046553
Date Sampled			Nov 16, 2022
Test/Reference	LOR	Unit	
Alkali Metals			
Calcium	0.5	mg/L	14
Magnesium	0.5	mg/L	28
Potassium	0.5	mg/L	3.0
Sodium	0.5	mg/L	110

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Volatile Fatty Acids (VFA) by GC-MS	Melbourne	Nov 21, 2022	28 Day
- Method: LTM-ORG-2360 Determination of Volatile Fatty Acids in Water by GC-MS		,	,
Chemical Oxygen Demand (COD)	Melbourne	Nov 21, 2022	28 Days
- Method: LTM-INO-4220 Determination of COD in Water		·	·
Conductivity (at 25 °C)	Melbourne	Nov 19, 2022	28 Days
- Method: LTM-INO-4030 Conductivity			•
Dissolved Oxygen	Melbourne	Nov 21, 2022	28 Days
- Method: APHA 4500-O B, C, G using Dissolved Oxygen analyser			-
Nitrate (as N)	Melbourne	Nov 19, 2022	28 Days
- Method: LTM-INO-4120 Analysis of NOx NO2 NH3 by FIA			
pH (at 25 °C)	Melbourne	Nov 19, 2022	0 Hours
- Method: LTM-GEN-7090 pH in water by ISE			
Total Organic Carbon	Melbourne	Nov 19, 2022	28 Days
- Method: LTM-INO-4060 Total Organic Carbon in water and soil			
Heavy Metals (filtered)	Melbourne	Nov 19, 2022	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Eurofins Suite B11C: Na/K/Ca/Mg	Melbourne	Nov 19, 2022	180 Days
- Method: LTM-MET-3010 Alkali Metals by ICP-AES			
Ammonia (as N)	Melbourne	Nov 19, 2022	28 Days
- Method: APHA 4500-NH3 Ammonia Nitrogen by FIA			
Organic Nitrogen (as N)*	Melbourne	Nov 18, 2022	7 Days
- Method: APHA 4500 Organic Nitrogen (N)			
Total Kjeldahl Nitrogen (as N)	Melbourne	Nov 19, 2022	28 Days
- Method: APHA 4500-Norg B,D Total Kjeldahl Nitrogen by FIA			
Eurofins Suite B11E: CI/SO4/Alkalinity			
Chloride	Melbourne	Nov 19, 2022	28 Days
- Method: LTM-INO-4090 Chloride by Discrete Analyser			
Sulphate (as SO4)	Melbourne	Nov 19, 2022	28 Days
- Method: LTM-INO-4110 Sulfate by Discrete Analyser			
Alkalinity (speciated)	Melbourne	Nov 19, 2022	14 Days
- Method: LTM-INO-4250 Alkalinity by Electrometric Titration			
Total Dissolved Solids Dried at 180 °C ± 2 °C	Melbourne	Nov 19, 2022	28 Days
- Method: LTM-INO-4170 Total Dissolved Solids in Water			

web: www.eurofins.com.au email: EnviroSales@eurofins.com

Eurofins Environment Testing Australia Pty Ltd

NATA# 1261 Site# 1254 NATA# 1261 Site# 1254 NATA# 1261 Site# 18217

ABN: 50 005 085 521

Melbourne Geelong 6 Monterey Road 19/8 Lewalan Street Dandenong South Grovedale VIC 3175 VIC 3216 Tel: +61 3 8564 5000 Tel: +61 3 8564 5000

Sydney Canberra 179 Magowar Road Unit 1.2 Dacre Street Girraween Mitchell NSW 2145 ACT 2911 Tel: +61 2 9900 8400 Tel: +61 2 6113 8091

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Tel: +61 7 3902 4600

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Tel: +61 2 4968 8448 NATA# 1261 Site# 20794 NATA# 1261 Site# 25079

Eurofins ARL Pty Ltd Eurofins Environment Testing NZ Ltd ABN: 91 05 0159 898 NZBN: 9429046024954

> Auckland 35 O'Rorke Road Penrose, Auckland 1061 Tel: +64 9 526 45 51 IANZ# 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Tel: 0800 856 450 IANZ# 1290

Company Name:

Project Name:

Address:

Ventia Utility Services P/L (Burwood)

Unit 11, 25-37 Huntingdale Rd

CRESWICK LANDFILL

Burwood

VIC 3125

Order No.: Report #:

942675 03 9861 8169

Phone: Fax:

03 9861 8101

Received: Nov 18, 2022 5:15 PM Due: Nov 25, 2022

Priority: 5 Day

Perth

Welshpool

WA 6106

46-48 Banksia Road

Tel: +61 8 6253 4444

NATA# 2377 Site# 2370

Contact Name: Robert Callander

Eurofins Analytical Services Manager: Savini Suduweli

																			IIIS AI
		Sa	imple Detail			Chemical Oxygen Demand (COD)	Chromium (filtered)	Conductivity (at 25 °C)	Dissolved Oxygen	Iron (filtered)	Nitrate (as N)	pH (at 25 °C)	Total Organic Carbon	Zinc (filtered)	Organic Nitrogen Set (as N)	Eurofins Suite B11E: CI/SO4/Alkalinity	Eurofins Suite B11C: Na/K/Ca/Mg	Total Dissolved Solids Dried at 180 °C ± 2 °C	Volatile Fatty Acids (VFA) by GC-MS
Melk	ourne Laborate	ory - NATA # 12	61 Site # 12	54		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Exte	rnal Laboratory	<i>'</i>																	
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID														
1	CRESWICK SPLIT	Nov 16, 2022	2:46PM	Water	M22-No0046553	Х	Х	х	х	х	х	х	Х	х	х	X	х	х	х
Test	Counts					1	1	1	1	1	1	1	1	1	1	1	1	1	1

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

Units

mg/kg: milligrams per kilogram mg/L: micrograms per litre µg/L: micrograms per litre

ppm: parts per million **ppb**: parts per billion
%: Percentage

org/100 mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100 mL: Most Probable Number of organisms per 100 millilitres

Terms

APHA American Public Health Association

COC Chain of Custody

CP Client Parent - QC was performed on samples pertaining to this report

CRM Certified Reference Material (ISO17034) - reported as percent recovery.

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

LOR Limit of Reporting.

Laboratory Control Sample - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

SRA Sample Receipt Advice

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

TBTO Tributyltin oxide (bis-tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment however free tributyltin was measured

and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits.

TCLP Toxicity Characteristic Leaching Procedure
TEQ Toxic Equivalency Quotient or Total Equivalence

QSM US Department of Defense Quality Systems Manual Version 5.4

US EPA United States Environmental Protection Agency

WA DWER Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30% NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.4 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Volatile Fatty Acids (VFA) by GC-MS					
Acetic Acid	mg/L	< 5	5	Pass	
Propionic acid	mg/L	< 5	5	Pass	
Isobutyric acid	mg/L	< 5	5	Pass	
Butyric acid	mg/L	< 5	5	Pass	
Isovaleric acid	mg/L	< 5	5	Pass	
Valeric acid	mg/L	< 5	5	Pass	
4-Methylvaleric acid	mg/L	< 5	5	Pass	
Hexanoic acid	mg/L	< 5	5	Pass	
Heptanoic acid	mg/L	< 5	5	Pass	
Total VFA as Acetic Acid Equivalents	mg/L	< 5	5	Pass	
Method Blank					
Ammonia (as N)	mg/L	< 0.01	0.01	Pass	
Chemical Oxygen Demand (COD)	mg/L	< 25	25	Pass	
Chloride	mg/L	< 1	1	Pass	
Nitrate (as N)	mg/L	< 0.02	0.02	Pass	
Sulphate (as SO4)	mg/L	< 5	5	Pass	
Total Dissolved Solids Dried at 180 °C ± 2 °C	mg/L	< 10	10	Pass	
Total Kjeldahl Nitrogen (as N)	mg/L	< 0.2	0.2	Pass	
Total Organic Carbon	mg/L	< 5	5	Pass	
Method Blank	, <u>.</u>			1 5.55	
Heavy Metals					
Chromium (filtered)	mg/L	< 0.001	0.001	Pass	
Iron (filtered)	mg/L	< 0.05	0.05	Pass	
Zinc (filtered)	mg/L	< 0.005	0.005	Pass	
Method Blank	, <u>.</u>	, , , ,	3,332	1 5.55	
Alkali Metals					
Calcium	mg/L	< 0.5	0.5	Pass	
Magnesium	mg/L	< 0.5	0.5	Pass	
Potassium	mg/L	< 0.5	0.5	Pass	
Sodium	mg/L	< 0.5	0.5	Pass	
LCS - % Recovery		\ \ 0.0	0.0	1 466	
Volatile Fatty Acids (VFA) by GC-MS					
Acetic Acid	%	99	70-130	Pass	
Propionic acid	%	89	70-130	Pass	
Isobutyric acid	%	92	70-130	Pass	
Butyric acid	%	91	70-130	Pass	
Isovaleric acid	%	101	70-130	Pass	
Valeric acid	%	97	70-130	Pass	
4-Methylvaleric acid	%	95	70-130	Pass	
Hexanoic acid	%	93	70-130	Pass	
Heptanoic acid	%	89	70-130	Pass	
LCS - % Recovery	70	00	70-100	1 433	
Ammonia (as N)	%	95	70-130	Pass	
Chemical Oxygen Demand (COD)	%	110	70-130	Pass	
Chloride	%	110	70-130	Pass	
Conductivity (at 25 °C)	%	117	70-130	Pass	<u> </u>
Nitrate (as N)	%	101	70-130	Pass	<u> </u>
Sulphate (as SO4)	%	78	70-130	Pass	
Total Dissolved Solids Dried at 180 °C ± 2 °C	%	112	70-130	Pass	
Total Kjeldahl Nitrogen (as N)	%	91	70-130	Pass	

Report Number: 942675-W

			% % % %	90 108 109 107			70-130 70-130 80-120 80-120	Pass Pass Pass	
Alkalinity (speciated) Total Alkalinity (as CaCO3) LCS - % Recovery Heavy Metals Chromium (filtered) Iron (filtered) Zinc (filtered) LCS - % Recovery Alkali Metals Calcium Magnesium Potassium Sodium Test			%	108 109			80-120	Pass	
Total Alkalinity (as CaCO3) LCS - % Recovery Heavy Metals Chromium (filtered) Iron (filtered) Zinc (filtered) LCS - % Recovery Alkali Metals Calcium Magnesium Potassium Sodium Test			%	108 109			80-120	Pass	
Total Alkalinity (as CaCO3) LCS - % Recovery Heavy Metals Chromium (filtered) Iron (filtered) Zinc (filtered) LCS - % Recovery Alkali Metals Calcium Magnesium Potassium Sodium Test			%	108 109			80-120	Pass	
LCS - % Recovery Heavy Metals Chromium (filtered) Iron (filtered) Zinc (filtered) LCS - % Recovery Alkali Metals Calcium Magnesium Potassium Sodium Test			%	109					
Chromium (filtered) Iron (filtered) Zinc (filtered) LCS - % Recovery Alkali Metals Calcium Magnesium Potassium Sodium Test			%	109					
Chromium (filtered) Iron (filtered) Zinc (filtered) LCS - % Recovery Alkali Metals Calcium Magnesium Potassium Sodium Test			%	109					
Iron (filtered) Zinc (filtered) LCS - % Recovery Alkali Metals Calcium Magnesium Potassium Sodium Test			%				80-120	Page	i
LCS - % Recovery Alkali Metals Calcium Magnesium Potassium Sodium Test				107				1 000	
LCS - % Recovery Alkali Metals Calcium Magnesium Potassium Sodium Test							80-120	Pass	
Alkali Metals Calcium Magnesium Potassium Sodium Test									
Magnesium Potassium Sodium Test									
Magnesium Potassium Sodium Test			%	84			80-120	Pass	
Potassium Sodium Test			%	90			80-120	Pass	
Sodium Test			%	88			80-120	Pass	
Test			%	90			80-120	Pass	
	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery									3046
Volatile Fatty Acids (VFA) by GC-MS	<u> </u>			Result 1					
	M22-No0046553	СР	%	90			70-130	Pass	
	M22-No0046553	CP	%	104			70-130	Pass	
	M22-No0046553	CP	// 0	101			70-130	Pass	
	M22-No0046553	CP	// //////////////////////////////////	99			70-130	Pass	
	M22-No0046553	CP	// //////////////////////////////////	95			70-130	Pass	
	M22-No0046553	CP	<u> </u>	91			70-130	Pass	
Spike - % Recovery	10122-1100040333		/0] 31			70-130	1 033	
Opine - 70 Necovery				Result 1					
Chemical Oxygen Demand (COD)	M22-No0044603	NCP	%	105			70-130	Pass	
` '	M22-No0046482	NCP	%	101			70-130	Pass	
Spike - % Recovery	11122 1100010102	1401	70	101			70 100	1 400	
Heavy Metals				Result 1					
	M22-No0038504	NCP	%	90			75-125	Pass	
· · · ·	M22-No0038487	NCP	%	94			75-125	Pass	
	M22-No0038487	NCP	%	107			75-125	Pass	
Spike - % Recovery		1,401	/0	107			10 120	1 433	
Alkali Metals				Result 1					
	B22-No0040291	NCP	%	84			75-125	Pass	
	B22-No0040291	NCP	// //////////////////////////////////	91			75-125	Pass	
	B22-No0040291	NCP	% %	87			75-125	Pass	
	B22-No0040291	NCP	// %	89			75-125	Pass	
	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate				<u>'</u>					2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Volatile Fatty Acids (VFA) by GC-MS				Result 1	Result 2	RPD			
, , , ,	M22-No0046728	NCP	mg/L	< 5	< 5	<1	30%	Pass	
	M22-No0046728	NCP	mg/L	< 5	< 5	<1	30%	Pass	
	M22-No0046728	NCP	mg/L	< 5	< 5	<1	30%	Pass	
	M22-No0046728	NCP	mg/L	< 5	< 5	<1	30%	Pass	
	M22-No0046728	NCP	mg/L	< 5	< 5	<1	30%	Pass	
	M22-No0046728	NCP	mg/L	< 5	< 5	<1	30%	Pass	
	M22-No0046728	NCP	mg/L	< 5	< 5	<1	30%	Pass	
	M22-No0046728	NCP	mg/L	< 5	< 5	<1	30%	Pass	
I IOAUTIOIO UOIU	M22-No0046728	NCP	mg/L	< 5	< 5	<1	30%	Pass	

Report Number: 942675-W

Duplicate									
	1		1	Result 1	Result 2	RPD			
Ammonia (as N)	B22-No0040252	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
Chemical Oxygen Demand (COD)	M22-No0044602	NCP	mg/L	40	37	6.3	30%	Pass	
Chloride	M22-No0044602	NCP	mg/L	1500	1500	<1	30%	Pass	
Conductivity (at 25 °C)	M22-No0038523	NCP	uS/cm	460	480	4.3	30%	Pass	
Dissolved Oxygen	R22-No0039935	NCP	mg/L	9.0	9.0	<1	30%	Pass	
Nitrate (as N)	B22-No0040252	NCP	mg/L	1.0	1.0	<1	30%	Pass	
pH (at 25 °C)	M22-No0038523	NCP	pH Units	7.2	7.2	pass	30%	Pass	
Sulphate (as SO4)	M22-No0044602	NCP	mg/L	330	330	<1	30%	Pass	
Total Dissolved Solids Dried at 180 °C ± 2 °C	M22-No0046553	СР	mg/L	450	450	<1	30%	Pass	
Total Kjeldahl Nitrogen (as N)	M22-No0046499	NCP	mg/L	2.9	2.8	3.2	30%	Pass	
Total Organic Carbon	M22-No0044602	NCP	mg/L	20	20	1.1	30%	Pass	
Duplicate									
Alkalinity (speciated)				Result 1	Result 2	RPD			
Bicarbonate Alkalinity (as CaCO3)	M22-No0038523	NCP	mg/L	27	31	14	30%	Pass	
Carbonate Alkalinity (as CaCO3)	M22-No0038523	NCP	mg/L	< 10	< 10	<1	30%	Pass	
Hydroxide Alkalinity (as CaCO3)	M22-No0038523	NCP	mg/L	< 20	< 20	<1	30%	Pass	
Total Alkalinity (as CaCO3)	M22-No0038523	NCP	mg/L	27	31	14	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Chromium (filtered)	M22-No0038504	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Iron (filtered)	M22-No0038504	NCP	mg/L	6.9	6.8	1.5	30%	Pass	
Zinc (filtered)	M22-No0038504	NCP	mg/L	0.59	0.58	<1	30%	Pass	
Duplicate									
Alkali Metals				Result 1	Result 2	RPD			
Calcium	M22-No0045085	NCP	mg/L	39	38	1.8	30%	Pass	
Magnesium	M22-No0045085	NCP	mg/L	23	23	<1	30%	Pass	
Potassium	M22-No0045085	NCP	mg/L	5.3	5.3	1.2	30%	Pass	
Sodium	M22-No0045085	NCP	mg/L	240	240	1.4	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used)

Attempt to Chill was evident

Yes
Sample correctly preserved

Appropriate sample containers have been used

Yes
Sample containers for volatile analysis received with minimal headspace

Yes
Samples received within HoldingTime

Yes
Some samples have been subcontracted

No

Authorised by:

Savini Suduweli Analytical Services Manager
Emily Rosenberg Senior Analyst-Metal
Mary Makarios Senior Analyst-Inorganic
Mary Makarios Senior Analyst-Metal

Glenn Jackson General Manager

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Report Number: 942675-W

CERTIFICATE OF ANALYSIS

Work Order : **EM2222748**

Client : VENTIA UTILITY SERVICES PTY LTD

Contact : ROBERT CALLANDER

Address : 25-37 HUNTINGDALE ROAD

BURWOOD VIC 3125

Telephone : ---

Project : Creswick Landfill
Order number : Creswick Landfill

C-O-C number : ---Sampler : AC
Site : ----

Quote number : ME/793/19

No. of samples received : 8
No. of samples analysed : 8

Page : 1 of 6

Laboratory : Environmental Division Melbourne

Contact : Peter Ravlic

Address : 4 Westall Rd Springvale VIC Australia 3171

Telephone : +6138549 9645

Date Samples Received : 17-Nov-2022 11:05

Date Analysis Commenced : 17-Nov-2022

Issue Date : 24-Nov-2022 18:10

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Dilani Fernando Laboratory Coordinator Melbourne External Subcontracting, Springvale, VIC

Dilani Fernando Laboratory Coordinator Melbourne Inorganics, Springvale, VIC
Jarwis Nheu Non-Metals Team Leader Melbourne Inorganics, Springvale, VIC

Page : 2 of 6 Work Order : EM2222748

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

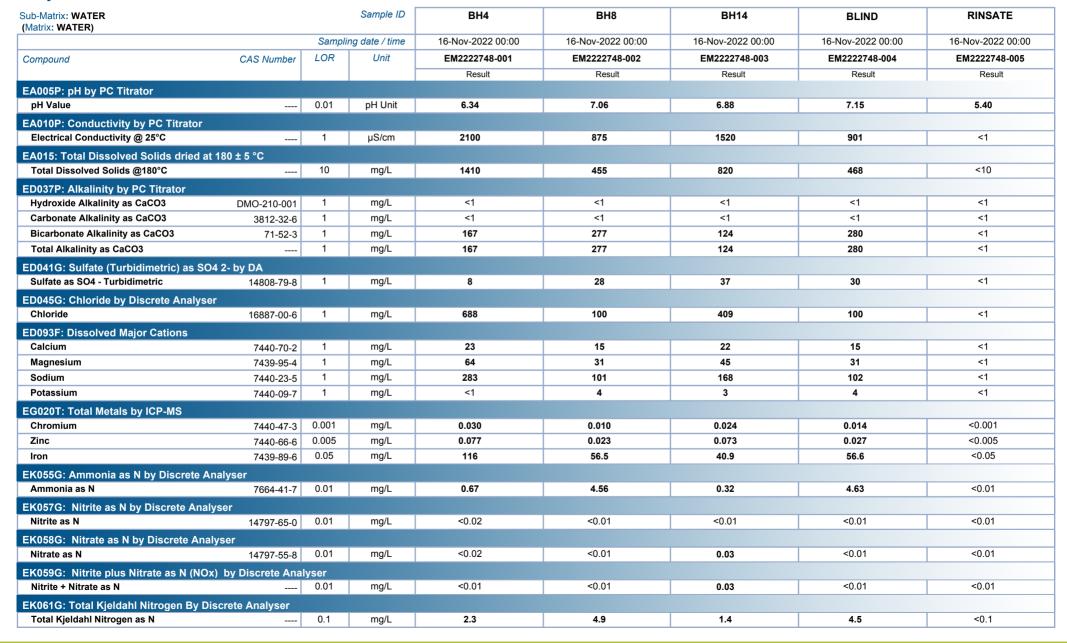
When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- EK057G: EM2222748 #1 Sample required dilution prior Nitrite analysis due to matrix interferences. LOR values have been adjusted accordingly.
- As per QWI EN55-3 Data Interpreting Procedures, Ionic balances are typically calculated using Major Anions Chloride, Alkalinity and Sulfate; and Major Cations Calcium, Magnesium, Potassium and Sodium.
 Where applicable and dependent upon sample matrix, the Ionic Balance may also include the additional contribution of Ammonia, Dissolved Metals by ICPMS and H+ to the Cations and Nitrate, SiO2 and Fluoride to the Anions
- It is recognised that TKN is less than ammonia for sample #4. However, the difference is within experimental variation of the methods.
- lonic Balance out of acceptable limits for sample #1-2 and #4 due to analytes not quantified in this report.
- lonic Balance out of acceptable limits for sample #1 and 4 due to analytes not quantified in this report.
- lonic balances were calculated using: major anions chloride, alkalinity and sulfate; and major cations calcium, magnesium, potassium and sodium.
- Ionic balances were calculated using: major anions chloride, alkalinity, sulfate; and major cations calcium, magnesium, potassium, sodium and ammonia for #2.
- ED045G: The presence of Thiocyanate, Thiosulfate and Sulfite can positively contribute to the chloride result, thereby may bias results higher than expected. Results should be scrutinised accordingly.
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

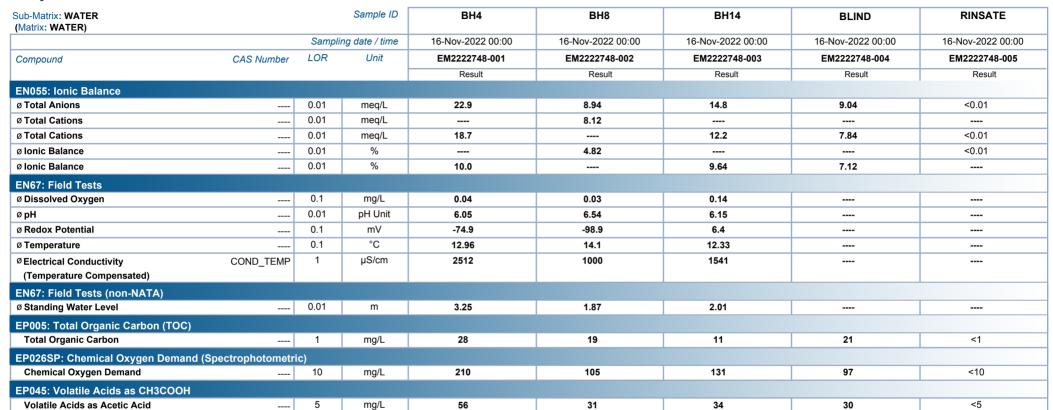


Page : 3 of 6 Work Order : EM2222748

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill

Analytical Results



Page : 4 of 6 Work Order : EM2222748

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill

Analytical Results

Page : 5 of 6
Work Order : EM2222748

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill

Analytical Results

Page : 6 of 6 Work Order : EM2222748

Client : VENTIA UTILITY SERVICES PTY LTD

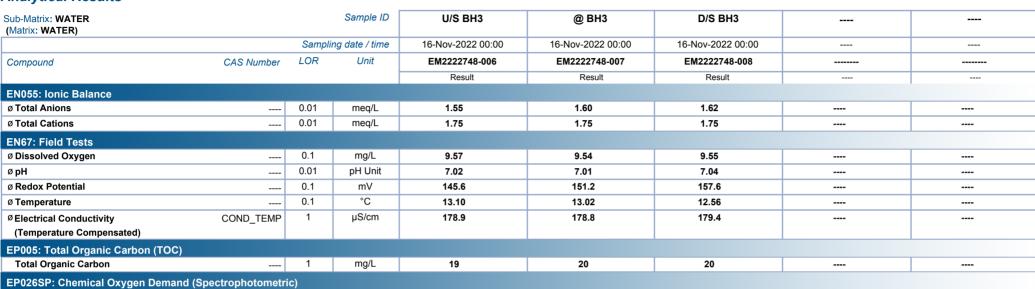
10

5

mg/L

mg/L

69


22

Project : Creswick Landfill

Analytical Results

Chemical Oxygen Demand

EP045: Volatile Acids as CH3COOH
Volatile Acids as Acetic Acid

69

16

72

23

QUALITY CONTROL REPORT

Work Order : **EM2222748**

Client : VENTIA UTILITY SERVICES PTY LTD

Contact : ROBERT CALLANDER

Address : 25-37 HUNTINGDALE ROAD

BURWOOD VIC 3125

Telephone : ---

Project : Creswick Landfill
Order number : Creswick Landfill

C-O-C number : ---Sampler : AC
Site : ----

Quote number : ME/793/19

No. of samples received : 8
No. of samples analysed : 8

Page : 1 of 7

Laboratory : Environmental Division Melbourne

Contact : Peter Ravlic

Address : 4 Westall Rd Springvale VIC Australia 3171

 Telephone
 : +6138549 9645

 Date Samples Received
 : 17-Nov-2022

 Date Analysis Commenced
 : 17-Nov-2022

 Issue Date
 : 24-Nov-2022

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Dilani Fernando	Laboratory Coordinator	Melbourne External Subcontracting, Springvale, VIC
Dilani Fernando	Laboratory Coordinator	Melbourne Inorganics, Springvale, VIC
Jarwis Nheu	Non-Metals Team Leader	Melbourne Inorganics, Springvale, VIC

Page : 2 of 7
Work Order : EM2222748

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: WATER						Laboratory L	Ouplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EA005P: pH by PC T	itrator (QC Lot: 4711734)								
EM2222745-004	Anonymous	EA005-P: pH Value		0.01	pH Unit	4.73	4.79	1.3	0% - 20%
EM2222745-003	Anonymous	EA005-P: pH Value		0.01	pH Unit	2.89	2.87	0.7	0% - 20%
EA005P: pH by PC T	itrator (QC Lot: 4712860)								
EM2222721-019	Anonymous	EA005-P: pH Value		0.01	pH Unit	7.25	7.31	0.8	0% - 20%
EM2222748-007	@ BH3	EA005-P: pH Value		0.01	pH Unit	7.04	7.06	0.3	0% - 20%
EA010P: Conductivi	ty by PC Titrator (QC Lot: 47	(11733)							
EM2222644-001	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	76	80	4.1	0% - 20%
EM2222745-003	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	1450	1440	0.7	0% - 20%
EA010P: Conductivi	ty by PC Titrator (QC Lot: 47	(12862)							
EM2222743-011	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	<1	<1	0.0	No Limit
EM2222748-007	@ BH3	EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	204	208	1.7	0% - 20%
EA015: Total Dissolv	ved Solids dried at 180 ± 5 °C	(QC Lot: 4714209)							
EM2222642-003	Anonymous	EA015H: Total Dissolved Solids @180°C		10	mg/L	7720	7940	2.8	0% - 20%
EM2222680-006	Anonymous	EA015H: Total Dissolved Solids @180°C		10	mg/L	3140	2860	9.0	0% - 20%
EM2222702-001	Anonymous	EA015H: Total Dissolved Solids @180°C		10	mg/L	9650	10000	3.6	0% - 20%
EM2222748-005	RINSATE	EA015H: Total Dissolved Solids @180°C		10	mg/L	<10	<10	0.0	No Limit
ED037P: Alkalinity b	y PC Titrator (QC Lot: 47117	735)							
EM2222745-004	Anonymous	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	1	<1	0.0	No Limit
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	1	<1	0.0	No Limit
EM2222745-003	Anonymous	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.0	No Limit

Page : 3 of 7
Work Order : EM2222748

Client : VENTIA UTILITY SERVICES PTY LTD

Sub-Matrix: WATER						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
ED037P: Alkalinity b	by PC Titrator (QC L	ot: 4711735) - continued							
EM2222745-003	Anonymous	ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	<1	<1	0.0	No Limit
ED037P: Alkalinity b	by PC Titrator (QC L	ot: 4712861)							
EM2222734-002	Anonymous	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	768	752	2.2	0% - 20%
	, ,	ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	128	125	2.9	0% - 20%
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	897	877	2.3	0% - 20%
EM2222743-011	Anonymous	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	2	<1	0.0	No Limit
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	2	<1	0.0	No Limit
FD037P: Alkalinity h	by PC Titrator (QC L								
EM2222851-002	Anonymous	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.0	No Limit
LWZZZZZZZZ T COZ	7 thonymous	ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Garbonate Alkalinity as CaCO3	71-52-3	1	mg/L	97	96	0.0	0% - 20%
		ED037-P: Dicarbonate Alkalinity as CaCO3		1	mg/L	97	96	0.0	0% - 20%
EM2222748-007	@ BH3	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.0	No Limit
LINEZZZI 10 001	@ 2110	ED037-P: Carbonate Alkalinity as CaCC3	3812-32-6	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Garbonate Alkalinity as CaCO3	71-52-3	1	mg/L	33	33	0.0	0% - 20%
		ED037-P: Dicarbonate Alkalinity as CaCO3		1	mg/L	33	33	0.0	0% - 20%
ED041G: Sulfato /Tu	urbidimetric) as SO4	2- by DA (QC Lot: 4710717)		•	mg/L		00	0.0	070 2070
EM2222719-004	<u> </u>		14000 70 0	1	m a /l	0.40	860	1.5	00/ 200/
EM2222719-004 EM2222748-002	Anonymous BH8	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8 14808-79-8	1	mg/L	848 28	28	0.0	0% - 20% 0% - 20%
	-	ED041G: Sulfate as SO4 - Turbidimetric	14000-79-0	ı	mg/L	20	20	0.0	0% - 20%
	y Discrete Analyser								
EM2222702-004	Anonymous	ED045G: Chloride	16887-00-6	1	mg/L	5200	5210	0.2	0% - 20%
EM2222212-005	Anonymous	ED045G: Chloride	16887-00-6	1	mg/L	115	117	1.9	0% - 20%
ED093F: Dissolved	Major Cations (QC L	.ot: 4710824)							
EM2222576-007	Anonymous	ED093F: Calcium	7440-70-2	1	mg/L	<1	<1	0.0	No Limit
		ED093F: Magnesium	7439-95-4	1	mg/L	<1	<1	0.0	No Limit
		ED093F: Sodium	7440-23-5	1	mg/L	<1	<1	0.0	No Limit
		ED093F: Potassium	7440-09-7	1	mg/L	<1	<1	0.0	No Limit
EM2222701-003	Anonymous	ED093F: Calcium	7440-70-2	1	mg/L	580	507	13.4	0% - 20%
		ED093F: Magnesium	7439-95-4	1	mg/L	956	841	12.8	0% - 20%
		ED093F: Sodium	7440-23-5	1	mg/L	1150	1020	12.1	0% - 20%
		ED093F: Potassium	7440-09-7	1	mg/L	300	265	12.4	0% - 20%
ED093F: Dissolved	Major Cations (QC L	ot: 4710825)							
EM2222748-003	BH14	ED093F: Calcium	7440-70-2	1	mg/L	22	22	0.0	0% - 20%
		ED093F: Magnesium	7439-95-4	1	mg/L	45	46	0.0	0% - 20%
		ED093F: Sodium	7440-23-5	1	mg/L	168	170	1.4	0% - 20%

Page : 4 of 7
Work Order : EM2222748

Client : VENTIA UTILITY SERVICES PTY LTD

Sub-Matrix: WATER						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
ED093F: Dissolved	Major Cations (QC	Lot: 4710825) - continued							
EM2222748-003	BH14	ED093F: Potassium	7440-09-7	1	mg/L	3	3	0.0	No Limit
EG020T: Total Meta	Is by ICP-MS (QC L	ot: 4710777)							
EM2222743-012	Anonymous	EG020A-T: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	0.0	No Limit
		EG020A-T: Iron	7439-89-6	0.05	mg/L	<0.05	<0.05	0.0	No Limit
EM2222720-001	Anonymous	EG020A-T: Chromium	7440-47-3	0.001	mg/L	0.013	0.011	16.2	0% - 50%
		EG020A-T: Zinc	7440-66-6	0.005	mg/L	0.283	0.265	6.6	0% - 20%
		EG020A-T: Iron	7439-89-6	0.05	mg/L	4.27	4.24	0.8	0% - 20%
EG020T: Total Meta	ls by ICP-MS (QC L	ot: 4710779)							
EM2222748-004	BLIND	EG020A-T: Chromium	7440-47-3	0.001	mg/L	0.014	0.014	0.0	0% - 50%
		EG020A-T: Zinc	7440-66-6	0.005	mg/L	0.027	0.026	0.0	No Limit
		EG020A-T: Iron	7439-89-6	0.05	mg/L	56.6	56.9	0.7	0% - 20%
EM2222752-005	Anonymous	EG020A-T: Chromium	7440-47-3	0.001	mg/L	0.015	0.014	0.0	0% - 50%
		EG020A-T: Zinc	7440-66-6	0.005	mg/L	0.078	0.079	0.0	0% - 50%
		EG020A-T: Iron	7439-89-6	0.05	mg/L	2.56	2.70	5.2	0% - 20%
EK055G: Ammonia	as N by Discrete An	alyser (QC Lot: 4711226)							
EM2222748-002	BH8	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	4.56	4.66	2.3	0% - 20%
EM2222717-002	Anonymous	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	6.68	6.80	1.8	0% - 20%
EK057G: Nitrite as	N by Discrete Analy	ser (QC Lot: 4710716)							
EM2222717-001	Anonymous	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	0.03	0.03	0.0	No Limit
EM2222748-007	@ BH3	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	0.0	No Limit
EK059G: Nitrite plu	ıs Nitrate as N (NOx)	by Discrete Analyser (QC Lot: 4711227)							
EM2222748-004	BLIND	EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	<0.01	0.0	No Limit
EM2222717-002	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	0.10	0.11	0.0	No Limit
EK061G: Total Kjeld	dahl Nitrogen By Dis	crete Analyser (QC Lot: 4713437)							
EM2222723-003	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	1.3	1.7	26.4	No Limit
EM2222756-008	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	0.9	1.1	18.2	0% - 50%
EP005: Total Organ	ic Carbon (TOC) (Q								
EM2222743-001	Anonymous	EP005: Total Organic Carbon		1	mg/L	8	6	32.4	No Limit
EM2222743-010	Anonymous	EP005: Total Organic Carbon		1	mg/L	<1	<1	0.0	No Limit
EP026SP: Chemica	-	pectrophotometric) (QC Lot: 4710121)				<u> </u>			
EM2222649-001	Anonymous	EP026SP: Chemical Oxygen Demand		10	mg/L	11500	11600	1.3	0% - 20%
	ds as CH3COOH (Q			-	J. –				
EM2222743-012	Anonymous	EP045: Volatile Acids as Acetic Acid		5	mg/L	<5	<5	0.0	No Limit
EM2222743-012 EM2222764-002	Anonymous			5	mg/L	81	78	4.0	0% - 50%
LIVIEZZZI 04-00Z	Allollylllous	EP045: Volatile Acids as Acetic Acid		J	mg/L	UI	10	∓. ∪	0 /0 = 30 /0

Page : 5 of 7
Work Order : EM2222748

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill

Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER			Method Blank (MB)		Laboratory Control Spike (LCS) Report			
			Report	Spike	Spike Recovery (%)	Acceptable	e Limits (%)	
Method: Compound CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EA005P: pH by PC Titrator (QCLot: 4711734)								
EA005-P: pH Value		pH Unit		4 pH Unit	99.8	98.8	101	
				9 pH Unit	99.9	99.3	101	
EA005P: pH by PC Titrator (QCLot: 4712860)								
EA005-P: pH Value		pH Unit		4 pH Unit	100	98.8	101	
				7 pH Unit	100	99.3	101	
EA010P: Conductivity by PC Titrator (QCLot: 4711733)								
EA010-P: Electrical Conductivity @ 25°C	1	μS/cm	<1	1412 µS/cm	99.0	85.0	119	
EA010P: Conductivity by PC Titrator (QCLot: 4712862)								
EA010-P: Electrical Conductivity @ 25°C	1	μS/cm	<1	1412 μS/cm	98.6	85.0	119	
	•	μονοιτι	.,	1112 poroiii	00.0	00.0	110	
EA015: Total Dissolved Solids dried at 180 ± 5 °C (QCLot: 4714209)	10		<10	2000//	98.0	04.0	110	
EA015H: Total Dissolved Solids @180°C	10	mg/L	<10	2000 mg/L 2440 mg/L	98.0	91.0 81.6	110	
			<10	2440 mg/L 293 mg/L	104	91.0	110	
			~10	293 mg/L	100	91.0	110	
ED037P: Alkalinity by PC Titrator (QCLot: 4711735)							112	
ED037-P: Total Alkalinity as CaCO3		mg/L		200 mg/L	93.1	85.0	116	
ED037P: Alkalinity by PC Titrator (QCLot: 4712861)								
ED037-P: Total Alkalinity as CaCO3		mg/L		200 mg/L	96.9	85.0	116	
ED037P: Alkalinity by PC Titrator (QCLot: 4712863)								
ED037-P: Total Alkalinity as CaCO3		mg/L		200 mg/L	97.0	85.0	116	
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA (QCLot: 4710717)								
ED041G: Sulfate as SO4 - Turbidimetric 14808-79-8	1	mg/L	<1	25 mg/L	104	85.8	117	
			<1	500 mg/L	103	80.0	120	
ED045G: Chloride by Discrete Analyser (QCLot: 4710715)								
ED045G: Chloride 16887-00-6	1	mg/L	<1	10 mg/L	104	85.0	115	
EB0406. Gillottde	·	9.=	<1	1000 mg/L	105	85.0	122	
ED093F: Dissolved Major Cations (QCLot: 4710824)								
ED093F: Calcium 7440-70-2	1	mg/L	<1	50 mg/L	87.4	80.0	120	
ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ	1	mg/L	<1	50 mg/L	90.9	80.0	120	
EBOOT : Magnosiani	1	mg/L	<1	50 mg/L	90.9	80.0	120	
EBOOK : Couldin	1	mg/L	<1	50 mg/L	89.9	80.0	120	
ED COST TO CLOSE COST	l l	IIIg/L	\1	50 Hig/L	09.9	60.0	120	
ED093F: Dissolved Major Cations (QCLot: 4710825)				50 "	0= -	00.5	155	
ED093F: Calcium 7440-70-2	1	mg/L	<1	50 mg/L	87.5	80.0	120	
ED093F: Magnesium 7439-95-4	1	mg/L	<1	50 mg/L	91.0	80.0	120	

Page : 6 of 7
Work Order : EM2222748

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report					
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)		
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High		
ED093F: Dissolved Major Cations (QCLot: 4710825) - cor	ntinued									
ED093F: Sodium	7440-23-5	1	mg/L	<1	50 mg/L	89.8	80.0	120		
ED093F: Potassium	7440-09-7	1	mg/L	<1	50 mg/L	89.9	80.0	120		
EG020T: Total Metals by ICP-MS (QCLot: 4710777)										
EG020A-T: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	101	86.9	112		
EG020A-T: Zinc	7440-66-6	0.005	mg/L	<0.005	0.1 mg/L	117	86.7	117		
EG020A-T: Iron	7439-89-6	0.05	mg/L	<0.05	0.5 mg/L	102	92.8	118		
EG020T: Total Metals by ICP-MS (QCLot: 4710779)										
EG020A-T: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	104	86.9	112		
EG020A-T: Zinc	7440-66-6	0.005	mg/L	<0.005	0.1 mg/L	112	86.7	117		
EG020A-T: Iron	7439-89-6	0.05	mg/L	<0.05	0.5 mg/L	102	92.8	118		
EK055G: Ammonia as N by Discrete Analyser (QCLot: 47	11226)									
EK055G: Ammonia as N	7664-41-7	0.01	mg/L	<0.01	1 mg/L	94.0	84.1	116		
EK057G: Nitrite as N by Discrete Analyser (QCLot: 47107	716)									
EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	0.5 mg/L	105	90.9	112		
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analy	yser (QCLot: 47	'11227)								
EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	0.5 mg/L	98.9	90.0	117		
EK061G: Total Kjeldahl Nitrogen By Discrete Analyser (Q	CLot: 4713437)									
EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	<0.1	5 mg/L	97.2	70.0	117		
EP005: Total Organic Carbon (TOC) (QCLot: 4717951)										
EP005: Total Organic Carbon		1	mg/L	<1	100 mg/L	97.8	81.2	110		
EP026SP: Chemical Oxygen Demand (Spectrophotometric	c) (QCLot: 4710	121)								
EP026SP: Chemical Oxygen Demand		10	mg/L	<10	500 mg/L	101	89.7	111		
EP045: Volatile Acids as CH3COOH (QCLot: 4720066)										
EP045: Volatile Acids as Acetic Acid		5	mg/L	<5	192 mg/L	97.4	85.5	116		

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER				Ма	trix Spike (MS) Repor	t	
				Spike	SpikeRecovery(%)	Acceptable L	imits (%)
Laboratory sample ID	Sample ID	Method: Compound Ca	AS Number	Concentration	MS	Low	High
ED041G: Sulfate (T	urbidimetric) as SO4 2- by DA (QCLot: 4710717)						
EM2222719-005	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric 14	4808-79-8	100 mg/L	# Not	70.0	130
					Determined		
ED045G: Chloride I	y Discrete Analyser (QCLot: 4710715)						
EM2222698-001	Anonymous	ED045G: Chloride	6887-00-6	400 mg/L	108	70.0	142

Page : 7 of 7
Work Order : EM2222748

Client : VENTIA UTILITY SERVICES PTY LTD

Sub-Matrix: WATER				Matrix Spike (MS) Report						
				Spike	SpikeRecovery(%)	Acceptable L	Limits (%)			
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High			
EG020T: Total Met	tals by ICP-MS (QCLot: 4710777)									
EM2222720-001	Anonymous	EG020A-T: Chromium	7440-47-3	1 mg/L	97.1	78.9	119			
		EG020A-T: Zinc	7440-66-6	1 mg/L	93.3	74.0	120			
EG020T: Total Metals by ICP-MS (QCLot: 4710779)										
EM2222748-004	BLIND	EG020A-T: Chromium	7440-47-3	1 mg/L	93.0	78.9	119			
		EG020A-T: Zinc	1 mg/L	102	74.0	120				
EK055G: Ammonia as N by Discrete Analyser (QCLot: 4711226)										
EM2222720-004	Anonymous	EK055G: Ammonia as N	7664-41-7	1 mg/L	# Not Determined	70.0	130			
EK057G: Nitrite as	s N by Discrete Analyser (QCLot: 4710716)					,				
EM2222717-002	Anonymous	EK057G: Nitrite as N	14797-65-0	0.5 mg/L	100	80.0	114			
EK059G: Nitrite p	lus Nitrate as N (NOx) by Discrete Analyser (QCLot: 47	11227)								
EM2222720-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.5 mg/L	96.0	70.0	130			
EK061G: Total Kje	Idahl Nitrogen By Discrete Analyser (QCLot: 4713437)									
EM2222723-004	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		5 mg/L	103	70.0	130			
EP005: Total Orga	nic Carbon (TOC) (QCLot: 4717951)									
EM2222743-002	Anonymous	EP005: Total Organic Carbon		100 mg/L	106	76.6	125			
EP026SP: Chemic	al Oxygen Demand (Spectrophotometric) (QCLot: 4710	121)								
EM2222717-001	Anonymous	EP026SP: Chemical Oxygen Demand		2500 mg/L	99.4	70.0	130			

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **EM2222748** Page : 1 of 9

Client : VENTIA UTILITY SERVICES PTY LTD Laboratory : Environmental Division Melbourne

 Contact
 : ROBERT CALLANDER
 Telephone
 : +6138549 9645

 Project
 : Creswick Landfill
 Date Samples Received
 : 17-Nov-2022

 Site
 : --- Issue Date
 : 24-Nov-2022

Sampler : AC No. of samples received : 8
Order number : Creswick Landfill No. of samples analysed : 8

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- Matrix Spike outliers exist please see following pages for full details.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Page : 2 of 9
Work Order : EM2222748

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill

Outliers: Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: WATER

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Matrix Spike (MS) Recoveries							
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA	EM2222719005	Anonymous	Sulfate as SO4 -	14808-79-8	Not		MS recovery not determined,
			Turbidimetric		Determined		background level greater than or
							equal to 4x spike level.
EK055G: Ammonia as N by Discrete Analyser	EM2222720004	Anonymous	Ammonia as N	7664-41-7	Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.

Outliers: Analysis Holding Time Compliance

Matrix: WATER

IVIALITA. VVATER							
Method		E	xtraction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Days	Date analysed	Due for analysis	Days
				overdue			overdue
EA005P: pH by PC Titrator							
Clear Plastic Bottle - Natural							
BH4,	BH8,				18-Nov-2022	17-Nov-2022	1
BH14,	BLIND,						
RINSATE,	U/S BH3,						
@ BH3,	D/S BH3						

Outliers: Frequency of Quality Control Samples

Matrix: WATER

Quality Control Sample Type	Count		Rate (%)		Quality Control Specification
Method	QC	Regular	Actual	Expected	
Laboratory Duplicates (DUP)					
Chemical Oxygen Demand (COD) (Spectrophotometric)	1	18	5.56	10.00	NEPM 2013 B3 & ALS QC Standard

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: WATER

Evaluation: ×	= Holding tir	me breach : 🗸	= Within holding t	ime.

Method	Sample Date	Extraction / Preparation Analysis		Analysis			
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation

Page : 3 of 9
Work Order : EM2222748

Client : VENTIA UTILITY SERVICES PTY LTD

Matrix: WATER						Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time
Method			Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)				Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA005P: pH by PC Titrator									
Clear Plastic Bottle - Natural (EA005-P)									
BH4,	BH8,		16-Nov-2022				18-Nov-2022	17-Nov-2022	*
BH14,	BLIND,								
RINSATE,	U/S BH3,								
@ BH3,	D/S BH3								
EA010P: Conductivity by PC Titrator									
Clear Plastic Bottle - Natural (EA010-P)									
BH4,	BH8,		16-Nov-2022				18-Nov-2022	14-Dec-2022	✓
BH14,	BLIND,								
RINSATE,	U/S BH3,								
@ BH3,	D/S BH3								
EA015: Total Dissolved Solids dried at 180 ± 5	5 °C								
Clear Plastic Bottle - Natural (EA015H)									
BH4,	BH8,		16-Nov-2022				21-Nov-2022	23-Nov-2022	✓
BH14,	BLIND,								
RINSATE,	U/S BH3,								
@ BH3,	D/S BH3								
ED037P: Alkalinity by PC Titrator						!			!
Clear Plastic Bottle - Natural (ED037-P)									
BH4,	BH8,		16-Nov-2022				18-Nov-2022	30-Nov-2022	1
BH14,	BLIND,								,
RINSATE,	U/S BH3,								
@ BH3,	D/S BH3								
ED041G: Sulfate (Turbidimetric) as SO4 2- by									
Clear Plastic Bottle - Natural (ED041G)		I							
BH4,	BH8,		16-Nov-2022				21-Nov-2022	14-Dec-2022	✓
BH14,	BLIND,								,
RINSATE,	U/S BH3,								
@ BH3,	D/S BH3								
ED045G: Chloride by Discrete Analyser	BIO BIIO								
Clear Plastic Bottle - Natural (ED045G)							1		
BH4,	BH8,		16-Nov-2022				21-Nov-2022	14-Dec-2022	1
BH14.	BLIND.		10 1101 2022				21 1107 2022		Y
· ·	U/S BH3,								
RINSATE,									
@ BH3,	D/S BH3								
ED093F: Dissolved Major Cations					I		I	I	I
Clear Plastic Bottle - Natural (ED093F)	DUO		16-Nov-2022				18-Nov-2022	22 Nov. 2022	
BH4,	BH8,		10-NOV-2U22				16-NOV-2022	23-Nov-2022	✓
BH14,	BLIND,								
RINSATE,	U/S BH3,								
@ BH3,	D/S BH3								

Page : 4 of 9
Work Order : EM2222748

Client : VENTIA UTILITY SERVICES PTY LTD

Matrix: WATER					Evaluation	n: 🗴 = Holding time	e breach ; ✓ = With	in holding tin
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EG020T: Total Metals by ICP-MS								
Clear Plastic Bottle - Nitric Acid; Unfiltere								
BH4,	BH8,	16-Nov-2022	18-Nov-2022	15-May-2023	✓	18-Nov-2022	15-May-2023	✓
BH14,	BLIND,							
RINSATE,	U/S BH3,							
@ BH3,	D/S BH3							
EK055G: Ammonia as N by Discrete Anal	lyser							
Clear Plastic Bottle - Sulfuric Acid (EK055	G)							
BH4,	BH8,	16-Nov-2022				18-Nov-2022	14-Dec-2022	✓
BH14,	BLIND,							
RINSATE,	U/S BH3,							
@ BH3,	D/S BH3							
EK057G: Nitrite as N by Discrete Analyse	er							
Clear Plastic Bottle - Natural (EK057G)								
BH4,	BH8,	16-Nov-2022				18-Nov-2022	18-Nov-2022	✓
BH14,	BLIND,							
RINSATE,	U/S BH3,							
@ BH3,	D/S BH3							
EK059G: Nitrite plus Nitrate as N (NOx)	by Discrete Analyser							
Clear Plastic Bottle - Sulfuric Acid (EK059	G)							
BH4,	BH8,	16-Nov-2022				18-Nov-2022	14-Dec-2022	✓
BH14,	BLIND,							
RINSATE,	U/S BH3,							
@ BH3,	D/S BH3							
EK061G: Total Kjeldahl Nitrogen By Disc	rete Analyser							
Clear Plastic Bottle - Sulfuric Acid (EK061	G)							
BH4,	BH8,	16-Nov-2022	22-Nov-2022	14-Dec-2022	✓	22-Nov-2022	14-Dec-2022	✓
BH14,	BLIND,							
RINSATE,	U/S BH3,							
@ BH3,	D/S BH3							
EP005: Total Organic Carbon (TOC)								
Amber TOC Vial - Sulfuric Acid (EP005)								
BH4,	BH8,	16-Nov-2022				22-Nov-2022	14-Dec-2022	✓
BH14,	BLIND,							
RINSATE,	U/S BH3,							
@ BH3,	D/S BH3							
EP026SP: Chemical Oxygen Demand (Sp	ectrophotometric)							
Clear Plastic Bottle - Sulfuric Acid (EP026								
BH4,	BH8,	16-Nov-2022				17-Nov-2022	14-Dec-2022	✓
BH14,	BLIND,							
RINSATE,	U/S BH3,							
@ BH3,	D/S BH3							

Page : 5 of 9
Work Order : EM2222748

Client : VENTIA UTILITY SERVICES PTY LTD

Matrix: WATER					Evaluation	: x = Holding time	breach; ✓ = Withi	n holding time.
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP045: Volatile Acids as CH3COOH								
Clear Plastic Bottle - Natural (EP045)								
BH4,	BH8,	16-Nov-2022				23-Nov-2022	30-Nov-2022	✓
BH14,	BLIND,							
RINSATE,	U/S BH3,							
@ BH3,	D/S BH3							

Page : 6 of 9 Work Order EM2222748

VENTIA UTILITY SERVICES PTY LTD Client

Creswick Landfill Project

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Quality Control Sample Type		Count Rate			Rate (%)		Quality Control Specification	
Analytical Methods	Method	OC OC	Regular	Actual	Expected	Evaluation	Quality Control Operation	
_aboratory Duplicates (DUP)								
Alkalinity by Auto Titrator	ED037-P	6	59	10.17	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Ammonia as N by Discrete analyser	EK055G	2	16	12.50	10.00	<u> </u>	NEPM 2013 B3 & ALS QC Standard	
Chemical Oxygen Demand (COD) (Spectrophotometric)	EP026SP	1	18	5.56	10.00	×	NEPM 2013 B3 & ALS QC Standard	
Chloride by Discrete Analyser	ED045G	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Conductivity by Auto Titrator	EA010-P	4	39	10.26	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Major Cations - Dissolved	ED093F	3	27	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	14	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Nitrite as N by Discrete Analyser	EK057G	2	13	15.38	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
oH by Auto Titrator	EA005-P	4	39	10.26	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	2	18	11.11	10.00	√	NEPM 2013 B3 & ALS QC Standard	
Total Dissolved Solids (High Level)	EA015H	4	40	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Metals by ICP-MS - Suite A	EG020A-T	4	33	12.12	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Organic Carbon	EP005	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
/olatile Acids as CH3COOH	EP045	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
aboratory Control Samples (LCS)								
Alkalinity by Auto Titrator	ED037-P	3	59	5.08	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Ammonia as N by Discrete analyser	EK055G	1	16	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Chemical Oxygen Demand (COD) (Spectrophotometric)	EP026SP	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Chloride by Discrete Analyser	ED045G	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Conductivity by Auto Titrator	EA010-P	2	39	5.13	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Major Cations - Dissolved	ED093F	2	27	7.41	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Nitrite as N by Discrete Analyser	EK057G	1	13	7.69	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
oH by Auto Titrator	EA005-P	4	39	10.26	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	2	18	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Dissolved Solids (High Level)	EA015H	3	40	7.50	7.50	✓	NEPM 2013 B3 & ALS QC Standard	
otal Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	20	5.00	5.00	√	NEPM 2013 B3 & ALS QC Standard	
otal Metals by ICP-MS - Suite A	EG020A-T	2	33	6.06	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
otal Organic Carbon	EP005	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
/olatile Acids as CH3COOH	EP045	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Method Blanks (MB)								
Ammonia as N by Discrete analyser	EK055G	1	16	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Chemical Oxygen Demand (COD) (Spectrophotometric)	EP026SP	1	18	5.56	5.00	√	NEPM 2013 B3 & ALS QC Standard	
Chloride by Discrete Analyser	ED045G	1	20	5.00	5.00	√	NEPM 2013 B3 & ALS QC Standard	
Conductivity by Auto Titrator	EA010-P	2	39	5.13	5.00		NEPM 2013 B3 & ALS QC Standard	

Page : 7 of 9
Work Order : EM2222748

Client : VENTIA UTILITY SERVICES PTY LTD

Matrix: WATER				Evaluatio	n: × = Quality Co	ntrol frequency	not within specification; ✓ = Quality Control frequency within specification
Quality Control Sample Type		Count			Rate (%)		Quality Control Specification
Analytical Methods	Method	ОC	Reaular	Actual	Expected	Evaluation	
Method Blanks (MB) - Continued							
Major Cations - Dissolved	ED093F	2	27	7.41	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	1	13	7.69	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Dissolved Solids (High Level)	EA015H	2	40	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	2	33	6.06	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Organic Carbon	EP005	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Volatile Acids as CH3COOH	EP045	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
Ammonia as N by Discrete analyser	EK055G	1	16	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Chemical Oxygen Demand (COD) (Spectrophotometric)	EP026SP	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	1	13	7.69	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	2	33	6.06	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Organic Carbon	EP005	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Page : 8 of 9
Work Order : EM2222748

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
pH by Auto Titrator	EA005-P	WATER	In house: Referenced to APHA 4500 H+ B. This procedure determines pH of water samples by automated ISE. This method is compliant with NEPM Schedule B(3)
Conductivity by Auto Titrator	EA010-P	WATER	In house: Referenced to APHA 2510 B. This procedure determines conductivity by automated ISE. This method is compliant with NEPM Schedule B(3)
Total Dissolved Solids (High Level)	EA015H	WATER	In house: Referenced to APHA 2540C. A gravimetric procedure that determines the amount of `filterable` residue in an aqueous sample. A well-mixed sample is filtered through a glass fibre filter (1.2um). The filtrate is evaporated to dryness and dried to constant weight at 180+/-5C. This method is compliant with NEPM Schedule B(3)
Alkalinity by Auto Titrator	ED037-P	WATER	In house: Referenced to APHA 2320 B This procedure determines alkalinity by automated measurement (e.g. PC Titrate) on a settled supernatant aliquot of the sample using pH 4.5 for indicating the total alkalinity end-point. This method is compliant with NEPM Schedule B(3)
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	WATER	In house: Referenced to APHA 4500-SO4. Dissolved sulfate is determined in a 0.45um filtered sample. Sulfate ions are converted to a barium sulfate suspension in an acetic acid medium with barium chloride. Light absorbance of the BaSO4 suspension is measured by a photometer and the SO4-2 concentration is determined by comparison of the reading with a standard curve. This method is compliant with NEPM Schedule B(3)
Chloride by Discrete Analyser	ED045G	WATER	In house: Referenced to APHA 4500 CI - G.The thiocyanate ion is liberated from mercuric thiocyanate through sequestration of mercury by the chloride ion to form non-ionised mercuric chloride. In the presence of ferric ions the liberated thiocynate forms highly-coloured ferric thiocynate which is measured at 480 nm.
Major Cations - Dissolved	ED093F	WATER	In house: Referenced to APHA 3120 and 3125; USEPA SW 846 - 6010 and 6020; Cations are determined by either ICP-AES or ICP-MS techniques. This method is compliant with NEPM Schedule B(3) Sodium Adsorption Ratio is calculated from Ca, Mg and Na which determined by ALS in house method QWI-EN/ED093F. This method is compliant with NEPM Schedule B(3) Hardness parameters are calculated based on APHA 2340 B. This method is compliant with NEPM Schedule B(3)
Total Metals by ICP-MS - Suite A	EG020A-T	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Ammonia as N by Discrete analyser	EK055G	WATER	In house: Referenced to APHA 4500-NH3 G Ammonia is determined by direct colorimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)
Nitrite as N by Discrete Analyser	EK057G	WATER	In house: Referenced to APHA 4500-NO2- B. Nitrite is determined by direct colourimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)
Nitrate as N by Discrete Analyser	EK058G	WATER	In house: Referenced to APHA 4500-NO3- F. Nitrate is reduced to nitrite by way of a chemical reduction followed by quantification by Discrete Analyser. Nitrite is determined seperately by direct colourimetry and result for Nitrate calculated as the difference between the two results. This method is compliant with NEPM Schedule B(3)
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	WATER	In house: Referenced to APHA 4500-NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by Chemical Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)

Page : 9 of 9
Work Order : EM2222748

Client : VENTIA UTILITY SERVICES PTY LTD

Analytical Methods	Method	Matrix	Method Descriptions
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	WATER	In house: Referenced to APHA 4500-Norg D (In house). An aliquot of sample is digested using a high temperature Kjeldahl digestion to convert nitrogenous compounds to ammonia. Ammonia is determined colorimetrically by discrete analyser. This method is compliant with NEPM Schedule B(3)
Ionic Balance by PCT DA and Turbi SO4 DA	* EN055 - PG	WATER	In house: Referenced to APHA 1030F. This method is compliant with NEPM Schedule B(3)
Field Tests (performed by external sampler)	* EN67-B02	WATER	Field determinations as per methods described in APHA or supplied by client. The analysis is performed in the field by non-ALS samplers. ALS NATA accreditation does not apply for this service.
Total Organic Carbon	EP005	WATER	In house: Referenced to APHA 5310 B, The automated TOC analyzer determines Total and Inorganic Carbon by IR cell. TOC is calculated as the difference. This method is compliant with NEPM Schedule B(3)
Chemical Oxygen Demand (COD) (Spectrophotometric)	EP026SP	WATER	In house: Referenced to APHA 5220 D. Samples are digested with a known excess of an acidic potassium dichromate solution using silver sulfate as a catalyst. The chromium is reduced from the Cr (VI) oxidation state to the Cr (III) state by the oxygen present in the organic material. Both of these chromium species are coloured and absorb in the visible region of (400nm & 600nm) the spectrum. The oxidisable organic matter can be calculated in terms of oxygen equivalents.
Volatile Acids as CH3COOH	EP045	WATER	In house: Referenced to APHA 5560 C. Steam distillable acids are captured in caustic solution and determined titremetrically. This method is compliant with NEPM Schedule B(3)
Preparation Methods	Method	Matrix	Method Descriptions
TKN/TP Digestion	EK061/EK067	WATER	In house: Referenced to APHA 4500 Norg - D; APHA 4500 P - H. This method is compliant with NEPM Schedule B(3)
Digestion for Total Recoverable Metals	EN25	WATER	In house: Referenced to USEPA SW846-3005. Method 3005 is a Nitric/Hydrochloric acid digestion procedure used to prepare surface and ground water samples for analysis by ICPAES or ICPMS. This method is compliant with NEPM Schedule B(3)

BURWOOD VIC 3125

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order : EM2222748

Client : VENTIA UTILITY SERVICES PTY LTD Laboratory : Environmental Division Melbourne

Contact : ROBERT CALLANDER Contact : Peter Ravlic

Address : 25-37 HUNTINGDALE ROAD Address : 4 Westall Rd Springvale VIC Australia

3171

 Telephone
 : --- Telephone
 : +6138549 9645

 Facsimile
 : --- Facsimile
 : +61-3-8549 9626

Project : Creswick Landfill Page : 1 of 3

 Order number
 : --- Quote number
 : EM2016THISER0010 (ME/793/19)

 C-O-C number
 : --- QC Level
 : NEPM 2013 B3 & ALS QC Standard

Site : ----Sampler : AC

Dates

Date

Date Samples Received : 17-Nov-2022 11:05 Issue Date : 17-Nov-2022

Client Requested Due : 24-Nov-2022 Scheduled Reporting Date : 24-Nov-2022

Delivery Details

 Mode of Delivery
 : Carrier
 Security Seal
 : Not Available

 No. of coolers/boxes
 : 1
 Temperature
 : 3.1°C - Ice present

Receipt Detail : No. of samples received / analysed : 8 / 8

General Comments

This report contains the following information:

- Sample Container(s)/Preservation Non-Compliances
- Summary of Sample(s) and Requested Analysis
- Proactive Holding Time Report
- Requested Deliverables
- Please direct any queries related to sample condition / numbering / breakages to Client Services.
- Sample Disposal Aqueous (3 weeks), Solid (2 months) from receipt of samples.
- Analytical work for this work order will be conducted at ALS Springvale.
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The laboratory will process these samples unless instructions are received from you indicating you do not wish to proceed. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.

: 17-Nov-2022 Issue Date

Page

2 of 3 EM2222748 Amendment 0 Work Order

Client : VENTIA UTILITY SERVICES PTY LTD

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

1	process necessa tasks Packages as the determina tasks, that are inclu If no sampling default 00:00 on	ry for the execution may contain addition of moisture uded in the package. Itime is provided, the date of sampling date wi	the sampling time will up. If no sampling date ill be assumed by the ockets without a time	WATER - EA005P pH (Auto Titrator)	WATER - EA010P Electrical Conductivity (Auto Titrator)	WATER - EK055G Ammonia as N By Discrete Analyser	WATER - EK058G Nitrate as N by Discrete Analyser	WATER - EK061G Total Kjeldahl Nitrogen as N (TKN) By Discrete	WATER - EP005 Total Organic Carbon (TOC)	WATER - EP045 Volatile Acids as CH3COOH
	EM2222748-001	16-Nov-2022 00:00	BH4	1	1	1	1	1	1	1
	EM2222748-002	16-Nov-2022 00:00	BH8	1	1	✓	1	1	✓	✓
	EM2222748-003	16-Nov-2022 00:00	BH14	✓	✓	✓	✓	✓	✓	✓
	EM2222748-004	16-Nov-2022 00:00	BLIND	✓	✓	✓	1	1	✓	✓
	EM2222748-005	16-Nov-2022 00:00	RINSATE	✓	✓	✓	✓	✓	✓	✓
	EM2222748-006	16-Nov-2022 00:00	U/S BH3	✓	✓	✓	✓	✓	✓	✓
	EM2222748-007	16-Nov-2022 00:00	@ BH3	✓	✓	✓	✓	✓	✓	✓
	EM2222748-008	16-Nov-2022 00:00	D/S BH3	✓	1	✓	1	1	✓	✓
				Standard Level	(including digestion)	by external sampler)	nd (COD)	02 SO4, Alkalinity		
	Matrix: WATER Laboratory sample ID	Sampling date / time	Sample ID	WATER - EA015H Total Dissolved Solids -	WATER - EG020T Total Metals by ICP/MS (including digestion)	WATER - EN67-B02 Field Tests (performed by external sampler)	WATER - EP026SP Chemical Oxygen Demand (COD)	WATER - NT-01 & 02 Ca, Mg, Na, K, Cl, SO4,		
	Laboratory sample	· · · · ·	Sample ID	- spil	WATER - EG020T Total Metals by ICP/MS	WATER - EN67-B02 Field Tests (performed	WATER - EP026SP Chemical Oxygen Dema	TER - NT-01 & Mg, Na, K, Cl,		
	Laboratory sample	time		- spil	WATER - EG020T Total Metals by ICP/MS	WATER - EN67-B02 Field Tests (performed	WATER - EP026SP Chemical Oxygen Dema	TER - NT-01 & Mg, Na, K, Cl,		
	Laboratory sample ID EM2222748-001	time 16-Nov-2022 00:00	BH4	WATER - EA015H Total Dissolved Solids -	1	✓	✓	WATER - NT-01 & Ca, Mg, Na, K, Cl,		
	Laboratory sample ID EM2222748-001 EM2222748-002	time 16-Nov-2022 00:00 16-Nov-2022 00:00	BH4 BH8	WATER - EA015H Total Dissolved Solids -	√	√	√	WATER - NT-01 & Ca, Mg, Na, K, Cl,		
	Laboratory sample ID EM2222748-001 EM2222748-002 EM2222748-003	time 16-Nov-2022 00:00 16-Nov-2022 00:00 16-Nov-2022 00:00	BH4 BH8 BH14	MATER - EA015H Total Dissolved Solids -	√ √ √	√	√ √ √	WATER - NT-01 & Ca, Mg, Na, K, CI,		
	Laboratory sample ID EM2222748-001 EM2222748-002 EM2222748-003 EM2222748-004	time 16-Nov-2022 00:00 16-Nov-2022 00:00 16-Nov-2022 00:00 16-Nov-2022 00:00	BH4 BH8 BH14 BLIND	WATER - EA015H Total Dissolved Solids -	✓ ✓ ✓	√	√ √ √	▼		
	Laboratory sample ID EM2222748-001 EM2222748-002 EM2222748-003 EM2222748-004 EM2222748-005	time 16-Nov-2022 00:00 16-Nov-2022 00:00 16-Nov-2022 00:00 16-Nov-2022 00:00 16-Nov-2022 00:00	BH4 BH8 BH14 BLIND RINSATE	WATER - EA015H Total Dissolved Solids -	✓ ✓ ✓ ✓	√ √ √	\frac{1}{4}	✓ ✓ WATER - NT-01 & Ca, Mg, Na, K, Cl, ✓		

Proactive Holding Time Report

16-Nov-2022 00:00

EM2222748-008

Sample(s) have been received within the recommended holding times for the requested analysis.

D/S BH3

: 17-Nov-2022 Issue Date

Page

3 of 3 EM2222748 Amendment 0 Work Order

Client : VENTIA UTILITY SERVICES PTY LTD

Requested Deliverables

ACCOUNTS PAYABLE - VIC ONLY		
- A4 - AU Tax Invoice (INV)	Email	Nicole.Robins@ventia.com
LUCY EDWARDS		
 *AU Certificate of Analysis - NATA (COA) 	Email	Lucy.Edwards@ventia.com
 - *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	Lucy.Edwards@ventia.com
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	Lucy.Edwards@ventia.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	Lucy.Edwards@ventia.com
- Chain of Custody (CoC) (COC)	Email	Lucy.Edwards@ventia.com
- EDI Format - ENMRG (ENMRG)	Email	Lucy.Edwards@ventia.com
- EDI Format - ESDAT (ESDAT)	Email	Lucy.Edwards@ventia.com
Ping Yao		
 *AU Certificate of Analysis - NATA (COA) 	Email	ping.yao@ventia.com
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	ping.yao@ventia.com
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	ping.yao@ventia.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	ping.yao@ventia.com
- Chain of Custody (CoC) (COC)	Email	ping.yao@ventia.com
- EDI Format - ENMRG (ENMRG)	Email	ping.yao@ventia.com
- EDI Format - ESDAT (ESDAT)	Email	ping.yao@ventia.com
ROBERT CALLANDER		
 *AU Certificate of Analysis - NATA (COA) 	Email	robert.callander@ventia.com.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	robert.callander@ventia.com.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	robert.callander@ventia.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	robert.callander@ventia.com.au
- A4 - AU Tax Invoice (INV)	Email	robert.callander@ventia.com.au
- Chain of Custody (CoC) (COC)	Email	robert.callander@ventia.com.au
- EDI Format - ENMRG (ENMRG)	Email	robert.callander@ventia.com.au
- EDI Format - ESDAT (ESDAT)	Email	robert.callander@ventia.com.au
 Purchase Order Request Letter (PO_Request) 	Email	robert.callander@ventia.com.au

	Client:			Ventia	9	i i		Job	Job Ref:			Cresv	vick Lar	Creswick Landfill 1 of 3	
ဝိ	Contact:		Rok	Robert Callander	ıder				TESTS	SREC	QUIRE	D AS	PER C	REQUIRED AS PER QUOTE ME/412/16	112/16
Adc	Address:	25-37 Hun	ntingd	25-37 Huntingdale Road, Burwood, 3	Burwoo	d, 3125									
Д	Phone: 0	0427529051		Fax:											
	Email: L	lucy.edwards@ventia.com ping.yao@ventia.com robert.callander@ventia.com	om entia.c	El Co											
P/C	P/O No.:		Quo	0	ME/412/16	9									
T/A	T/A Time:										(Environmer	Environmental Division
Sample	Š	Sample Description		No of Containers	Date Sampled	Time	Matrix	НА	EC	DO	TEMF	ОКР	٦MS	Melbourne Work Order EM2 2	elbourne Work Order Reference EM2222748
BH1	Groundy	Groundwater Bore													
BH2	Groundy	Groundwater Bore													
ВНЗ	Groundy	Groundwater Bore													
BH4	Groundy	Groundwater Bore	_	カ	16/11/22	1223	3	6.05	2152	70.0	12.96	-76.9	3.25		
ВН6	Groundy	Groundwater Bore												l elephone : + 61-3-8549 9600	1549 9600
BH7	Groundy	Groundwater Bore													
ВН8	Groundy	Groundwater Bore	2	J	22/11/91	9411-	3	45.9	1000	0.03	ن- ا	-98.1	1.87		
вна .	Groundy	Groundwater Bore				-									
															*
	Special Instructions:	Please email Invoices to <u>Nicole.robins@ventia.com</u> Lucy.edwards@ventia.com	I Invoid	ces to Nico	le.robins	@ventia.c	Wo Wo								
Relin	Relinquished By:	By: Company:	ıny:	ď	Date:		Time:		Rece	Received By:		Co	Company:	Date:	e: Time:
A	Callander	Ventia		191	16 [11 [22	1	1700		Sest.	专		Prs		17/11/22	122 1105
This form is t	for recording c	This form is for recording of sample data after prior consultation with an analyst regarding sampling procedures and does not	consultati	ion with an anal	yst regarding	sampling proc	cedures an	d does not	LAB U	LAB USE ONLY		Sample conditions:	litions:	Samples received	Samples received undamaged [Yes/No]
As an Occup	ational Health	As an Occupational Health and Safety consideration, it is a requirement of Ecowise Environmental (Victoria), that all samples	it is a rec	quirement of Ec	owise Enviro	nmental (Victo	ria), that al	samples	ī			ć	Samples w	Samples within recommended holding times: [Yes/No]	Iding times: [Yes/No
received be t	undamaged an	received be undamaged and prior advice given in writing of any potential health risks.	iting of al	ny potential nea	Ith risks.							28	ampies trans	Samples transported at appropriate temperature [res/No]	temperature [res/No

Document: OF002 i1

of 3	QUOTE ME/412/16																Date: Time:	17/11/22 NOS	Samples received undamaged [Yes/No] Samples adenuately presented Eves/No]	Samples within recommended holding times: [Yes/No] es transported at appropriate temperature [Yes/No]	
Creswick Landfill 2 of 3	AS PER		4	es.			SWL		6.4 2.01			SWL					Company:	FLS	Sample conditions:	Samples within recomes transported at a	
	TESTS REQUIRED						DO		1 0.14 12.33			NO SAMPLE -					Received By:	Scott P	LAB USE ONLY		
Job Ref:	Ä						EC		J 6.15 1541			ONLY	1					VI	ures and does	, that all	
		od, 3125					Time sample d		2 1316 W				2 - 6	0711 2	s@ventia.com	=	Time:	1300	ing sampling proced	ironmental (Victoria) h risks.	
Ventia	Robert Callander	Road, Burwo	Fax:		Quote No.:		No of Date Container Sample s d		16/11/22				16/11/22	16/11/22	to Nicole.robin	.com	Date:	16/11/22	vith an analyst regard s and conditions.	ement of Ecowise Env of any potential healt	
	Robert	25-37 Huntingdale Road, Burwood,	0427529051 F	lucy.edwards@ventia.com ping.yao@ventia.com robert.callander@ventia.com	uQ N		Sample Description Con	Groundwater bore	Groundwater bore	Leachate bore	Leachate bore	Leachate bore	Blind dup (analysed by ALS) \mathcal{H}	Rinsate blank	Special Please email Invoices to Nicole.robins@ventia.com	ions: Lucy.edwards@ventia.com		[ande/ Ventia	This form is for recording of sample data after prior consultation with an analyst regarding sampling procedures and does not over-ride pricing agreements, OHS requirements and our terms and conditions.	As an Occupational Health and Safety consideration, it is a requirement of Ecowise Environmental (Victoria), that all samples received be undamaged and prior advice given in writing of any potential health risks.	12 i1
Client:	Contact:	Address:	Phone:	Email:	P/O No.:	T/A Time:	Sample ID	BH10 Grou	BH13 4 Grou	LB1 Leac	LB2 Leac	LB3 Leac	BLIND Blind	RINSAT Rins	Spe	Instructions:	Relinquished By:	A Collan	This form is for recordinot over-ride pricing ag	As an Occupational Heas	Document: OF002 i1

Contact: Robert Callander Fax:	ច	Client:		Ventia	¥			Job Ref:	Ref:			ວັ	Creswick Landfill	Landfill		
Time Time E	Con	tact:	R	obert Callan	lder				TEST		UIRE		PER G	NOTE	ME/41	2/16
Time	Addr	ess:	25-37 Hunting	ydale Road,	Burwood	1, 3125										
Time	Ph		27529051	Fax:							2					
Time Time E C C E E E E E E E	ũ		y.edwards@ventia.co g.yao@ventia.com ert.callander@ventia	om s.com			_			147						
Time Time E L D E E E E E E E E E	P/0	-	g	note No.:												
Time	T/A T	ime:	_								(31			
72 1130 U 7.02 128.9 9.57 13.10 145.6 —	Sample	Sam	nple Description	No of Containers	Date Sampled	Time		На	EC	DO	TEMP	ЧЯО	٦MS			
22 11 6子	U/S BH3	Creek Sal		٤	15/11/22	=	3	7.02		4.57	13.60	9.571	1			
10 35 W 7.0¢ 174.¢ 4.5¢ 12.5¢ 157.6 — — — — — — — — — — — — — — — — — —	@ BH3	Creek Sai	mple 7	ζ,	16/11/22	1107	3	-	178.8	9.54	13.02	151.2	1			
ins@ventia.com Time: Received By: Company: 1200 Scott 14B USE ONLY Samples within samples transport	D/S BH3	Creek Sal	8 eldu	-3	19/11/91		3			9.55	12.56	157.6)			
ins@ventia.com Time: Received By: Company: 1200 Scott Ab USE ONLY Sample conditions: samples transport Samples tra	Leachate	Surface w	vater sample													
ins@ventia.com Time: Received By: Company: 1200 Scott 14B USE ONLY Sample conditions: samples transport Samples transport	Wetland	Surface w	vater sample		,											
ins@ventia.com Time: Received By: Company: 1200 Scott AB USE ONLY Sample conditions: sample conditions: samples transport samples transport	Dredge	Surface w	vater sample										, -			
Time: Received By: Company: 1200 Scott	3	Specia		ices to Nicol	e.robins@	ğventia.cα	Ш									
rding sampling procedures and does not vironmental (Victoria), that all samples samples transport	Dollag	nichod By:	-		.40.		Timo.		Poroi	yed By.		2	.Aucua		Date:	Ë
ding sampling procedures and does not LAB USE ONLY Sample conditions:	A G	Cardel	Ventia	/91	12/11	_	00t		K	ま					=	
	This form is for over-ride pricin As an Occupati	recording of signatures, onal Health and lamaged and prints	ample data after prior consult OHS requirements and our ter 1 Safety consideration, it is a r rior advice given in writing of	tation with an analy rms and condition requirement of Εσα any potential heals	yst regarding s. s. owise Environi th risks.	sampling proc mental (Victor	edures and ia), that all	d does not	LAB.US	SE ONLY	S	ample cond	litions: Samples wi	Samples Samples ithin recomm	received unc adequately pi ended holdin propriate tem	lamaged [Yes reserved [Yes ng times: [Yes

Document: OF002 i1

Sobert Callander 25-37 Huntingdale Road, Burwood, 3125 27529051	ood, 3125						
100 cm	ood, 3125	Please	forwar	Please forward to FUROFINS for analysis	FINS for	Vlene	Sisi
imail: lucy.edwards@ventia.com ping.yao@ventia.com robert.callander@ventia.com nobert.callander@ventia.com Time: Sample Description Groundwater Groundwater Special Please email Invoices to Nicole.robins@ventia.com structions: Lucy.edwards@ventia.com quished By: Company: Date: Time Time: Augustanctions: Lucy.edwards@ventia.com Time: Augustanctions: Lucy.edwards@ventia.com Time: Time: Augustanctions: Lucy.edwards@ventia.com Time: Time: Time: Date: Time: Augustanctions: Lucy.edwards@ventia.com Time: Time							2
imail: lucy.edwards@ventia.com ping.yao@ventia.com robert.callander@ventia.com Rime: Groundwater Groundwater Special Please email Invoices to Nicole.robins@ventia.com structions: Lucy.edwards@ventia.com quished By: Company: Date: Time Robert.callander.com							
Guote No.: 190924VENV Fime: No of Containers Date Sampled Matrix Groundwater Lighter Lighter Lighter Special Structions: Please email Invoices to Nicole.robins@ventia.com Structions: Lucy.edwards@ventia.com guished By: Company: Date: Time:		1					3
Sample Description No of Gontainers Date Sampled	VENV						
Sample Description Containers Sampled Sampled Matrix Groundwater $(c/n/2 - 1) + c/4 = c/4$			c				
Groundwater $_{\zeta}$ וליעל $_{\zeta}$ $_{\zeta$	Time Matrix	EC	DO	SWL			
al Please email Invoices to Nicole.robins@ventia.ccs: Lucy.edwards@ventia.com s: Lucy.edwards@ventia.com v: Company: Date:	3 27	6.54 1000	1.71 50.0	1-98.9 1.87			
al Please email Invoices to Nicole.robins@ventia.ccs: Lucy.edwards@ventia.com Company: Date:							
al Please email Invoices to Nicole.robins@ventia.ccs: Lucy.edwards@ventia.com Company: Date:							
al Please email Invoices to Nicole.robins@ventia.cos: Lucy.edwards@ventia.com Company: Date:							
al Please email Invoices to Nicole.robins@ventia.ccs: Lucy.edwards@ventia.com Company: Date:							4
s: Lucy.edwards@ventia.com Company: Date:							
y: Company: Date:	1s(@ventia.com						
	Time:	Rece	Received By:	Company:		Date:	Time:
A Callande/ Ventia 16/11/22 1700	1700	R	tox	Ars	E	17/11/22	1100
Relinquished By: Company: Date: Time:	Time:	Rece	Received By:	Company:		Date:	Time:
This form is for recording of sample data after prior consultation with an analyst regarding sampling procedures and does not over-ride pricing agreements, OHS requirements and our terms and conditions. As an Occupational Health and Safety consideration, it is a requirement of Ecowise Environmental (Victoria), that all samples received be undamaged and prior advice given in writing of any potential health risks.			LAB USE ONLY	Sample conditions: Sample Samples tr	nditions: Samples received undamaged [Yes/No] Samples adequately preserved [Yes/No] Samples within recommended holding times: [Yes/No] Samples transported at appropriate temperature [Yes/No]	Samples received undamaged [Yes/No] Samples adequately preserved [Yes/No] n recommended holding times: [Yes/No] ted at appropriate temperature [Yes/No]	aged [Yes/No] rved [Yes/No] nes: [Yes/No] tture [Yes/No]

Document: OF002 i1

C	Client:				Vent	ia	7 10		Job	Ref:			Cresv	vick Lar	ndfill 1 of	3	
Co	ntact:			Ro	bert Ca	llander			-	TEST	S DEC	JIIDE	DAC	DED C	QUOTE	N/E///	2/16
Add	dress:		25-37	Hunting	dale Ro	ad, Burw	ood, 3125		- 9	ILOI	O INL	ZOINE	DAS	PER G	ROOTE	IVIC/4 I	2/10
Р	hone:	04275	529051		Fax							4				T	
E	Email:	lucy.e	edwards@v	ventia.co	m			-									
	6		/ao@venti		P 40 W												
D/C	O No.:	rober	t.callander		ote No.:	ME/412	1/16		-								
	Time:			Qu	ote No.	IVIE/412	./10		-						I		
I/A	iime.	ars Sawatta a d			2212 November 2018	Sept. 94. Tribally and the	77.0		6			<u>a</u>				onmental ourne	Division
Sample ID		Sample	e Description	n	No of Contain	A STATE OF THE STA	CONTRACT SCHOOL STATE OF THE ST	Matrix	FH	EC	8	TEMP	ORP	SWL	Wo	rk Order Ref M222	erence 2748
BH1	Groun	dwater	Bore	1245 PS 100000 10 FORE UP 10 FORE SE	300 THE COLOR STATE OF THE COLOR	5 12 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			100								_, .0
BH2	Groun	dwater	Bore			* *											
ВН3	Groun	dwater	Bore			-									-		₩
BH4	Groun	dwater	Bore	1	4	16/n/	22 1223	U	6.05	2512	0.04	12-96	-7/ 9	3.25	-		52
BH6	Groun	dwater	Bore	,	9	ĮO ĮII Į	1003		0.03	2316	7-0	10010	74.0	3.23	Telephon	e: +61-3-8549 9	9600
ВН7	Groun	dwater	Bore												- 1	1	Ī
ВН8	Groun	dwater	Bore	2	4	16/11	1446	W	6.54	1000	0.03	14.1	-98.9	1.87			1 19
ВН9	Groun	dwater	Bore		9		1410		6.54	00			1071	1.87			
				8													
	Sn	ecial	Please er	nail Invo	ices to N	licole robi	ns@ventia.	com									
lr.	nstructi		Lucy.edw				iow ventia.	30111									
Relin	nquishe	d By:	Con	npany:		Date:	T	Time:		Rece	eived By	:	Co	mpany:		Date:	Time:
A (Callan	wer	Ventia		ι	Blulzz		700		Sc			ALS			17/11/2	2 1105
As an Occup	cing agreer ational Hea	nents, OH alth and S	IS requirements	s and our ter	ms and con	ditions. of Ecowise En	ling sampling pr			LABU	ISE ONLY	S	Sample cond	Samples w	Samples a	adequately pr ended holdin	amaged [Yes/No eserved [Yes/No g times: [Yes/No perature [Yes/No

CHAIN OF CUSTODY

Cli	ient:			Ve	ntia		j.	Control to the second	Job	Ref:			Cres	wick Land	dfill 2 o	of 3		
Conf	tact:		F	Robert	Callar	nder				TECT	e DEC	MIDE	DAC	DED O	LOTE	NAE IA	1011	
Addr		-	25-37 Huntin				1. 3125			IESI	SKEG	LOIKE	U AS	PER Q	UUTE	IVIC/4	12/10	9
//	one:	0427	529051		ax:		.,						1					
	nail:		edwards@ventia		1 1 1 1				-				N.					
	IIaII.		/ao@ventia.com															
			t.callander@ven															
P/O	No :	TODET	i.canarider@veri	Que	nto				-									
					0.:													
T/A T	ime:			Tearner and	war san maan		2015 E17 19 - 1009 F 70 B	T										
Sample ID		Sampl	e Description	Con	o of tainer s	Date Sample d	Time sample d		HA	EC	8	TEMP	ORP	SWL				
BH10	Grou	ndwat	er bore	9990 RD562360					8/									
BH1204	Grou	ndwat	er bore 3 4 16/11/22 131					W	6.15	1541	0.14	12.33	61	2.01				
	0.00		J	+		10/11/22	1310		6.13	1341	0.14	12.33	6.4	2.01				
LB1	Leac	hate b	ore															
LB2	Leac	hate b	ore				- 2											
LB3	Leac	hate b	ore				•		ONLY	NO	SAM	PLE -	SWL		2			
BLIND	Dline	dun (analysed by ALS			1.1												
				4		16/11/22	_	W								TI		
RINSAT E	Kins	ate bla	nk	5 4		16/11/22	1140											
															2			
	Sp	ecial	Please email In	voices	o Nic	ole.robins	@ventia.	com			1							
Ins		ctions: Lucy.edwards@ventia.com																
Reling	uishe	shed By: Company: Date:					Time:			eived By	':	Co	mpany:		Date	:	Time:	
AC	A Callander Ventia 16/11/22 170					00		5	Hes	ð	TLS		=	17/11	22	1105		
This form is fo	This form is for recording of sample data after prior consultation with an analyst regarding sampling pro not over-ride pricing agreements, OHS requirements and our terms and conditions.							rocedures	s and does <u>LAB USE ONLY</u> Sample conditions: Samples received un			ndamaged [Yes/No]						
	an Occupational Health and Safety consideration, it is a requirement of Ecowise Environmental nples received be undamaged and prior advice given in writing of any potential health risks.							ctoria), tha	that all Samples adequately pre Samples within recommended holding es transported at appropriate temp			ling times	: [Yes/No]					
Document:			, g	9	,									co transp	o. tou ut up	p. spriate te	por atai	0 [. 000]

Samples within recommended holding times: [Yes/No] Samples transported at appropriate temperature [Yes/No]

С	lient:				Ventia		Billio (DV-1)		Job	Ref:	I WE WELL TO		Cr	eswick	Landfill			
							4											
Con	itact:			R	obert Calla	ınder				TEST	SRE	QUIRE	DAS	PER C	UOTE	ME/4	12/1	6
Add	ress:		25-37 Hui	nting	dale Road	l, Burwoo	d, 3125											
Ph	one:	0427	529051		Fax:	20						l e						5
E	mail:	ping.	edwards@ven yao@ventia.c t.callander@v	<u>om</u>						ø	e ,						×	
P/O	No.:			Qı	uote No.:		4											¥.
T/A T	Γime:																	
Sample ID		Samp	le Description		No of Containers	Date Sampled	Time sampled		H	EC	0	TEMP	ORP	SWL				
U/S BH3	Cree	k Sam	ple	6	4	16/11/22	1130	ω	7.02	1709	9.57	13.10	145.6	_				
@ BH3	Cree	k Sam	ple	7		16/11/22	-	W	7.01	140.1	9.54	13.02		_			v.	_
D/S BH3	Cree	k Sam	ple	8	16	16/11/22		W	1				100.00	_		-		+
					1-4	10 [11/22	10 33		7.04	177.4	7.55	12.56	137.0					
Leachate	Surfa	ace wa	ter sample															
Wetland	Surfa	ace wa	ter sample			2			1								-	
Dredge	Surfa	ace wa	ter sample						1									1
														, , , , , , , , , , , , , , , , , , ,				
		7																
Ins	Sp struct	ecial ions:	Please email Lucy.edward			ole.robins(<u>@ventia.c</u>	om				1						
Relino	quishe	d By:	Compa	ıny:		Date:		Time:		Rece	eived By	':	Co	mpany:		Date	e:	Time:
A C	collan	wc1	Ventia		16	111/22	١	300		Sa	Ho		ALS			17/11	122	1105
This form is fo over-ride prici	or recordi ng agreei	ng of sam ments, Ol	ple data after prior o	onsult our te	tation with an an	alyst regarding ons.	sampling pro	cedures a	nd does not	LAB	ISE ONLY	S	Sample cond	ditions:			_	jed [Yes/No] red [Yes/No]

As an Occupational Health and Safety consideration, it is a requirement of Ecowise Environmental (Victoria), that all samples received be undamaged and prior advice given in writing of any potential health risks.

CI	lient:			Ve	ntia				Job	Ref:			Cı	eswick	Landfil	I		
Con	tact:			Robert	Calla	nder			D	looc	o fon	vord	to El	IDOE	CINIC	for o	aal	,oio
Addı	ress:		25-37 Hur	ntingdale	Road	l, Burwood	1, 3125			ieas	e forv	varu	10 E	IKUF	LINO	ioi ai	lais	1515
Ph	one:	04275290			ax:													
Eı	mail:	lucy.edwa ping.yao@ robert.call	ventia.co	m														
P/O	No.:			Quote N	0.:	190924VE	NV											
T/A T	ime:							To a						ě.				
Sample ID		Sample De	scription		o of ainers	Date Sampled	Time sampled	Matrix	Æ	2	00	TEMP	ORP	SWL				
Creswick SPLIT	Grou	ndwater	2	۷.		16/11/22	1446	ω	6.54	1000	60.03	14.1	-98.9 1.87					
															-			
lns	Spe structi			Invoices t		ole.robins@	ventia.co	<u>om</u>										
Reline	quished	d By:	Compa	ny:		Date:		Time:		Received By: Company: Date:					Time:			
	land		Ventia 16/1/22 1700							off		ALS			17/11		1105	
Relino	Relinquished By: Company: Date: Tim				Time:		Red	eived By	:	Со	mpany:		Dat	e:	Time:			
over-ride pricing	ng agreem tional Hea	ents, OHS requ	irements and consideration, i	our terms and out it is a requirem	ondition	cowise Environi				LAE	B USE ONL	Y	Sample cor	Samples	Sampl within reco	les adequate mmended ho	ly prese	aged [Yes/No] rved [Yes/No] mes: [Yes/No] ature [Yes/No]

CERTIFICATE OF ANALYSIS

Work Order : **EM2222858**

Client : VENTIA UTILITY SERVICES PTY LTD

Contact : LUCY EDWARDS

Address : 25-37 HUNTINGDALE ROAD

BURWOOD VIC 3125

Telephone : ---

Project : Creswick Landfill

Order number : -

C-O-C number : ---Sampler : AC
Site : ----

Quote number : ME/793/19

No. of samples received : 8
No. of samples analysed : 8

Page : 1 of 6

Laboratory : Environmental Division Melbourne

Contact : Peter Ravlic

Address : 4 Westall Rd Springvale VIC Australia 3171

Telephone : +6138549 9645

Date Samples Received : 18-Nov-2022 13:30

Date Analysis Commenced : 18-Nov-2022

Issue Date : 23-Nov-2022 22:29

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Dilani Fernando Laboratory Coordinator Melbourne External Subcontracting, Springvale, VIC

Dilani Fernando Laboratory Coordinator Melbourne Inorganics, Springvale, VIC
Jarwis Nheu Non-Metals Team Leader Melbourne Inorganics, Springvale, VIC

Page : 2 of 6 Work Order : EM2222858

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

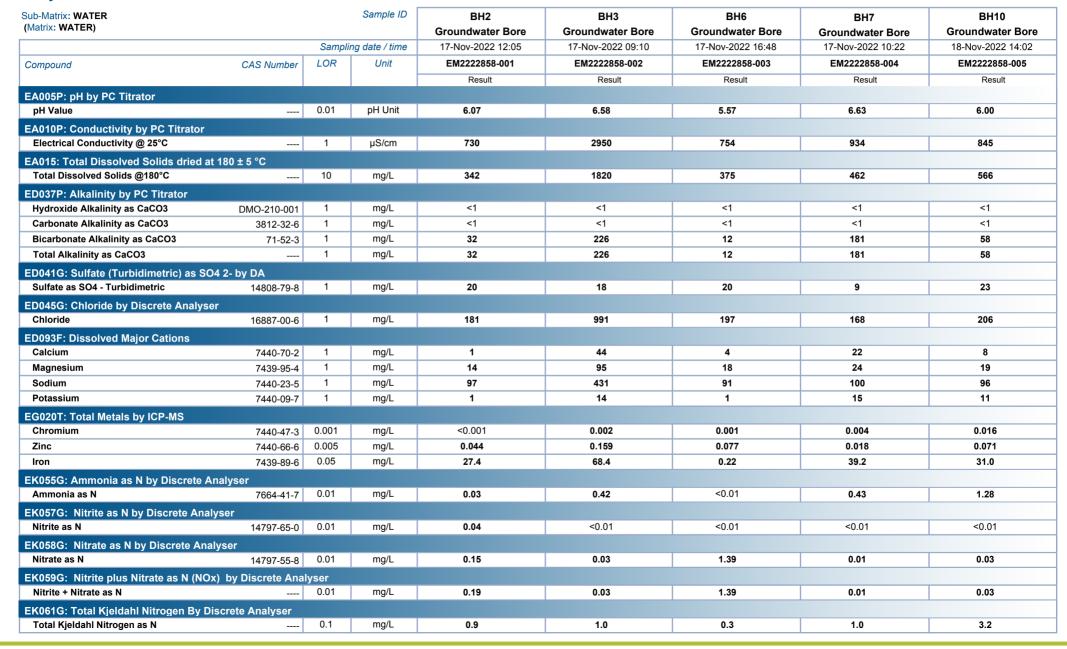
Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.


LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- As per QWI EN55-3 Data Interpreting Procedures, Ionic balances are typically calculated using Major Anions Chloride, Alkalinity and Sulfate; and Major Cations Calcium, Magnesium, Potassium and Sodium. Where applicable and dependent upon sample matrix, the Ionic Balance may also include the additional contribution of Ammonia, Dissolved Metals by ICPMS and H+ to the Cations and Nitrate, SiO2 and Fluoride to the Anions.
- Ionic balances were calculated using: major anions chloride, alkalinity and sulfate; and major cations calcium, magnesium, potassium and sodium.
- ED045G: The presence of Thiocyanate, Thiosulfate and Sulfite can positively contribute to the chloride result, thereby may bias results higher than expected. Results should be scrutinised accordingly.
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

Page : 3 of 6 Work Order : EM2222858

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill

Page : 4 of 6
Work Order : EM2222858

Client : VENTIA UTILITY SERVICES PTY LTD

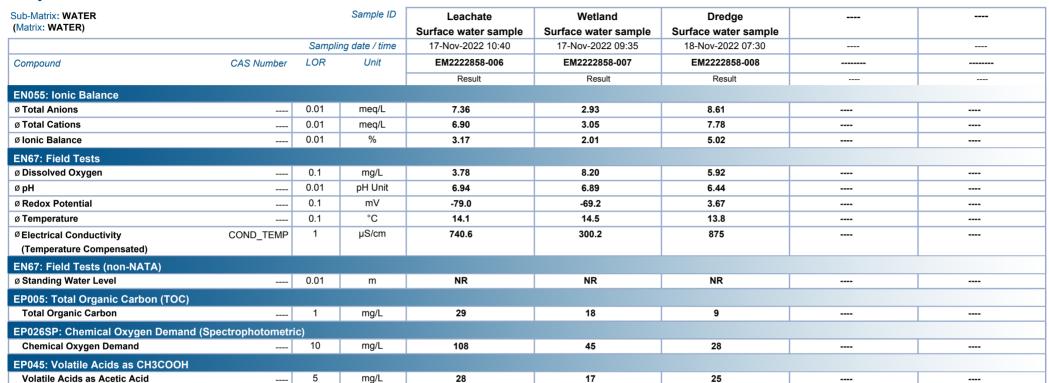
Project : Creswick Landfill

Sub-Matrix: WATER			Sample ID	BH2	BH3	BH6	ВН7	BH10
(Matrix: WATER)				Groundwater Bore	Groundwater Bore	Groundwater Bore	Groundwater Bore	Groundwater Bore
		Sampli	ng date / time	17-Nov-2022 12:05	17-Nov-2022 09:10	17-Nov-2022 16:48	17-Nov-2022 10:22	18-Nov-2022 14:02
Compound	CAS Number	LOR	Unit	EM2222858-001	EM2222858-002	EM2222858-003	EM2222858-004	EM2222858-005
				Result	Result	Result	Result	Result
EN055: Ionic Balance								
Ø Total Anions		0.01	meq/L	6.16	32.8	6.21	8.54	7.45
Ø Total Cations		0.01	meq/L	5.45	29.1	5.66	7.81	6.42
ø Ionic Balance		0.01	%	6.16	6.01	4.62	4.50	7.42
EN67: Field Tests								
ø Dissolved Oxygen		0.1	mg/L	0.53	0.12	0.36	0.09	0.21
ø pH		0.01	pH Unit	5.68	6.39	4.91	6.35	5.72
Ø Redox Potential		0.1	mV	47.3	-42.6	194.7	-31.1	68.3
ø Temperature		0.1	°C	14.99	14.10	15.05	14.45	14.53
Ø Electrical Conductivity	COND_TEMP	1	μS/cm	638.9	3353	653.5	880	777
(Temperature Compensated)								
EN67: Field Tests (non-NATA)								
ø Standing Water Level		0.01	m	1.93	0.59	11.20	2.42	2.06
EP005: Total Organic Carbon (TOC)								
Total Organic Carbon		1	mg/L	<1	17	<1	13	11
EP026SP: Chemical Oxygen Demand (S	pectrophotometr	ic)						
Chemical Oxygen Demand		10	mg/L	<10	12	12	<10	17
EP045: Volatile Acids as CH3COOH								
Volatile Acids as Acetic Acid		5	mg/L	23	26	30	31	17

Page : 5 of 6
Work Order : EM2222858

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill



Sub-Matrix: WATER			Sample ID	Leachate	Wetland	Dredge	
(Matrix: WATER)				Surface water sample	Surface water sample	Surface water sample	
		Sampli	ng date / time	17-Nov-2022 10:40	17-Nov-2022 09:35	18-Nov-2022 07:30	
Compound	CAS Number	LOR	Unit	EM2222858-006	EM2222858-007	EM2222858-008	
				Result	Result	Result	
A005P: pH by PC Titrator							
pH Value		0.01	pH Unit	7.25	6.99	6.85	
A010P: Conductivity by PC Titrator							
Electrical Conductivity @ 25°C		1	μS/cm	834	361	940	
A015: Total Dissolved Solids dried a	t 180 ± 5 °C						
Total Dissolved Solids @180°C		10	mg/L	480	236	503	
ED037P: Alkalinity by PC Titrator							
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	171	66	65	
Total Alkalinity as CaCO3		1	mg/L	171	66	65	
ED041G: Sulfate (Turbidimetric) as SC	04 2- by DA						
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	5	3	15	
D045G: Chloride by Discrete Analys	er						
Chloride	16887-00-6	1	mg/L	136	55	248	
D093F: Dissolved Major Cations							
Calcium	7440-70-2	1	mg/L	27	9	12	
Magnesium	7439-95-4	1	mg/L	19	10	24	
Sodium	7440-23-5	1	mg/L	73	38	118	
Potassium	7440-09-7	1	mg/L	32	5	3	
EG020T: Total Metals by ICP-MS							
Chromium	7440-47-3	0.001	mg/L	0.006	0.004	<0.001	
Zinc	7440-66-6	0.005	mg/L	0.036	0.006	0.005	
Iron	7439-89-6	0.05	mg/L	23.5	9.71	2.45	
:K055G: Ammonia as N by Discrete A	nalyser						
Ammonia as N	7664-41-7	0.01	mg/L	5.35	0.04	0.01	
EK057G: Nitrite as N by Discrete Ana							
Nitrite as N	14797-65-0	0.01	mg/L	0.02	<0.01	<0.01	
EK058G: Nitrate as N by Discrete Ana			, J				
Nitrate as N	14797-55-8	0.01	mg/L	<0.01	0.01	0.11	
			9, =	0.01			1
EK059G: Nitrite plus Nitrate as N (NO Nitrite + Nitrate as N	x) by Discrete Ana	0.01	mg/L	0.02	0.01	0.11	
		0.01	mg/L	V.V2	0.01	V.11	
EK061G: Total Kjeldahl Nitrogen By D		0.1	ma/l	E E	0.0	4.4	
Total Kjeldahl Nitrogen as N		0.1	mg/L	5.5	0.9	1.1	

Page : 6 of 6 Work Order : EM2222858

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill

QUALITY CONTROL REPORT

Work Order : **EM2222858**

Client : VENTIA UTILITY SERVICES PTY LTD

Contact : LUCY EDWARDS

Address : 25-37 HUNTINGDALE ROAD

BURWOOD VIC 3125

Telephone : ---

Project : Creswick Landfill

 Order number
 :

 C-O-C number
 : ---

 Sampler
 : AC

Site : AC

Quote number : ME/793/19

No. of samples received : 8
No. of samples analysed : 8

Page : 1 of 7

Laboratory : Environmental Division Melbourne

Contact : Peter Ravlic

Address : 4 Westall Rd Springvale VIC Australia 3171

Telephone : +6138549 9645

Date Samples Received : 18-Nov-2022

Date Analysis Commenced : 18-Nov-2022

Issue Date : 23-Nov-2022

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Dilani Fernando	Laboratory Coordinator	Melbourne External Subcontracting, Springvale, VIC

Dilani Fernando Laboratory Coordinator Melbourne Inorganics, Springvale, VIC
Jarwis Nheu Non-Metals Team Leader Melbourne Inorganics, Springvale, VIC

Page : 2 of 7
Work Order : EM2222858

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: WATER						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EA005P: pH by PC 1	itrator (QC Lot: 4712860)								
EM2222721-019	Anonymous	EA005-P: pH Value		0.01	pH Unit	7.25	7.31	0.8	0% - 20%
EM2222748-007	Anonymous	EA005-P: pH Value		0.01	pH Unit	7.04	7.06	0.3	0% - 20%
EA005P: pH by PC 1	itrator (QC Lot: 4712865)								
EM2222858-008	Dredge Surface water	EA005-P: pH Value		0.01	pH Unit	6.85	6.94	1.3	0% - 20%
	sample								
EM2222870-001	Anonymous	EA005-P: pH Value		0.01	pH Unit	7.19	7.37	2.5	0% - 20%
EA010P: Conductivi	ty by PC Titrator (QC Lot: 4	712862)							
EM2222743-011	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	<1	<1	0.0	No Limit
EM2222748-007	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	204	208	1.7	0% - 20%
EA010P: Conductivi	ty by PC Titrator (QC Lot: 4	712866)							
EM2222858-008	Dredge Surface water sample	EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	940	956	1.7	0% - 20%
EM2222870-001	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	592	547	7.9	0% - 20%
EA015: Total Dissol	ved Solids dried at 180 ± 5 °	C (QC Lot: 4714211)							
EM2222791-006	Anonymous	EA015H: Total Dissolved Solids @180°C		10	mg/L	2370	2390	0.9	0% - 20%
EM2222802-008	Anonymous	EA015H: Total Dissolved Solids @180°C		10	mg/L	874	866	0.9	0% - 20%
EM2222858-008	Dredge Surface water	EA015H: Total Dissolved Solids @180°C		10	mg/L	503	521	3.5	0% - 20%
	sample								
ED037P: Alkalinity b	by PC Titrator (QC Lot: 4712	2864)							
EM2222861-002	Anonymous	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	349	344	1.2	0% - 20%
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	349	344	1.2	0% - 20%

Page : 3 of 7
Work Order : EM2222858

Client : VENTIA UTILITY SERVICES PTY LTD

Sub-Matrix: WATER						Laboratory	Duplicate (DUP) Report	t	
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
ED037P: Alkalinity I	by PC Titrator (QC Lot: 471:	2864) - continued							
EM2222858-008	Dredge Surface water sample	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	65	66	1.6	0% - 20%
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	65	66	1.6	0% - 20%
ED041G: Sulfate (Tu	urbidimetric) as SO4 2- by D	A (QC Lot: 4712628)							
EM2222855-001	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	12	11	0.0	0% - 50%
EM2222861-001	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	543	548	1.0	0% - 20%
ED045G: Chloride b	y Discrete Analyser (QC Lo	ot: 4712629)							
EM2222855-001	Anonymous	ED045G: Chloride	16887-00-6	1	mg/L	60	59	0.0	0% - 20%
EM2222861-001	Anonymous	ED045G: Chloride	16887-00-6	1	mg/L	4810	4800	0.2	0% - 20%
ED093F: Dissolved	Major Cations (QC Lot: 471	3369)							
EM2222851-001	Anonymous	ED093F: Calcium	7440-70-2	1	mg/L	38	38	0.0	0% - 20%
		ED093F: Magnesium	7439-95-4	1	mg/L	33	33	0.0	0% - 20%
		ED093F: Sodium	7440-23-5	1	mg/L	92	91	0.0	0% - 20%
		ED093F: Potassium	7440-09-7	1	mg/L	7	7	0.0	No Limit
EM2222856-002	Anonymous	ED093F: Calcium	7440-70-2	1	mg/L	44	44	0.0	0% - 20%
		ED093F: Magnesium	7439-95-4	1	mg/L	41	41	0.0	0% - 20%
		ED093F: Sodium	7440-23-5	1	mg/L	86	86	0.0	0% - 20%
		ED093F: Potassium	7440-09-7	1	mg/L	<1	<1	0.0	No Limit
ED093F: Dissolved	Major Cations (QC Lot: 471	3370)							
EM2222861-008	Anonymous	ED093F: Calcium	7440-70-2	1	mg/L	<1	<1	0.0	No Limit
		ED093F: Magnesium	7439-95-4	1	mg/L	<1	<1	0.0	No Limit
		ED093F: Sodium	7440-23-5	1	mg/L	<1	<1	0.0	No Limit
		ED093F: Potassium	7440-09-7	1	mg/L	<1	<1	0.0	No Limit
EG020T: Total Meta	Is by ICP-MS (QC Lot: 4713	347)							
EM2222788-001	Anonymous	EG020A-T: Chromium	7440-47-3	0.001	mg/L	0.074	0.073	0.0	0% - 20%
	-	EG020A-T: Zinc	7440-66-6	0.005	mg/L	0.404	0.408	0.9	0% - 20%
		EG020A-T: Iron	7439-89-6	0.05	mg/L	8.32	8.40	1.0	0% - 20%
EM2222802-008	Anonymous	EG020A-T: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Zinc	7440-66-6	0.005	mg/L	0.039	0.037	3.8	No Limit
		EG020A-T: Iron	7439-89-6	0.05	mg/L	24.7	24.8	0.2	0% - 20%
EG020T: Total Meta	Is by ICP-MS (QC Lot: 4713	348)							
EM2222858-002	BH3 Groundwater Bore	EG020A-T: Chromium	7440-47-3	0.001	mg/L	0.002	0.002	0.0	No Limit
		EG020A-T: Zinc	7440-66-6	0.005	mg/L	0.159	0.168	5.7	0% - 20%
		EG020A-T: Iron	7439-89-6	0.05	mg/L	68.4	66.6	2.6	0% - 20%
EM2222862-001	Anonymous	EG020A-T: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	0.0	No Limit
		EG020A-T: Iron	7439-89-6	0.05	mg/L	<0.05	<0.05	0.0	No Limit

Page : 4 of 7
Work Order : EM2222858

Client : VENTIA UTILITY SERVICES PTY LTD

Sub-Matrix: WATER						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EK055G: Ammonia	as N by Discrete Analyser	(QC Lot: 4715696)							
EM2222861-001	Anonymous	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	<0.01	<0.01	0.0	No Limit
EK057G: Nitrite as	N by Discrete Analyser (Qo	C Lot: 4712630)							
EM2222855-001	Anonymous	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	0.0	No Limit
EM2222861-001	Anonymous	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	0.0	No Limit
EK059G: Nitrite plu	s Nitrate as N (NOx) by Dis	screte Analyser (QC Lot: 4715697)							
EM2222843-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	36.6	36.8	0.4	0% - 20%
EM2222861-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	2.29	2.32	1.3	0% - 20%
EK061G: Total Kjelo	lahl Nitrogen By Discrete A	nalyser (QC Lot: 4713441)							
EM2222870-003	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	6.6	6.5	0.0	0% - 20%
EM2222815-003	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	1.0	1.1	0.0	0% - 50%
EP005: Total Organ	ic Carbon (TOC) (QC Lot: 4	717217)							
EM2222856-001	Anonymous	EP005: Total Organic Carbon		1	mg/L	<1	<1	0.0	No Limit
EM2222858-005	BH10 Groundwater Bore	EP005: Total Organic Carbon		1	mg/L	11	11	0.0	0% - 50%
EP026SP: Chemical	Oxygen Demand (Spectro	ohotometric) (QC Lot: 4713337)							
EM2222856-001	Anonymous	EP026SP: Chemical Oxygen Demand		10	mg/L	<10	<10	0.0	No Limit
EM2222858-005	BH10 Groundwater Bore	EP026SP: Chemical Oxygen Demand		10	mg/L	17	17	0.0	No Limit
EP045: Volatile Acid	is as CH3COOH (QC Lot: 4	720066)							
EM2222743-012	Anonymous	EP045: Volatile Acids as Acetic Acid		5	mg/L	<5	<5	0.0	No Limit
EM2222764-002	Anonymous	EP045: Volatile Acids as Acetic Acid		5	mg/L	81	78	4.0	0% - 50%
EP045: Volatile Acid	is as CH3COOH (QC Lot: 4	720067)							
EM2222858-005	BH10 Groundwater Bore	EP045: Volatile Acids as Acetic Acid		5	mg/L	17	19	8.9	No Limit
EM2222861-008	Anonymous	EP045: Volatile Acids as Acetic Acid		5	mg/L	<5	<5	0.0	No Limit

Page : 5 of 7
Work Order : EM2222858

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill

Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LCS	S) Report	
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)
Method: Compound CA	AS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EA005P: pH by PC Titrator (QCLot: 4712860)								
EA005-P: pH Value			pH Unit		4 pH Unit	100	98.8	101
					7 pH Unit	100	99.3	101
EA005P: pH by PC Titrator (QCLot: 4712865)								
EA005-P: pH Value			pH Unit		4 pH Unit	99.8	98.8	101
·					7 pH Unit	100	99.3	101
EA010P: Conductivity by PC Titrator (QCLot: 4712862)								
EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	<1	1412 μS/cm	98.6	85.0	119
EA010P: Conductivity by PC Titrator (QCLot: 4712866)								
EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	<1	1412 μS/cm	108	85.0	119
EA015: Total Dissolved Solids dried at 180 ± 5 °C (QCLot: 4714	211)							
EA015H: Total Dissolved Solids @180°C		10	mg/L	<10	2000 mg/L	98.5	91.0	110
2.10.10.11.10.00.1000.1000.000.000.000.0				<10	2440 mg/L	103	81.6	118
				<10	293 mg/L	108	91.0	110
ED037P: Alkalinity by PC Titrator (QCLot: 4712864)								
ED037-P: Total Alkalinity as CaCO3			mg/L		200 mg/L	100	85.0	116
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA (QCLot: 4712)	628)							
	808-79-8	1	mg/L	<1	25 mg/L	105	85.8	117
			_	<1	500 mg/L	105	80.0	120
ED045G: Chloride by Discrete Analyser (QCLot: 4712629)								
	887-00-6	1	mg/L	<1	10 mg/L	103	85.0	115
			_	<1	1000 mg/L	103	85.0	122
ED093F: Dissolved Major Cations (QCLot: 4713369)								
	440-70-2	1	mg/L	<1	50 mg/L	109	80.0	120
ED093F: Magnesium 7	439-95-4	1	mg/L	<1	50 mg/L	109	80.0	120
	440-23-5	1	mg/L	<1	50 mg/L	107	80.0	120
ED093F: Potassium 7-	440-09-7	1	mg/L	<1	50 mg/L	102	80.0	120
ED093F: Dissolved Major Cations (QCLot: 4713370)								
	440-70-2	1	mg/L	<1	50 mg/L	109	80.0	120
ED093F: Magnesium 7	439-95-4	1	mg/L	<1	50 mg/L	109	80.0	120
	440-23-5	1	mg/L	<1	50 mg/L	106	80.0	120
ED093F: Potassium 7	440-09-7	1	mg/L	<1	50 mg/L	102	80.0	120
EG020T: Total Metals by ICP-MS (QCLot: 4713347)								
	440-47-3	0.001	mg/L	<0.001	0.1 mg/L	101	86.9	112

Page : 6 of 7
Work Order : EM2222858

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EG020T: Total Metals by ICP-MS (QCLot: 4713347)	- continued							
EG020A-T: Zinc	7440-66-6	0.005	mg/L	<0.005	0.1 mg/L	108	86.7	117
EG020A-T: Iron	7439-89-6	0.05	mg/L	<0.05	0.5 mg/L	105	92.8	118
EG020T: Total Metals by ICP-MS (QCLot: 4713348)								
EG020A-T: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	100	86.9	112
EG020A-T: Zinc	7440-66-6	0.005	mg/L	<0.005	0.1 mg/L	106	86.7	117
EG020A-T: Iron	7439-89-6	0.05	mg/L	<0.05	0.5 mg/L	106	92.8	118
EK055G: Ammonia as N by Discrete Analyser (QCL	.ot: 4715696)							
EK055G: Ammonia as N	7664-41-7	0.01	mg/L	<0.01	1 mg/L	97.1	84.1	116
EK057G: Nitrite as N by Discrete Analyser (QCLot:	4712630)							
EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	0.5 mg/L	105	90.9	112
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete	Analyser (QCLot: 471	15697)						
EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	0.5 mg/L	107	90.0	117
EK061G: Total Kjeldahl Nitrogen By Discrete Analys	ser (QCLot: 4713441)							
EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	<0.1	5 mg/L	95.3	70.0	117
EP005: Total Organic Carbon (TOC) (QCLot: 47172	17)							
EP005: Total Organic Carbon		1	mg/L	<1	100 mg/L	98.7	81.2	110
EP026SP: Chemical Oxygen Demand (Spectrophoto	ometric) (QCLot: 47133	337)						
EP026SP: Chemical Oxygen Demand		10	mg/L	<10	500 mg/L	102	89.7	111
EP045: Volatile Acids as CH3COOH (QCLot: 472000	66)							
EP045: Volatile Acids as Acetic Acid		5	mg/L	<5	192 mg/L	97.4	85.5	116
EP045: Volatile Acids as CH3COOH (QCLot: 472000	67)							
EP045: Volatile Acids as Acetic Acid		5	mg/L	<5	192 mg/L	101	85.5	116

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER			Matrix Spike (MS) Report							
				Spike	SpikeRecovery(%)	Acceptable L	imits (%)			
Laboratory sample ID	Sample ID	Method: Compound CA	AS Number	Concentration	MS	Low	High			
ED041G: Sulfate (T	ED041G: Sulfate (Turbidimetric) as SO4 2- by DA (QCLot: 4712628)									
EM2222858-001	BH2 Groundwater Bore	ED041G: Sulfate as SO4 - Turbidimetric 14	1808-79-8	100 mg/L	99.8	70.0	130			
ED045G: Chloride	by Discrete Analyser (QCLot: 4712629)									
EM2222858-001	BH2 Groundwater Bore	ED045G: Chloride 16	887-00-6	400 mg/L	109	70.0	142			
EG020T: Total Metals by ICP-MS (QCLot: 4713347)										
EM2222788-001	Anonymous	EG020A-T: Chromium 74	140-47-3	1 mg/L	93.4	78.9	119			

Page : 7 of 7 Work Order : EM2222858

Client : VENTIA UTILITY SERVICES PTY LTD

Sub-Matrix: WATER		Matrix Spike (MS) Report								
				Spike	SpikeRecovery(%)	Acceptable L	imits (%)			
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High			
EG020T: Total Met	als by ICP-MS (QCLot: 4713347) - continued									
EM2222788-001	Anonymous	EG020A-T: Zinc	7440-66-6	1 mg/L	94.4	74.0	120			
EG020T: Total Metals by ICP-MS (QCLot: 4713348)										
EM2222858-002	BH3 Groundwater Bore	EG020A-T: Chromium	7440-47-3	1 mg/L	93.8	78.9	119			
		EG020A-T: Zinc	7440-66-6	1 mg/L	98.1	74.0	120			
EK055G: Ammonia as N by Discrete Analyser (QCLot: 4715696)										
EM2222858-001	BH2 Groundwater Bore	EK055G: Ammonia as N	1 mg/L	119	70.0	130				
EK057G: Nitrite as	s N by Discrete Analyser (QCLot: 4712630)									
EM2222858-001	BH2 Groundwater Bore	EK057G: Nitrite as N	14797-65-0	0.5 mg/L	100	80.0	114			
EK059G: Nitrite pl	us Nitrate as N (NOx) by Discrete Analyser (QCLot: 47	15697)								
EM2222858-001	BH2 Groundwater Bore	EK059G: Nitrite + Nitrate as N		0.5 mg/L	73.6	70.0	130			
EK061G: Total Kje	Idahl Nitrogen By Discrete Analyser (QCLot: 4713441)									
EM2222815-004	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		5 mg/L	96.1	70.0	130			
EP005: Total Orga	nic Carbon (TOC) (QCLot: 4717217)									
EM2222856-002	M2222856-002 Anonymous EP005: Total Organic Carbon 100 mg/L 104 76.6 125									
EP026SP: Chemic	al Oxygen Demand (Spectrophotometric) (QCLot: 47133	337)								
EM2222856-002	Anonymous	EP026SP: Chemical Oxygen Demand		2500 mg/L	99.2	70.0	130			

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **EM2222858** Page : 1 of 9

Client : VENTIA UTILITY SERVICES PTY LTD Laboratory : Environmental Division Melbourne

Contact: LUCY EDWARDSTelephone: +6138549 9645Project: Creswick LandfillDate Samples Received: 18-Nov-2022Site: ---Issue Date: 23-Nov-2022

Sampler : AC No. of samples received : 8
Order number :- No. of samples analysed : 8

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Page : 2 of 9
Work Order : EM2222858

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill

Outliers: Analysis Holding Time Compliance

Matrix: WATER

lethod				traction / Preparation		Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Days	Date analysed	Due for analysis	Days
					overdue			overdue
EA005P: pH by PC Titrator								
Clear Plastic Bottle - Natural								
BH2 - Groundwater Bore,	BH3 - Groundwater Bore,					18-Nov-2022	17-Nov-2022	1
BH6 - Groundwater Bore,	BH7 - Groundwater Bore,							
Leachate - Surface water sample,	Wetland - Surface water sample							

Outliers: Frequency of Quality Control Samples

Matrix: WATER

Quality Control Sample Type	Count Rate (%) Quality		: (%)	Quality Control Specification	
Method	QC	Regular	Actual	Expected	
Laboratory Duplicates (DUP)					
Ammonia as N by Discrete analyser	1	18	5.56	10.00	NEPM 2013 B3 & ALS QC Standard

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: WATER Evaluation: × = Holding time breach; ✓ = Within holding time.

adux: WATER Evaluation: ➤ = moraling time breach , ➤ = within holding time								
Method		Sample Date	Extraction / Preparation				Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA005P: pH by PC Titrator								
Clear Plastic Bottle - Natural (EA005-P)								
BH2 - Groundwater Bore,	BH3 - Groundwater Bore,	17-Nov-2022				18-Nov-2022	17-Nov-2022	×
BH6 - Groundwater Bore,	BH7 - Groundwater Bore,							
Leachate - Surface water sample,	Wetland - Surface water sample							
Clear Plastic Bottle - Natural (EA005-P)								
BH10 - Groundwater Bore,	Dredge - Surface water sample	18-Nov-2022				18-Nov-2022	18-Nov-2022	✓
EA010P: Conductivity by PC Titrator								
Clear Plastic Bottle - Natural (EA010-P)								
BH2 - Groundwater Bore,	BH3 - Groundwater Bore,	17-Nov-2022				18-Nov-2022	15-Dec-2022	✓
BH6 - Groundwater Bore,	BH7 - Groundwater Bore,							
Leachate - Surface water sample,	Wetland - Surface water sample							
Clear Plastic Bottle - Natural (EA010-P)								
BH10 - Groundwater Bore,	Dredge - Surface water sample	18-Nov-2022				18-Nov-2022	16-Dec-2022	✓

Page : 3 of 9
Work Order : EM2222858

Client : VENTIA UTILITY SERVICES PTY LTD

Matrix: WATER					Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding tim
Method		Sample Date	Ex	ktraction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA015: Total Dissolved Solids dried at 180 ± 5 °C								
Clear Plastic Bottle - Natural (EA015H)								
BH2 - Groundwater Bore,	BH3 - Groundwater Bore,	17-Nov-2022				21-Nov-2022	24-Nov-2022	✓
BH6 - Groundwater Bore,	BH7 - Groundwater Bore,							
Leachate - Surface water sample,	Wetland - Surface water sample							
Clear Plastic Bottle - Natural (EA015H)								
BH10 - Groundwater Bore,	Dredge - Surface water sample	18-Nov-2022				21-Nov-2022	25-Nov-2022	✓
ED037P: Alkalinity by PC Titrator								
Clear Plastic Bottle - Natural (ED037-P)								
BH2 - Groundwater Bore,	BH3 - Groundwater Bore,	17-Nov-2022				18-Nov-2022	01-Dec-2022	✓
BH6 - Groundwater Bore,	BH7 - Groundwater Bore,							
Leachate - Surface water sample,	Wetland - Surface water sample							
Clear Plastic Bottle - Natural (ED037-P)								
BH10 - Groundwater Bore,	Dredge - Surface water sample	18-Nov-2022				18-Nov-2022	02-Dec-2022	✓
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA								
Clear Plastic Bottle - Natural (ED041G)								
BH2 - Groundwater Bore,	BH3 - Groundwater Bore,	17-Nov-2022				22-Nov-2022	15-Dec-2022	✓
BH6 - Groundwater Bore,	BH7 - Groundwater Bore,							
Leachate - Surface water sample,	Wetland - Surface water sample							
Clear Plastic Bottle - Natural (ED041G)								
BH10 - Groundwater Bore,	Dredge - Surface water sample	18-Nov-2022				22-Nov-2022	16-Dec-2022	✓
ED045G: Chloride by Discrete Analyser								
Clear Plastic Bottle - Natural (ED045G)								
BH2 - Groundwater Bore,	BH3 - Groundwater Bore,	17-Nov-2022				22-Nov-2022	15-Dec-2022	✓
BH6 - Groundwater Bore,	BH7 - Groundwater Bore,							
Leachate - Surface water sample,	Wetland - Surface water sample							
Clear Plastic Bottle - Natural (ED045G)								
BH10 - Groundwater Bore,	Dredge - Surface water sample	18-Nov-2022				22-Nov-2022	16-Dec-2022	✓
ED093F: Dissolved Major Cations								
Clear Plastic Bottle - Natural (ED093F)								
BH2 - Groundwater Bore,	BH3 - Groundwater Bore,	17-Nov-2022				22-Nov-2022	24-Nov-2022	✓
BH6 - Groundwater Bore,	BH7 - Groundwater Bore,							
Leachate - Surface water sample,	Wetland - Surface water sample							
Clear Plastic Bottle - Natural (ED093F)								
BH10 - Groundwater Bore,	Dredge - Surface water sample	18-Nov-2022				22-Nov-2022	25-Nov-2022	✓
EG020T: Total Metals by ICP-MS								
Clear Plastic Bottle - Nitric Acid; Unfiltered (EG020A-T)								
BH2 - Groundwater Bore,	BH3 - Groundwater Bore,	17-Nov-2022	19-Nov-2022	16-May-2023	✓	19-Nov-2022	16-May-2023	✓
BH6 - Groundwater Bore,	BH7 - Groundwater Bore,							
Leachate - Surface water sample,	Wetland - Surface water sample							
Clear Plastic Bottle - Nitric Acid; Unfiltered (EG020A-T)	·							
BH10 - Groundwater Bore,	Dredge - Surface water sample	18-Nov-2022	19-Nov-2022	17-May-2023	1	19-Nov-2022	17-May-2023	✓

Page : 4 of 9
Work Order : EM2222858

Client : VENTIA UTILITY SERVICES PTY LTD

Matrix: WATER					Evaluation	n: × = Holding time	breach ; ✓ = Withi	n holding time	
Method		Sample Date	E)	ktraction / Preparation		Analysis			
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
EK055G: Ammonia as N by Discrete Analyser									
Clear Plastic Bottle - Sulfuric Acid (EK055G)									
BH2 - Groundwater Bore,	BH3 - Groundwater Bore,	17-Nov-2022				22-Nov-2022	15-Dec-2022	✓	
BH6 - Groundwater Bore,	BH7 - Groundwater Bore,								
Leachate - Surface water sample,	Wetland - Surface water sample								
Clear Plastic Bottle - Sulfuric Acid (EK055G)									
BH10 - Groundwater Bore,	Dredge - Surface water sample	18-Nov-2022				22-Nov-2022	16-Dec-2022	✓	
EK057G: Nitrite as N by Discrete Analyser									
Clear Plastic Bottle - Natural (EK057G)									
BH2 - Groundwater Bore,	BH3 - Groundwater Bore,	17-Nov-2022				18-Nov-2022	19-Nov-2022	✓	
BH6 - Groundwater Bore,	BH7 - Groundwater Bore,								
Leachate - Surface water sample,	Wetland - Surface water sample								
Clear Plastic Bottle - Natural (EK057G)							00 No 0000		
BH10 - Groundwater Bore,	Dredge - Surface water sample	18-Nov-2022				18-Nov-2022	20-Nov-2022	✓	
EK059G: Nitrite plus Nitrate as N (NOx) by Discre	te Analyser								
Clear Plastic Bottle - Sulfuric Acid (EK059G)							45.5 0000		
BH2 - Groundwater Bore,	BH3 - Groundwater Bore,	17-Nov-2022				22-Nov-2022	15-Dec-2022	✓	
BH6 - Groundwater Bore,	BH7 - Groundwater Bore,								
Leachate - Surface water sample,	Wetland - Surface water sample								
Clear Plastic Bottle - Sulfuric Acid (EK059G)		18-Nov-2022				00 Nov. 0000	16-Dec-2022		
BH10 - Groundwater Bore,	Dredge - Surface water sample	16-NOV-2022				22-Nov-2022	10-Dec-2022	✓	
EK061G: Total Kjeldahl Nitrogen By Discrete Analy	/ser		I	T		1	ı	ı	
Clear Plastic Bottle - Sulfuric Acid (EK061G)	DUO Creum durates Dese	17-Nov-2022	22-Nov-2022	15-Dec-2022	1	22-Nov-2022	15-Dec-2022		
BH2 - Groundwater Bore,	BH3 - Groundwater Bore,	17-NOV-2022	22-NOV-2022	15-Dec-2022	~	22-NOV-2022	15-Dec-2022	✓	
BH6 - Groundwater Bore,	BH7 - Groundwater Bore,								
Leachate - Surface water sample,	Wetland - Surface water sample								
Clear Plastic Bottle - Sulfuric Acid (EK061G) BH10 - Groundwater Bore,	Dredge - Surface water sample	18-Nov-2022	22-Nov-2022	16-Dec-2022	1	22-Nov-2022	16-Dec-2022	✓	
	Dreage - ourlace water sample	10 1107 2022	22 1101 2022	10 000 2022		22 1101 2022	10 200 2022	V	
EP005: Total Organic Carbon (TOC)			l	<u> </u>	I	I			
Amber TOC Vial - Sulfuric Acid (EP005) BH2 - Groundwater Bore,	BH3 - Groundwater Bore.	17-Nov-2022				22-Nov-2022	15-Dec-2022	1	
BH6 - Groundwater Bore,	BH7 - Groundwater Bore,	17-1404-2022				22-1404-2022	10 000 2022	v	
Leachate - Surface water sample,	Wetland - Surface water sample								
Amber TOC Vial - Sulfuric Acid (EP005)	Welland - Sunace water sample								
BH10 - Groundwater Bore,	Dredge - Surface water sample	18-Nov-2022				22-Nov-2022	16-Dec-2022	1	
								V	
EP026SP: Chemical Oxygen Demand (Spectropho Clear Plastic Bottle - Sulfuric Acid (EP026SP)	tometric;								
BH2 - Groundwater Bore,	BH3 - Groundwater Bore,	17-Nov-2022				19-Nov-2022	15-Dec-2022	1	
BH6 - Groundwater Bore.	BH7 - Groundwater Bore.	11111						•	
Leachate - Surface water sample,	Wetland - Surface water sample								
Clear Plastic Bottle - Sulfuric Acid (EP026SP)	Curiuso Mator Curripio								
BH10 - Groundwater Bore,	Dredge - Surface water sample	18-Nov-2022				19-Nov-2022	16-Dec-2022	✓	
				!					

Page : 5 of 9
Work Order : EM2222858

Client : VENTIA UTILITY SERVICES PTY LTD

Matrix: WATER					Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time.
Method			Extraction / Preparation			Analysis		
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
EP045: Volatile Acids as CH3COOH								
Clear Plastic Bottle - Natural (EP045)								
BH2 - Groundwater Bore,	BH3 - Groundwater Bore,	17-Nov-2022				23-Nov-2022	01-Dec-2022	✓
BH6 - Groundwater Bore,	BH7 - Groundwater Bore,							
Leachate - Surface water sample,	Wetland - Surface water sample							
Clear Plastic Bottle - Natural (EP045)								
BH10 - Groundwater Bore,	Dredge - Surface water sample	18-Nov-2022				23-Nov-2022	02-Dec-2022	✓

Page : 6 of 9 Work Order EM2222858

Client VENTIA UTILITY SERVICES PTY LTD

Creswick Landfill Project

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Quality Control Sample Type		C	ount	Rate (%)			Quality Control Specification
Analytical Methods	Method	QC	Regular	Actual	Expected	Evaluation	
aboratory Duplicates (DUP)							
Alkalinity by Auto Titrator	ED037-P	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Ammonia as N by Discrete analyser	EK055G	1	18	5.56	10.00	×	NEPM 2013 B3 & ALS QC Standard
Chemical Oxygen Demand (COD) (Spectrophotometric)	EP026SP	2	20	10.00	10.00	1	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G	2	20	10.00	10.00	1	NEPM 2013 B3 & ALS QC Standard
Conductivity by Auto Titrator	EA010-P	4	33	12.12	10.00	√	NEPM 2013 B3 & ALS QC Standard
Major Cations - Dissolved	ED093F	3	25	12.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
litrite as N by Discrete Analyser	EK057G	2	20	10.00	10.00	√	NEPM 2013 B3 & ALS QC Standard
oH by Auto Titrator	EA005-P	4	32	12.50	10.00	<u>√</u>	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Dissolved Solids (High Level)	EA015H	3	21	14.29	10.00	1	NEPM 2013 B3 & ALS QC Standard
otal Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	2	20	10.00	10.00	<u> </u>	NEPM 2013 B3 & ALS QC Standard
otal Metals by ICP-MS - Suite A	EG020A-T	4	27	14.81	10.00	√	NEPM 2013 B3 & ALS QC Standard
otal Organic Carbon	EP005	2	13	15.38	10.00	1	NEPM 2013 B3 & ALS QC Standard
olatile Acids as CH3COOH	EP045	4	40	10.00	10.00	<u> </u>	NEPM 2013 B3 & ALS QC Standard
aboratory Control Samples (LCS)							
Alkalinity by Auto Titrator	ED037-P	1	20	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
mmonia as N by Discrete analyser	EK055G	1	18	5.56	5.00	<u>√</u>	NEPM 2013 B3 & ALS QC Standard
Chemical Oxygen Demand (COD) (Spectrophotometric)	EP026SP	1	20	5.00	5.00	√	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G	2	20	10.00	10.00	<u> </u>	NEPM 2013 B3 & ALS QC Standard
Conductivity by Auto Titrator	EA010-P	2	33	6.06	5.00	√	NEPM 2013 B3 & ALS QC Standard
Major Cations - Dissolved	ED093F	2	25	8.00	5.00	√	NEPM 2013 B3 & ALS QC Standard
litrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	20	5.00	5.00	√	NEPM 2013 B3 & ALS QC Standard
litrite as N by Discrete Analyser	EK057G	1	20	5.00	5.00	<u> </u>	NEPM 2013 B3 & ALS QC Standard
H by Auto Titrator	EA005-P	4	32	12.50	10.00	√	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	2	20	10.00	10.00	√	NEPM 2013 B3 & ALS QC Standard
otal Dissolved Solids (High Level)	EA015H	3	21	14.29	7.50		NEPM 2013 B3 & ALS QC Standard
otal Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	20	5.00	5.00		NEPM 2013 B3 & ALS QC Standard
otal Metals by ICP-MS - Suite A	EG020A-T	2	27	7.41	5.00		NEPM 2013 B3 & ALS QC Standard
otal Organic Carbon	EP005	1	13	7.69	5.00		NEPM 2013 B3 & ALS QC Standard
olatile Acids as CH3COOH	EP045	2	40	5.00	5.00	√	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)						-	
mmonia as N by Discrete analyser	EK055G	1	18	5.56	5.00	√	NEPM 2013 B3 & ALS QC Standard
hemical Oxygen Demand (COD) (Spectrophotometric)	EP026SP	1	20	5.00	5.00		NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G	 1	20	5.00	5.00		NEPM 2013 B3 & ALS QC Standard
Conductivity by Auto Titrator	EA010-P	2	33	6.06	5.00		NEPM 2013 B3 & ALS QC Standard

Page : 7 of 9
Work Order : EM2222858

Client : VENTIA UTILITY SERVICES PTY LTD

Matrix: WATER				Evaluatio	n: × = Quality Co	entrol frequency	not within specification ; ✓ = Quality Control frequency within specification
Quality Control Sample Type		Count			Rate (%)		Quality Control Specification
Analytical Methods	Method	OC	Reaular	Actual	Expected	Evaluation	
Method Blanks (MB) - Continued							
Major Cations - Dissolved	ED093F	2	25	8.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Dissolved Solids (High Level)	EA015H	2	21	9.52	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	2	27	7.41	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Organic Carbon	EP005	1	13	7.69	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Volatile Acids as CH3COOH	EP045	2	40	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
Ammonia as N by Discrete analyser	EK055G	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Chemical Oxygen Demand (COD) (Spectrophotometric)	EP026SP	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	2	27	7.41	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Organic Carbon	EP005	1	13	7.69	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Page : 8 of 9
Work Order : EM2222858

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
pH by Auto Titrator	EA005-P	WATER	In house: Referenced to APHA 4500 H+ B. This procedure determines pH of water samples by automated ISE. This method is compliant with NEPM Schedule B(3)
Conductivity by Auto Titrator	EA010-P	WATER	In house: Referenced to APHA 2510 B. This procedure determines conductivity by automated ISE. This method is compliant with NEPM Schedule B(3)
Total Dissolved Solids (High Level)	EA015H	WATER	In house: Referenced to APHA 2540C. A gravimetric procedure that determines the amount of `filterable` residue in an aqueous sample. A well-mixed sample is filtered through a glass fibre filter (1.2um). The filtrate is evaporated to dryness and dried to constant weight at 180+/-5C. This method is compliant with NEPM Schedule B(3)
Alkalinity by Auto Titrator	ED037-P	WATER	In house: Referenced to APHA 2320 B This procedure determines alkalinity by automated measurement (e.g. PC Titrate) on a settled supernatant aliquot of the sample using pH 4.5 for indicating the total alkalinity end-point. This method is compliant with NEPM Schedule B(3)
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	WATER	In house: Referenced to APHA 4500-SO4. Dissolved sulfate is determined in a 0.45um filtered sample. Sulfate ions are converted to a barium sulfate suspension in an acetic acid medium with barium chloride. Light absorbance of the BaSO4 suspension is measured by a photometer and the SO4-2 concentration is determined by comparison of the reading with a standard curve. This method is compliant with NEPM Schedule B(3)
Chloride by Discrete Analyser	ED045G	WATER	In house: Referenced to APHA 4500 CI - G.The thiocyanate ion is liberated from mercuric thiocyanate through sequestration of mercury by the chloride ion to form non-ionised mercuric chloride. In the presence of ferric ions the liberated thiocynate forms highly-coloured ferric thiocynate which is measured at 480 nm.
Major Cations - Dissolved	ED093F	WATER	In house: Referenced to APHA 3120 and 3125; USEPA SW 846 - 6010 and 6020; Cations are determined by either ICP-AES or ICP-MS techniques. This method is compliant with NEPM Schedule B(3) Sodium Adsorption Ratio is calculated from Ca, Mg and Na which determined by ALS in house method QWI-EN/ED093F. This method is compliant with NEPM Schedule B(3) Hardness parameters are calculated based on APHA 2340 B. This method is compliant with NEPM Schedule B(3)
Total Metals by ICP-MS - Suite A	EG020A-T	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Ammonia as N by Discrete analyser	EK055G	WATER	In house: Referenced to APHA 4500-NH3 G Ammonia is determined by direct colorimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)
Nitrite as N by Discrete Analyser	EK057G	WATER	In house: Referenced to APHA 4500-NO2- B. Nitrite is determined by direct colourimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)
Nitrate as N by Discrete Analyser	EK058G	WATER	In house: Referenced to APHA 4500-NO3- F. Nitrate is reduced to nitrite by way of a chemical reduction followed by quantification by Discrete Analyser. Nitrite is determined seperately by direct colourimetry and result for Nitrate calculated as the difference between the two results. This method is compliant with NEPM Schedule B(3)
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	WATER	In house: Referenced to APHA 4500-NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by Chemical Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)

Page : 9 of 9
Work Order : EM2222858

Client : VENTIA UTILITY SERVICES PTY LTD

Analytical Methods	Method	Matrix	Method Descriptions
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	WATER	In house: Referenced to APHA 4500-Norg D (In house). An aliquot of sample is digested using a high temperature Kjeldahl digestion to convert nitrogenous compounds to ammonia. Ammonia is determined colorimetrically by discrete analyser. This method is compliant with NEPM Schedule B(3)
Ionic Balance by PCT DA and Turbi SO4 DA	* EN055 - PG	WATER	In house: Referenced to APHA 1030F. This method is compliant with NEPM Schedule B(3)
Field Tests (performed by external sampler)	* EN67-B02	WATER	Field determinations as per methods described in APHA or supplied by client. The analysis is performed in the field by non-ALS samplers. ALS NATA accreditation does not apply for this service.
Total Organic Carbon	EP005	WATER	In house: Referenced to APHA 5310 B, The automated TOC analyzer determines Total and Inorganic Carbon by IR cell. TOC is calculated as the difference. This method is compliant with NEPM Schedule B(3)
Chemical Oxygen Demand (COD) (Spectrophotometric)	EP026SP	WATER	In house: Referenced to APHA 5220 D. Samples are digested with a known excess of an acidic potassium dichromate solution using silver sulfate as a catalyst. The chromium is reduced from the Cr (VI) oxidation state to the Cr (III) state by the oxygen present in the organic material. Both of these chromium species are coloured and absorb in the visible region of (400nm & 600nm) the spectrum. The oxidisable organic matter can be calculated in terms of oxygen equivalents.
Volatile Acids as CH3COOH	EP045	WATER	In house: Referenced to APHA 5560 C. Steam distillable acids are captured in caustic solution and determined titremetrically. This method is compliant with NEPM Schedule B(3)
Preparation Methods	Method	Matrix	Method Descriptions
TKN/TP Digestion	EK061/EK067	WATER	In house: Referenced to APHA 4500 Norg - D; APHA 4500 P - H. This method is compliant with NEPM Schedule B(3)
Digestion for Total Recoverable Metals	EN25	WATER	In house: Referenced to USEPA SW846-3005. Method 3005 is a Nitric/Hydrochloric acid digestion procedure used to prepare surface and ground water samples for analysis by ICPAES or ICPMS. This method is compliant with NEPM Schedule B(3)

BURWOOD VIC 3125

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order : EM2222858

Client : VENTIA UTILITY SERVICES PTY LTD Laboratory : Environmental Division Melbourne

Contact : LUCY EDWARDS Contact : Peter Ravlic

Address : 25-37 HUNTINGDALE ROAD Address : 4 Westall Rd Springvale VIC Australia

3171

 Telephone
 : --- Telephone
 : +6138549 9645

 Facsimile
 : --- Facsimile
 : +61-3-8549 9626

Project : Creswick Landfill Page : 1 of 3

 Order number
 : -- Quote number
 : EM2016THISER0010 (ME/793/19)

 C-O-C number
 : --- QC Level
 : NEPM 2013 B3 & ALS QC Standard

Site : ----Sampler : AC

Dates

Date : 25-Nov-2022 Scheduled Reporting Bate : 25-Nov-2022

Delivery Details

 Mode of Delivery
 : Carrier
 Security Seal
 : Not Available

 No. of coolers/boxes
 : 1
 Temperature
 : 5.0°C - Ice present

Receipt Detail : No. of samples received / analysed : 8 / 8

General Comments

• This report contains the following information:

- Sample Container(s)/Preservation Non-Compliances
- Summary of Sample(s) and Requested Analysis
- Proactive Holding Time Report
- Requested Deliverables
- Please direct any queries related to sample condition / numbering / breakages to Client Services.
- Sample Disposal Aqueous (3 weeks), Solid (2 months) from receipt of samples.
- Analytical work for this work order will be conducted at ALS Springvale.
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The laboratory will process these samples unless instructions are received from you indicating you do not wish to proceed. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical
 analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this
 temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS
 recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.

: 18-Nov-2022 Issue Date

Page

EM2222858-006

EM2222858-007

EM2222858-008

17-Nov-2022 10:40

17-Nov-2022 09:35

18-Nov-2022 07:30

2 of 3 EM2222858 Amendment 0 Work Order

Client : VENTIA UTILITY SERVICES PTY LTD

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exists.

Any sample identifications that cannot be displayed entirely in the analysis summary table will be listed below.

EM2222858-001 · 17-Nov-2022 12:05 · BH2 - Groundwater Bore EM2222858-002 : 17-Nov-2022 09:10 : BH3 - Groundwater Bore : BH6 - Groundwater Bore : 17-Nov-2022 16:48 EM2222858-003 : BH7 - Groundwater Bore EM2222858-004 : 17-Nov-2022 10:22 : 18-Nov-2022 14:02 : BH10 - Groundwater Bore EM2222858-005 EM2222858-006 : 17-Nov-2022 10:40 : Leachate - Surface water sample EM2222858-007 : 17-Nov-2022 09:35 : Wetland - Surface water sample EM2222858_008 · 18-Nov-2022 07:30 Dredge - Surface water sample

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package. If no sampling time is provided, the sampling date will be assumed by the laboratory and displayed in brackets without a time component Matrix: WATER Laboratory sample Sampling date / Sample ID time EM2222858-001 17-Nov-2022 10:25 BH2 Groundwater Bore EM2222858-003 17-Nov-2022 10:48 BH6 Groundwater Bore EM2222858-005 18-Nov-2022 10:40 Leachate Surface wate Matrix: WATER Laboratory sample Sampling date / Sample ID time EM2222858-006 17-Nov-2022 10:40 Leachate Surface wate Matrix: WATER Laboratory sample Sampling date / Sample ID time EM2222858-007 17-Nov-2022 10:40 Leachate Surface wate Matrix: WATER Laboratory sample Sampling date / Sample ID time EM2222858-008 18-Nov-2022 10:40 Deachate Bore EM2222858-009 17-Nov-2022 10:40 Deachate Surface wate Matrix: WATER Laboratory sample Sampling date / Sample ID time EM2222858-000 17-Nov-2022 10:40 Deachate Surface wate Matrix: WATER Laboratory sample Sampling date / Sample ID time EM2222858-001 17-Nov-2022 10:40 Deachate Surface wate Matrix: WATER Laboratory sample Sampling date / Sample ID time EM2222858-003 17-Nov-2022 10:40 BH2 Groundwater Bore EM2222858-004 17-Nov-2022 10:40 BH3 Groundwater Bore EM2222858-005 18-Nov-2022 10:48 BH3 Groundwater Bore EM2222858-005 18-Nov-2022 10:48 BH3 Groundwater Bore EM2222858-006 17-Nov-2022 10:48 BH3 Groundwater Bore EM2222858-007 17-Nov-2022 10:48 BH3 Groundwater Bore EM2222858-007 17-Nov-2022 10:48 BH6 Groundwater Bore EM2222858-007 17-Nov-2022 10:48 BH3 Groundwater Bore EM2222858-008 17-Nov-2022 10:29 BH7 Groundwater Bore EM2222858-000 17-Nov-2022 10:29 BH7 Groundwater Bore EM2222858-000 17-Nov-2022 10:29 BH7 Groundwater Bore EM2222858-000 17-Nov-2022 10:28 BH7 Groundwater Bore EM2222858-000 17-Nov-2022 10:29 BH7 Gro	EM2222858-008 Summary of S	: 18-Nov-2022 07:30 Sample(s) and R	: Dredge - Surface water sar equested Analysis	mple						
EM2222858-002 17-Nov-2022 19:48 BH6 Groundwater Bore	Some items des process necessatasks. Packages as the determin tasks, that are inclif no sampling default 00:00 on is provided, the laboratory and component Matrix: WATER Laboratory sample	cribed below may ary for the execution and cation of moisture uded in the package. time is provided, the date of sampling sampling date will displayed in braining date /	be part of a laboratory on of client requested ditional analyses, such content and preparation the sampling time will g. If no sampling date II be assumed by the ckets without a time	WATER - EA005P pH (Auto Titrator)	WATER - EA010P Electrical Conductivity (Auto Titrator)	WATER - EK055G Ammonia as N By Discrete Analyser	WATER - EK058G Nitrate as N by Discrete Analyser	WATER - EK061G Total Kjeldahl Nitrogen as N (TKN) By Discrete	WATER - EP005 Total Organic Carbon (TOC)	WATER - EP045 Volatile Acids as CH3COOH
EM2222858-003 17-Nov-2022 16:48 BH6 Groundwater Bore	EM2222858-001	17-Nov-2022 12:05	BH2 Groundwater Bore	✓	✓	✓	✓	✓	✓	✓
EM2222858-004 17-Nov-2022 10:22 BH7 Groundwater Bore EM2222858-005 18-Nov-2022 14:02 BH10 Groundwater Bo EM2222858-006 17-Nov-2022 10:40 Leachate Surface wa EM2222858-007 17-Nov-2022 09:35 Wetland Surface wate EM2222858-008 18-Nov-2022 07:30 Dredge Surface wate Matrix: WATER Laboratory sample ID time EM2222858-001 17-Nov-2022 12:05 BH2 Groundwater Bore EM2222858-001 17-Nov-2022 09:10 BH3 Groundwater Bore EM2222858-003 17-Nov-2022 16:48 BH6 Groundwater Bore EM2222858-003 17-Nov-2022 16:48 BH6 Groundwater Bore EM2222858-004 17-Nov-2022 10:22 BH7 Groundwater Bore EM2222858-004 17-Nov-2022 10:22 BH7 Groundwater Bore EM2222858-004 17-Nov-2022 10:22 BH7 Groundwater Bore V V V V V V V V V V V V V V V V V V V	EM2222858-002	17-Nov-2022 09:10	BH3 Groundwater Bore	✓	✓	✓	✓	✓	✓	✓
EM2222858-005 18-Nov-2022 14:02 BH10 Groundwater Bo	EM2222858-003	17-Nov-2022 16:48	BH6 Groundwater Bore	✓	✓	✓	✓	✓	✓	✓
EM2222858-006 17-Nov-2022 10:40 Leachate Surface wa	EM2222858-004	17-Nov-2022 10:22	BH7 Groundwater Bore	✓	✓	✓	✓	✓	✓	✓
EM2222858-007 17-Nov-2022 12:05 BH2 Groundwater Bore EM2222858-003 17-Nov-2022 16:48 BH6 Groundwater Bore EM2222858-004 17-Nov-2022 10:22 BH7 Groundwater Bore EM2222858-004 17-Nov-2022 10:22 BH7 Groundwater Bore FM2222858-004 17-Nov-2022 10:22 BH7 Groundwater Bore ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓	EM2222858-005	18-Nov-2022 14:02	BH10 Groundwater Bo	✓	✓	✓	✓	✓	✓	✓
Matrix: WATER Laboratory sample D Lime EM2222858-001 17-Nov-2022 12:05 BH2 Groundwater Bore EM2222858-003 17-Nov-2022 16:48 BH6 Groundwater Bore EM2222858-003 17-Nov-2022 16:48 BH6 Groundwater Bore EM2222858-004 17-Nov-2022 16:48 BH6 Groundwater Bore EM2222858-004 17-Nov-2022 16:48 BH6 Groundwater Bore FM2222858-004 17-Nov-2022 16:28 BH7 Groundwater Bore FM2222858-004 17-Nov-2022 16:29 BH7 Groundwater Bore FM2222858-004 17-Nov-2022 16:48 BH6 Groundwater Bore FM2222858-004 17-Nov-2022 16:48 BH7 Groundwat	EM2222858-006	17-Nov-2022 10:40	Leachate Surface wa	✓	✓	1	✓	✓	✓	✓
Matrix: WATER Laboratory sample ID Sampling date / Sample ID Lime EM2222858-001 EM2222858-001 17-Nov-2022 12:05 BH2 Groundwater Bore EM2222858-002 17-Nov-2022 09:10 BH3 Groundwater Bore EM2222858-003 17-Nov-2022 16:48 BH6 Groundwater Bore EM2222858-003 17-Nov-2022 16:48 BH6 Groundwater Bore EM2222858-004 17-Nov-2022 10:22 BH7 Groundwater Bore V V V V V V V V V V V V V V V V V V V	EM2222858-007	17-Nov-2022 09:35	Wetland Surface wat	✓	✓	✓	✓	✓	✓	✓
ID time \$ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	EM2222858-008	18-Nov-2022 07:30	Dredge Surface wate	✓	✓	✓	✓	✓	✓	✓
EM2222858-001 17-Nov-2022 12:05 BH2 Groundwater Bore ✓	Laboratory sample	· •	Sample ID	TER - EA015H al Dissolved Solids -	WATER - EG020T Total Metals by ICP/MS (including digestion)	D D	WATER - EP026SP Chemical Oxygen Demand (COD)	TER - NT-01 & Mg, Na, K, Cl,		
EM2222858-003 17-Nov-2022 16:48 BH6 Groundwater Bore ✓ ✓ ✓ ✓ ✓ EM2222858-004 17-Nov-2022 10:22 BH7 Groundwater Bore ✓ ✓ ✓ ✓			BH2 Groundwater Bore							
EM2222858-004 17-Nov-2022 10:22 BH7 Groundwater Bore	EM2222858-002	17-Nov-2022 09:10	BH3 Groundwater Bore	1	✓	✓	✓	✓		
	EM2222858-003	17-Nov-2022 16:48	BH6 Groundwater Bore	1	1	✓	1	1		
EM2222858-005 18-Nov-2022 14:02 BH10 Groundwater Bo ✓ ✓ ✓ ✓ ✓	EM2222858-004	17-Nov-2022 10:22	BH7 Groundwater Bore	✓	✓	✓	✓	✓		
	EM2222858-005	18-Nov-2022 14:02	BH10 Groundwater Bo	✓	✓	✓	✓	✓		

Leachate Surface wa...

Wetland Surface wat...

Dredge Surface wate...

: 18-Nov-2022 Issue Date

Page

3 of 3 EM2222858 Amendment 0 Work Order

Client : VENTIA UTILITY SERVICES PTY LTD

Proactive Holding Time Report

The following table summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory.

Matrix: WATER

Evaluation: **×** = Holding time breach ; ✓ = Within holding time.

Method		Due for	Due for	Samples Re	eceived	Instructions Received		
Client Sample ID(s)	Container	extraction	analysis	Date	Evaluation	Date	Evaluation	
EA005-P: pH by Aut	o Titrator							
BH2	Clear Plastic Bottle - Natural		17-Nov-2022	18-Nov-2022	x			
BH3	Clear Plastic Bottle - Natural		17-Nov-2022	18-Nov-2022	×			
BH6	Clear Plastic Bottle - Natural		17-Nov-2022	18-Nov-2022	x			
BH7	Clear Plastic Bottle - Natural		17-Nov-2022	18-Nov-2022	×			
Leachate	Clear Plastic Bottle - Natural		17-Nov-2022	18-Nov-2022	x			
Wetland	Clear Plastic Bottle - Natural		17-Nov-2022	18-Nov-2022	×			

Requested Deliverables

- EDI Format - ESDAT (ESDAT)

LUCY EDWARDS		
 *AU Certificate of Analysis - NATA (COA) 	Email	Lucy.Edwards@ventia.com
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	Lucy.Edwards@ventia.com
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	Lucy.Edwards@ventia.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	Lucy.Edwards@ventia.com
- A4 - AU Tax Invoice (INV)	Email	Lucy.Edwards@ventia.com
- Chain of Custody (CoC) (COC)	Email	Lucy.Edwards@ventia.com
- EDI Format - ENMRG (ENMRG)	Email	Lucy.Edwards@ventia.com
- EDI Format - ESDAT (ESDAT)	Email	Lucy.Edwards@ventia.com
NICOLE ROBINS		
- A4 - AU Tax Invoice (INV)	Email	nicole.robins@ventia.com
Ping Yao		
 *AU Certificate of Analysis - NATA (COA) 	Email	ping.yao@ventia.com
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	ping.yao@ventia.com
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	ping.yao@ventia.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	ping.yao@ventia.com
- Chain of Custody (CoC) (COC)	Email	ping.yao@ventia.com
- EDI Format - ENMRG (ENMRG)	Email	ping.yao@ventia.com
- EDI Format - ESDAT (ESDAT)	Email	ping.yao@ventia.com
ROBERT CALLANDER		
 *AU Certificate of Analysis - NATA (COA) 	Email	robert.callander@ventia.com.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	robert.callander@ventia.com.au
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	robert.callander@ventia.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	robert.callander@ventia.com.au
- Chain of Custody (CoC) (COC)	Email	robert.callander@ventia.com.au
- EDI Format - ENMRG (ENMRG)	Email	robert.callander@ventia.com.au

Email

robert.callander@ventia.com.au

Samples transported at appropriate temperature [Yes/No]

												aka dasa sa sa						
	Client:	3			Ventia				Job	Ref:			Cres	wick Lar	ndfill 1 of	3		
Co	ntact:			Robe	rt Calla	nder				TEST	SREC	UIRE	DAS	PER C	UOTE	ME/4	12/1	6
Add	dress:		25-37 Hun	tingdal	e Road	Burwood	1, 3125											-
P	hone:	0427	529051		Fax:													
E	Email:	ping.	edwards@vent yao@ventia.co t.callander@ve	<u>om</u>	<u>m</u>													
P/0	O No.:			Quote	Quote No.: ME/412/16				1									
T/A	Time:	1.	-										,		Envi	ironmer	ntal Di	vision
Sample ID		Sample	e Description	С	No of ontainers	Date Sampled	Time sampled	Matrix	PH	EC	0	TEMP	ORP	SWL	Mell W	bourne fork Orde	r Refer	ence
BH1	Groun	dwater	Bore							*								
ВН2	Groun	dwater	Bore		4	17/11/22	1265	W5	C.S.	638.9	0.53	14.90	47.3	1.93	_		100	5
ВН3	Groun	dwater	Bore	L	+	17/11/22		W		3353		14.10		0.59		3.		
BH4	Groun	dwater	Bore		1							14.10	40.0			11 8/2		(Z E HHI
ВН6	Groun	dwater	Bore	Ĺ	+	17/11/22	1648	W	4.91	653.5	0-36	15.05	194.7	11.20	Teleph	hone · + 61-	3-8549 96	00
ВН7	Groun	dwater	Bore	i		17/11/22	1022	W	6.35	980	0.09			2.42				
BH8	Groun	dwater	Bore		+	1711120	, -		- 75	000		14.47	7					
ВН9	Groun	dwater	Bore		×												Ę	
Special Please email Invoices Instructions: Lucy.edwards@ventia						ole.robins(ventia.c	<u>om</u>		II e		9	ı					
Relir	Relinquished By: Company			ny:	- D	ate:		Time:		Rece	eived By	:	Co	mpany:		Date		Time:
AG	allande	e/	Ventia		18/	11/22	1330			Money			D	Ly		1 Ply	, 1	3-30
over-ride prid	cing agreer	ments, OF	IS requirements and	our terms a	nd conditio	ns.	ing sampling procedures and does not				SE ONLY	5	Sample cond		Samples ac	dequately	ed undamaged [Yes/No] itely preserved [Yes/No] holding times: [Yes/No]	

As an Occupational Health and Safety consideration, it is a requirement of Ecowise Environmental (Victoria), that all samples received be undamaged and prior advice given in writing of any potential health risks.

Document: OF002 i1

CHAIN OF CUSTODY

Cli	ient:	,	Ventia	N a			Job	Ref:			Cres	wick Laı	ndfill 2	of 3		
Cont	tact:	Ro	bert Callar	nder				TEST	SREC	IIIDE	DAG	DED (LIOTI	= N/E//	140/4	
Addr		25-37 Hunting	A CONTRACTOR OF THE PARTY OF TH		1, 3125			ILSI	O NEG	ZOINE	DAS	PERC	ZUU I I	= IVIE/4	12/1	•
Pho	one:	0427529051	Fax:								8					
En	nail:	lucy.edwards@ventia.c	1007 (2005) (1005)													
		ping.yao@ventia.com						-								
		robert.callander@ventia	a.com													
P/O	No.:		Quote										_			
		0	No.:		247											
T/A T	ıme:		A POST CONTRACTOR OF THE SECOND													
Sample ID		Sample Description	No of Container s	Date Sample d	Time sample d		H	EC	00	TEMP	ORP	SWL				
BH10	Grou	ndwater bore	4	17/11/22	1402		5.72	777	0-21	14.53	68.3	2.06	6			
BH13	Grou	ndwater bore						,		17 2	00.5					
												E.			_	
LB1		hate bore	0	18/11/22	6805		21	ocked	nia f	Samp	le	74.37	12.99			
LB2	Leac	hate bore	0	18/11/22	0825		DI	901-00	100	30.1		14.37				
LB3	Leac	hate bore	0	18/11/22				NC	SAMI	PLE -	SWL					
		D)					ONLY					10.39		-		
BLIND	Blind	dup (analysed by ALS)						-								
RINSAT		ate blank									:A					
E	Talloc	ALO DIGITA														
	Spe	ecial Please email Invo	oices to Nico	ole.robins	@ventia.co	m	10									
Ins	tructi			~												
Relinq	uished		D	ate:	Tir	me:		Rece	eived By		Co	mpany:		Date	: ,	Time:
A G	allen	∂ Ventia	18/	11/22	133	Ö			Just	mer		An	1	1	let	13 -5
not over-ride p	ricing ag	ng of sample data after prior consul reements, OHS requirements and o alth and Safety consideration, it is a	ur terms and con	ditions.	g sampling proce	edures ar			LAB USE	ONLY	Sam	ple conditio	Samples	Samples re	preserve	[Yes/No]
samples receiv	ed be un	damaged and prior advice given in	writing of any po	tential health	risks.	ia), that a	11							mended hold opropriate te		
Document:	OF002	2 11														

5

				1.7					T	D (Alexander Walter	
Ci	ient:			V	entia				Job	Ref:			Cr	eswick	Landfill			
Con	tact:			Robert	Calla	nder				TEST	SREC	QUIRE	DAS	PER (QUOTE	ME/4	12/1	6
Addı	ess:	10	25-37 Hun	tingdale	Road,	Burwood	1, 3125											-
Ph	one:	0427	529051	F	ax:		е в							¥				
Eı	mail:	ping.	edwards@vent yao@ventia.co t.callander@ve	<u>m</u>														
P/O	No.:		.e.)	Quote l	lo.:						,							
T/A T	ime:								9					×	2			
Sample ID		Samp	le Description		lo of tainers	Date Sampled	Time sampled		HA .	EC	00	TEMP	ORP	SWL		20		
U/S BH3	Cree	k Sam	ple															
@ BH3	Cree	k Sam	ple														-	D D
D/S BH3	Cree	k Sam	ple															
		3								750								
Leachate	Surfa	ice wat	ter sample		· .	17/4/7	1040	U	C GU	740.6	7 70	14.1	-79.0	~		×		
Wetland	Surfa	ice wat	ter sample	1	*	17/11/22	91	w	5.00	300.2			-69.2	_				
Dredge	Surfa	ice wat	ter sample	4		18/11/22			6.44		5.92		3.67				-	
						10111100	0 100		6.44	01)	3.10	13.0	3.67					
_		ecial	Please email			ole.robins@	ventia.c	<u>om</u>		W (I)								
	structi		Lucy.edwards											5				
- 11	uishe		Compar Ventia	ny:		ate:		Time:		Rece	ived By	:	Col	mpany:		Date		Time:
14 G	allan	der	venua		18	111/55	133	0.0			Las	wh	A	Sn		CPL	e	13-30
As an Occupat	ng agreen ional Hea	nents, OF alth and S	ple data after prior co IS requirements and afety consideration, i r advice given in writ	our terms and it is a requirer	condition	ns. cowise Enviror	_			LAB U	SE ONLY		Sample cond	Samples		adequately nended hol	y preser	

CHAIN OF CUSTODY

Cli	ent:			Ver	tia				Job	Ref:			С	reswick	Landfi	II .	
Cont	act:			Robert C	allar	nder			D	logo	o foru	vord :	to El	IDO	PINIC	for ana	alveie
Addr			25-37 Hur	tingdale R			, 3125		<u> </u>	ieas	e lolv	valu	io Li	וטאוכ	IIVO	iui aii	alysis
Pho	one:	04275		Fa			•										
En	nail:	lucy.e	dwards@vent	ia.com	1												
			ao@ventia.co														
		robert	.callander@ve			00004)/[N IN 7		-								
P/O		-		Quote No).: 1	90924VEI	NV		-								
T/A T	ime:								_			ட		9			
Sample ID		Sampl	e Description	No Conta		Date Sampled	Time sampled	Matrix	표	E E	8	TEMP	ORP	SWL			
Creswick SPLIT	Grou	ndwate	r	4		13/2/23	1152	U	6.40	1190	0.12	14.53	2.5	3.19			
												DA	TE. 1	5/2	9am		
												TI	ΛE.				
													URIER			4.5	
•													MPERA	TURE O CHILL	YES		
								v				731	r = ivii	OTTIL			
	Sn	ecial	Please email	Invoices to	Nico	le.robins@	ventia co	om								TW	
Ins	structi		Lucy edwards														
Relino	uishe	d By:	Compa	ny:	D	ate:		Time:		Rec	eived By	:	Co	ompany:		Date:	Time:
A	Calla	2001	Venti			2/23	170				con			m		14/2	10.02
Relind	uishe	d By:	Compa	ny:	D	ate:		Time:		Rec	eived By	:	Co	ompany:		Date:	Time:
		` _				•) j									
over-ride pricin	g agreen ional Hea	nents, OH	ole data after prior co S requirements and afety consideration, advice given in writ	our terms and co t is a requireme	ndition it of Ec	s. owise Environr				LAB	USE ONL		Sample co	Samples	Samp within reco	les adequately pommended holdi	damaged [Yes/No] preserved [Yes/No] ng times: [Yes/No] nperature [Yes/No]

Document: OF002 i1

RELINQUISHED BY
ELP 14.2-23

1815

#96389) 15/2/25

Environment Testing

www.eurofins.com.au

EnviroSales@eurofins.com

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 Tel: +61 3 8564 5000 Geelong 19/8 Lewalan Street Grovedale VIC 3216 Tel: +61 3 8564 5000 **Sydney** 179 Magowar Road Girraween NSW 2145 Tel: +61 2 9900 8400

Unit 1.2 Dacre Street Mitchell ACT 2911 Tel: +61 2 6113 8091 NATA# 1261 Site# 1254 NATA# 1261 Site# 25403 NATA# 1261 Site# 25403 NATA# 1261 Site# 25466 NATA# 1261 Site# 25466 NATA# 1261 Site# 2579 & 25289

Canberra

1/21 Smallwood Place Murarrie QLD 4172 Tel: +61 7 3902 4600

Brisbane

Newcastle 1/2 Frost Drive Mayfield West NSW 2304 Tel: +61 2 4968 8448

ABN: 91 05 0159 898

Perth 46-48 Banksia Road Welshpool WA 6106 Tel: +61 8 6253 4444 NATA# 2377 Site# 2370

NZBN: 9429046024954

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Penrose, Auckland 1061 Christchurch 7675 Tel: +64 9 526 45 51 Tel: 0800 856 450 IANZ# 1327 IANZ# 1290

Sample Receipt Advice

Company name:

Ventia Utility Services P/L (Burwood)

Contact name:

Robert Callander **CRESWICK LANDFILL**

Project name: Project ID:

Not provided

Turnaround time:

5 Day

Date/Time received **Eurofins reference**

Feb 15, 2023 9:00 AM

963891

Sample Information

A detailed list of analytes logged into our LIMS, is included in the attached summary table.

All samples have been received as described on the above COC.

COC has been completed correctly.

Attempt to chill was evident.

Appropriately preserved sample containers have been used.

All samples were received in good condition.

Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.

Appropriate sample containers have been used.

Sample containers for volatile analysis received with zero headspace.

Split sample sent to requested external lab.

Some samples have been subcontracted.

N/A Custody Seals intact (if used).

Notes

Contact

If you have any questions with respect to these samples, please contact your Analytical Services Manager:

Savini Suduweli on phone: or by email: SaviniSuduweli@eurofins.com

Results will be delivered electronically via email to Robert Callander - Robert.callander@ventia.com.au.

Note: A copy of these results will also be delivered to the general Ventia Utility Services P/L (Burwood) email address.

web: www.eurofins.com.au email: EnviroSales@eurofins.com

Eurofins Environment Testing Australia Pty Ltd

Tel: +61 3 8564 5000

ABN: 50 005 085 521

Tel: +61 3 8564 5000

Melbourne Geelong 6 Monterey Road 19/8 Lewalan Street Dandenong South Grovedale VIC 3175 VIC 3216

Sydney 179 Magowar Road Girraween NSW 2145 Tel: +61 2 9900 8400 Brisbane 1/21 Smallwood Place Murarrie QLD 4172

Newcastle 1/2 Frost Drive Mayfield West NSW 2304 Tel: +61 2 4968 8448 Tel: +61 7 3902 4600 NATA# 1261

Welshpool WA 6106 Tel: +61 8 6253 4444 NATA# 1261 Site# 1254 NATA# 1261 Site# 25403 NATA# 1261 Site# 18217 NATA# 1261 Site# 25466 NATA# 1261 Site# 20794 Site# 25079 & 25289 NATA# 2377 Site# 2370

Perth

ABN: 91 05 0159 898

46-48 Banksia Road

Eurofins ARL Pty Ltd Eurofins Environment Testing NZ Ltd NZBN: 9429046024954

> Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Auckland 1061 Christchurch 7675 Tel: 0800 856 450 Tel: +64 9 526 45 51 IANZ# 1327 IANZ# 1290

Company Name:

Project Name:

Ventia Utility Services P/L (Burwood)

Address:

Unit 11, 25-37 Huntingdale Rd

CRESWICK LANDFILL

Burwood

VIC 3125

Order No.: Report #:

Phone:

Canberra

Mitchell

ACT 2911

Unit 1,2 Dacre Street

Tel: +61 2 6113 8091

963891

03 9861 8169

03 9861 8101 Fax:

Priority: Contact Name:

Due:

Received:

Eurofins Analytical Services Manager: Savini Suduweli

5 Day

Feb 22, 2023

Robert Callander

Auckland

Penrose,

Feb 15, 2023 9:00 AM

		Sa	ımple Detail			Chemical Oxygen Demand (COD)	Conductivity (at 25 °C)	Nitrate (as N)	pH (at 25 °C)	Total Organic Carbon	Metals M8	Organic Nitrogen Set (as N)	Eurofins Suite B11E: CI/SO4/Alkalinity	Eurofins Suite B11C: Na/K/Ca/Mg	Total Dissolved Solids Dried at 180 °C ± 2 °C	Volatile Fatty Acids (VFA) by GC-MS
Melk	ourne Laborato	ory - NATA # 12	61 Site # 12	54		Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х
Exte	rnal Laboratory															
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID											
1	CRESWICK SPLIT	Feb 13, 2023		Water	M23-Fe0033757	Х	Х	х	х	Х	х	х	Х	Χ	Х	Х
Test	Counts					1	1	1	1	1	1	1	1	1	1	1

Environment Testing

Ventia Utility Services P/L (Burwood) Unit 11, 25-37 Huntingdale Rd Burwood VIC 3125

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention: Robert Callander

Report 963891-W

Project name CRESWICK LANDFILL

Received Date Feb 15, 2023

Client Sample ID			CRESWICK SPLIT
Sample Matrix			Water M23-
Eurofins Sample No.			Fe0033757
Date Sampled			Feb 13, 2023
Test/Reference	LOR	Unit	
Volatile Fatty Acids (VFA) by GC-MS	•	•	
Acetic Acid	5	mg/L	< 5
Propionic acid	5	mg/L	< 5
Isobutyric acid	5	mg/L	< 5
Butyric acid	5	mg/L	< 5
Isovaleric acid	5	mg/L	< 5
Valeric acid	5	mg/L	< 5
4-Methylvaleric acid	5	mg/L	< 5
Hexanoic acid	5	mg/L	< 5
Heptanoic acid	5	mg/L	< 5
Total VFA as Acetic Acid Equivalents	5	mg/L	< 5
	•		
Ammonia (as N)	0.01	mg/L	0.24
Chemical Oxygen Demand (COD)	25	mg/L	42
Chloride	1	mg/L	200
Conductivity (at 25 °C)	10	uS/cm	1300
Nitrate (as N)	0.02	mg/L	< 0.02
Organic Nitrogen (as N)*	0.2	mg/L	0.96
pH (at 25 °C)	0.1	pH Units	6.9
Sulphate (as SO4)	5	mg/L	22
Total Dissolved Solids Dried at 180 °C ± 2 °C	10	mg/L	790
Total Kjeldahl Nitrogen (as N)	0.2	mg/L	1.2
Total Organic Carbon	5	mg/L	19
Alkalinity (speciated)			
Bicarbonate Alkalinity (as CaCO3)	20	mg/L	< 20
Carbonate Alkalinity (as CaCO3)	10	mg/L	< 10
Hydroxide Alkalinity (as CaCO3)	20	mg/L	< 20
Total Alkalinity (as CaCO3)	20	mg/L	< 20
Heavy Metals		· · · · · · · · · · · · · · · · · · ·	
Arsenic	0.001	mg/L	0.010
Cadmium	0.0002	mg/L	< 0.0002
Chromium	0.001	mg/L	0.004
Copper	0.001	mg/L	0.029
Lead	0.001	mg/L	0.028
Mercury	0.0001	mg/L	< 0.0001
Nickel	0.001	mg/L	0.013
Zinc	0.005	mg/L	0.020

Report Number: 963891-W

Client Sample ID			CRESWICK SPLIT
Sample Matrix			Water
Eurofins Sample No.			M23- Fe0033757
Date Sampled			Feb 13, 2023
Test/Reference	LOR	Unit	
Alkali Metals			
Calcium	0.5	mg/L	22
Magnesium	0.5	mg/L	38
Potassium	0.5	mg/L	3.2
Sodium	0.5	mg/L	160

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Volatile Fatty Acids (VFA) by GC-MS	Melbourne	Feb 16, 2023	28 Day
- Method: LTM-ORG-2360 Determination of Volatile Fatty Acids in Water by GC-MS			
Chemical Oxygen Demand (COD)	Melbourne	Feb 16, 2023	28 Days
- Method: LTM-INO-4220 Determination of COD in Water			
Conductivity (at 25 °C)	Melbourne	Feb 16, 2023	28 Days
- Method: LTM-INO-4030 Conductivity			
Nitrate (as N)	Melbourne	Feb 16, 2023	28 Days
- Method: LTM-INO-4120 Analysis of NOx NO2 NH3 by FIA			
pH (at 25 °C)	Melbourne	Feb 16, 2023	0 Hours
- Method: LTM-GEN-7090 pH in water by ISE			
Total Organic Carbon	Melbourne	Feb 16, 2023	28 Days
- Method: LTM-INO-4060 Total Organic Carbon in water and soil			
Metals M8	Melbourne	Feb 16, 2023	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Eurofins Suite B11C: Na/K/Ca/Mg	Melbourne	Feb 16, 2023	180 Days
- Method: LTM-MET-3010 Alkali Metals by ICP-AES			
Ammonia (as N)	Melbourne	Feb 16, 2023	28 Days
- Method: APHA 4500-NH3 Ammonia Nitrogen by FIA			
Organic Nitrogen (as N)*	Melbourne	Feb 15, 2023	7 Days
- Method: APHA 4500 Organic Nitrogen (N)			
Total Kjeldahl Nitrogen (as N)	Melbourne	Feb 16, 2023	28 Days
- Method: APHA 4500-Norg B,D Total Kjeldahl Nitrogen by FIA			
Eurofins Suite B11E: Cl/SO4/Alkalinity			
Chloride	Melbourne	Feb 16, 2023	28 Days
- Method: LTM-INO-4090 Chloride by Discrete Analyser			
Sulphate (as SO4)	Melbourne	Feb 16, 2023	28 Days
- Method: LTM-INO-4110 Sulfate by Discrete Analyser			
Alkalinity (speciated)	Melbourne	Feb 16, 2023	14 Days
- Method: LTM-INO-4250 Alkalinity by Electrometric Titration			
Total Dissolved Solids Dried at 180 °C ± 2 °C	Melbourne	Feb 16, 2023	28 Days
- Method: LTM-INO-4170 Total Dissolved Solids in Water			

web: www.eurofins.com.au email: EnviroSales@eurofins.com

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne Geelong 6 Monterey Road 19/8 Lewalan Street Dandenong South Grovedale VIC 3175 VIC 3216 Tel: +61 3 8564 5000 Tel: +61 3 8564 5000

Sydney 179 Magowar Road Girraween NSW 2145 Tel: +61 2 9900 8400 Canberra Unit 1.2 Dacre Street Mitchell ACT 2911 Tel: +61 2 6113 8091

Newcastle 1/21 Smallwood Place

1/2 Frost Drive Mayfield West NSW 2304 Tel: +61 2 4968 8448 NATA# 1261

Welshpool WA 6106 Tel: +61 8 6253 4444 NATA# 2377 Site# 2370

ABN: 91 05 0159 898

46-48 Banksia Road

Perth

Received:

Priority:

Due:

Christchurch 43 Detroit Drive Rolleston. Christchurch 7675 Tel: 0800 856 450

IAN7# 1290

Company Name:

Project Name:

External Laboratory

Sample ID

CRESWICK

SPLIT

Test Counts

No

Address:

Ventia Utility Services P/L (Burwood)

Unit 11, 25-37 Huntingdale Rd

CRESWICK LANDFILL

Burwood

VIC 3125

Order No.: Report #:

Nitrate

NATA# 1261 Site# 1254 NATA# 1261 Site# 25403 NATA# 1261 Site# 18217 NATA# 1261 Site# 25466 NATA# 1261 Site# 20794 Site# 25079 & 25289

Fax:

963891 03 9861 8169

Metals

Χ Χ Χ

Brisbane

Murarrie

QLD 4172

Tel: +61 7 3902 4600

Phone: 03 9861 8101

pH (at 25

Χ Χ

Χ

Volatile

Χ Χ Χ Feb 15, 2023 9:00 AM Feb 22, 2023

Eurofins ARL Pty Ltd Eurofins Environment Testing NZ Ltd

35 O'Rorke Road

Tel: +64 9 526 45 51

Auckland 1061

IAN7# 1327

Auckland

Penrose.

NZBN: 9429046024954

5 Dav **Contact Name:** Robert Callander

Eurofins Analytical Services Manager: Savini Suduweli

 0.1201110112112112

Sample Date

Feb 13, 2023

Sampling

Time

Matrix

Water

LAB ID

M23-Fe0033757

Χ Χ

1

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre µg/L: micrograms per litre

ppm: parts per million ppb: parts per billion %: Percentage

org/100 mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100 mL: Most Probable Number of organisms per 100 millilitres

CFU: Colony forming unit

Terms

APHA American Public Health Association

COC Chain of Custody

CP Client Parent - QC was performed on samples pertaining to this report
CRM Certified Reference Material (ISO17034) - reported as percent recovery

DryWhere a moisture has been determined on a solid sample the result is expressed on a dry basis.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

LOR Limit of Reporting

LCS Laboratory Control Sample - reported as percent recovery.

Method Blank

In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

NCP

Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

SRA Sample Receipt Advice

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

TBTO Tributyltin oxide (bis-tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment however free tributyltin was measured

and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits.

TCLP Toxicity Characteristic Leaching Procedure
TEQ Toxic Equivalency Quotient or Total Equivalence

QSM US Department of Defense Quality Systems Manual Version 5.4

US EPA United States Environmental Protection Agency

WA DWER Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30% NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.4 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Volatile Fatty Acids (VFA) by GC-MS	<u> </u>				
Acetic Acid	mg/L	< 5	5	Pass	
Propionic acid	mg/L	< 5	5	Pass	
Isobutyric acid	mg/L	< 5	5	Pass	
Butyric acid	mg/L	< 5	5	Pass	
Isovaleric acid	mg/L	< 5	5	Pass	
Valeric acid	mg/L	< 5	5	Pass	
4-Methylvaleric acid	mg/L	< 5	5	Pass	
Hexanoic acid	mg/L	< 5	5	Pass	
Heptanoic acid	mg/L	< 5	5	Pass	
Total VFA as Acetic Acid Equivalents	mg/L	< 5	5	Pass	
Method Blank					
Ammonia (as N)	mg/L	< 0.01	0.01	Pass	
Chloride	mg/L	< 1	1	Pass	
Nitrate (as N)	mg/L	< 0.02	0.02	Pass	
Sulphate (as SO4)	mg/L	< 5	5	Pass	
Total Dissolved Solids Dried at 180 °C ± 2 °C	mg/L	< 10	10	Pass	
Total Kjeldahl Nitrogen (as N)	mg/L	< 0.2	0.2	Pass	
Total Organic Carbon	mg/L	< 5	5	Pass	
Method Blank	IIIg/L			1 433	
Heavy Metals		T T			
Arsenic	mg/L	< 0.001	0.001	Pass	
Cadmium		< 0.0002	0.0001	Pass	
Chromium	mg/L	< 0.0002	0.0002	Pass	
	mg/L	i i			
Copper	mg/L	< 0.001	0.001	Pass	
Lead	mg/L	< 0.001		Pass	
Mercury	mg/L	< 0.0001	0.0001	Pass	
Nickel	mg/L	< 0.001	0.001	Pass	
Zinc	mg/L	< 0.005	0.005	Pass	
Method Blank		T T		T	
Alkali Metals				_	
Calcium	mg/L	< 0.5	0.5	Pass	
Magnesium	mg/L	< 0.5	0.5	Pass	
Potassium	mg/L	< 0.5	0.5	Pass	
Sodium	mg/L	< 0.5	0.5	Pass	
LCS - % Recovery		1		T	
Volatile Fatty Acids (VFA) by GC-MS					
Acetic Acid	%	100	70-130	Pass	
Propionic acid	%	73	70-130	Pass	
Isobutyric acid	%	96	70-130	Pass	
Butyric acid	%	97	70-130	Pass	
Isovaleric acid	%	113	70-130	Pass	
Valeric acid	%	96	70-130	Pass	
4-Methylvaleric acid	%	104	70-130	Pass	
Hexanoic acid	%	100	70-130	Pass	
Heptanoic acid	%	102	70-130	Pass	
LCS - % Recovery					
Ammonia (as N)	%	115	70-130	Pass	
Chemical Oxygen Demand (COD)	%	98	70-130	Pass	
Chloride	%	97	70-130	Pass	
Nitrate (as N)	%	90	70-130	Pass	

Test			Units	Result 1			Pass imits	Qualifying Code
Sulphate (as SO4)			%	118	70-	130 F	ass	
Total Dissolved Solids Dried at 180	°C ± 2 °C		%	96	70-	130 F	Pass	
Total Kjeldahl Nitrogen (as N)			%	114	70-	130 F	Pass	
LCS - % Recovery				•				
Heavy Metals								
Arsenic			%	94	80-	120 F	Pass	
Cadmium			%	101	80-	120 F	Pass	
Chromium			%	93	80-	120 F	Pass	
Copper			%	94	80-	120 F	ass	
Lead			%	94	80-	120 F	ass	
Mercury			%	80	80-	120 F	ass	
Nickel			%	95	80-	120 F	Pass	
Zinc			%	95	80-	120 F	Pass	
LCS - % Recovery								
Alkali Metals								
Calcium			%	94	80-	120 F	Pass	
Magnesium			%	93			Pass	
Potassium			%	92			Pass	
Sodium			%	95			Pass	
Test	Lab Sample ID	QA Source	Units	Result 1	Accep	otance P	Pass imits	Qualifying Code
Spike - % Recovery								
Volatile Fatty Acids (VFA) by GC-M	IS			Result 1				
Isobutyric acid	M23-Fe0033716	NCP	%	72	70-	130 F	Pass	
Isovaleric acid	M23-Fe0033716	NCP	%	122	70-	130 F	Pass	
Valeric acid	M23-Fe0044041	NCP	%	92	70-	130 F	Pass	
4-Methylvaleric acid	M23-Fe0033716	NCP	%	87	70-	130 F	ass	
Hexanoic acid	M23-Fe0033716	NCP	%	125	70-	130 F	Pass	
Heptanoic acid	M23-Fe0033716	NCP	%	83	70-	130 F	Pass	
Spike - % Recovery								
				Result 1				
Ammonia (as N)	M23-Fe0032861	NCP	%	91	70-	130 F	ass	
Chemical Oxygen Demand (COD)	M23-Fe0035004	NCP	%	85	70-	130 F	ass	
Chloride	B23-Fe0032328	NCP	%	85	70-	130 F	ass	
Nitrate (as N)	M23-Fe0032861	NCP	%	70	70-	130 F	ass	
Total Kjeldahl Nitrogen (as N)	S23-Fe0032357	NCP	%	84	70-	130 F	ass	
Total Organic Carbon	M23-Fe0040367	NCP	%	124		1	ass	
Spike - % Recovery								
Heavy Metals				Result 1				
Arsenic	W23-Fe0028496	NCP	%	92	75-	125 F	ass	
Cadmium	W23-Fe0028496	NCP	%	102			Pass	
Chromium	W23-Fe0028496	NCP	%	91			Pass	
Copper	W23-Fe0028496	NCP	%	86			Pass	
Lead	W23-Fe0028496	NCP	%	86			Pass	
Mercury	W23-Fe0028496	NCP	%	91			Pass	
Nickel	W23-Fe0028496	NCP	%	84			Pass	
Zinc	W23-Fe0028496	NCP	%	85			Pass	
Spike - % Recovery								
Alkali Metals				Result 1				
		1			75	125 F	Pass	
Calcium	M23-Fe0034744	NCP	%	115	/ 0-	120 1	uoo i	
Calcium	M23-Fe0034744 M23-Fe0032955	NCP NCP	<u>%</u> %	95			Pass	
		 			75-	125 F		

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Volatile Fatty Acids (VFA) by GC-N	IS			Result 1	Result 2	RPD			
Acetic Acid	K23-Fe0019144	NCP	mg/L	21	22	1.7	30%	Pass	
Propionic acid	K23-Fe0019144	NCP	mg/L	< 5	< 5	<1	30%	Pass	
Isobutyric acid	K23-Fe0019144	NCP	mg/L	< 5	< 5	<1	30%	Pass	
Butyric acid	K23-Fe0019144	NCP	mg/L	< 5	< 5	<1	30%	Pass	
Isovaleric acid	K23-Fe0019144	NCP	mg/L	< 5	< 5	<1	30%	Pass	
Valeric acid	K23-Fe0019144	NCP	mg/L	< 5	< 5	<1	30%	Pass	
4-Methylvaleric acid	K23-Fe0019144	NCP	mg/L	< 5	< 5	<1	30%	Pass	
Hexanoic acid	K23-Fe0019144	NCP	mg/L	< 5	< 5	<1	30%	Pass	
Heptanoic acid	K23-Fe0019144	NCP	mg/L	< 5	< 5	<1	30%	Pass	
Total VFA as Acetic Acid Equivalents	M23-Fe0013656	NCP	mg/L	1400	1400	2.8	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
Ammonia (as N)	M23-Fe0032892	NCP	mg/L	< 0.01	0.01	n/a	30%	Pass	
Chemical Oxygen Demand (COD)	M23-Fe0035007	NCP	mg/L	440	420	3.4	30%	Pass	
Chloride	M23-Fe0033757	СР	mg/L	200	240	18	30%	Pass	
Nitrate (as N)	M23-Fe0032892	NCP	mg/L	0.51	0.52	1.4	30%	Pass	
Sulphate (as SO4)	M23-Fe0033757	CP	mg/L	22	23	4.5	30%	Pass	
Total Dissolved Solids Dried at 180 °C ± 2 °C	M23-Fe0034745	NCP	mg/L	6000	5800	4.1	30%	Pass	
Total Kjeldahl Nitrogen (as N)	B23-Fe0035457	NCP	mg/L	3.1	2.7	13	30%	Pass	
Total Organic Carbon	M23-Fe0040364	NCP	mg/L	6.5	7.4	14	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	W23-Fe0028496	NCP	mg/L	0.002	0.002	21	30%	Pass	
Cadmium	W23-Fe0028496	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Chromium	W23-Fe0028496	NCP	mg/L	0.002	0.002	19	30%	Pass	
Copper	W23-Fe0028496	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Lead	W23-Fe0028496	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Mercury	W23-Fe0028496	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Nickel	W23-Fe0028496	NCP	mg/L	0.035	0.033	4.9	30%	Pass	
Zinc	W23-Fe0028496	NCP	mg/L	0.017	0.016	1.6	30%	Pass	
Duplicate									
Alkali Metals			Result 1	Result 2	RPD				
Calcium	M23-Fe0034744	NCP	mg/L	71	71	<1	30%	Pass	
Magnesium	M23-Fe0034744	NCP	mg/L	330	330	<1	30%	Pass	
Potassium	M23-Fe0034744	NCP	mg/L	22	22	2.3	30%	Pass	
Sodium	M23-Fe0034744	NCP	mg/L	1800	1700	1.5	30%	Pass	

Comments

Sample Integrity

 Custody Seals Intact (if used)
 N/A

 Attempt to Chill was evident
 Yes

 Sample correctly preserved
 Yes

 Appropriate sample containers have been used
 Yes

 Sample containers for volatile analysis received with minimal headspace
 Yes

 Samples received within HoldingTime
 Yes

 Some samples have been subcontracted
 No

Authorised by:

Savini Suduweli Analytical Services Manager
Joseph Edouard Senior Analyst-Organic
Mary Makarios Senior Analyst-Inorganic
Mary Makarios Senior Analyst-Metal
Scott Beddoes Senior Analyst-Inorganic

Glenn Jackson General Manager

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

CERTIFICATE OF ANALYSIS

Work Order : EM2302400

Client : VENTIA UTILITY SERVICES PTY LTD

Contact : ROBERT CALLANDER

Address : 25-37 HUNTINGDALE ROAD

BURWOOD VIC 3125

Telephone : ----

Project : Creswick Landfill
Order number : Creswick Landfill

C-O-C number : ---Sampler : ---Site : ----

Quote number : ME/793/19

No. of samples received : 6
No. of samples analysed : 6

Page : 1 of 6

Laboratory : Environmental Division Melbourne

Contact : Peter Ravlic

Address : 4 Westall Rd Springvale VIC Australia 3171

Telephone : +6138549 9645

Date Samples Received : 14-Feb-2023 10:05

Date Analysis Commenced : 15-Feb-2023

Issue Date : 20-Feb-2023 16:47

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Dilani Fernando Laboratory Coordinator Melbourne External Subcontracting, Springvale, VIC

Dilani Fernando Laboratory Coordinator Melbourne Inorganics, Springvale, VIC
Jarwis Nheu Non-Metals Team Leader Melbourne Inorganics, Springvale, VIC

Page : 2 of 6 Work Order : EM2302400

Client : VENTIA UTILITY SERVICES PTY LTD

Project · Creswick Landfill

ALS

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- As per QWI EN55-3 Data Interpreting Procedures, Ionic balances are typically calculated using Major Anions Chloride, Alkalinity and Sulfate; and Major Cations Calcium, Magnesium, Potassium and Sodium. Where applicable and dependent upon sample matrix, the Ionic Balance may also include the additional contribution of Ammonia, Dissolved Metals by ICPMS and H+ to the Cations and Nitrate, SiO2 and Fluoride to the Anions.
- Ionic balances were calculated using: major anions chloride, alkalinity and sulfate; and major cations calcium, magnesium, potassium and sodium.
- ED045G: The presence of thiocyanate can positively contribute to the chloride result, thereby may bias results higher than expected. Results should be scrutinised accordingly.
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

Page : 3 of 6 Work Order : EM2302400

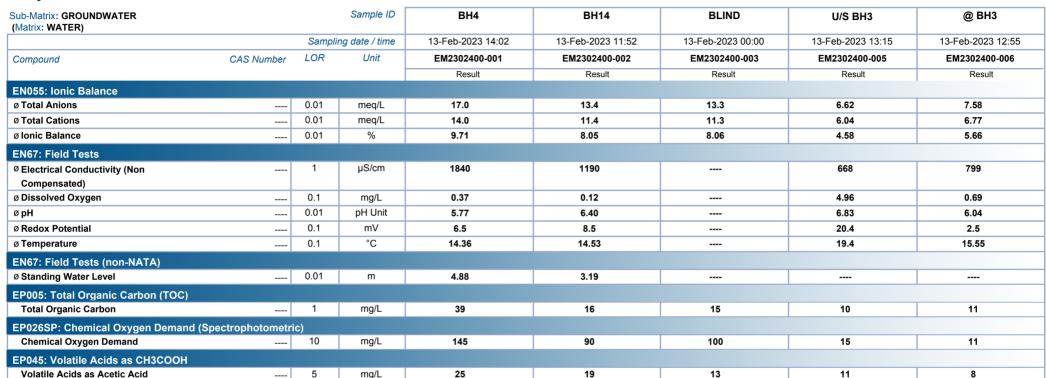
Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill

Analytical Results

Page : 4 of 6 Work Order EM2302400

Client : VENTIA UTILITY SERVICES PTY LTD

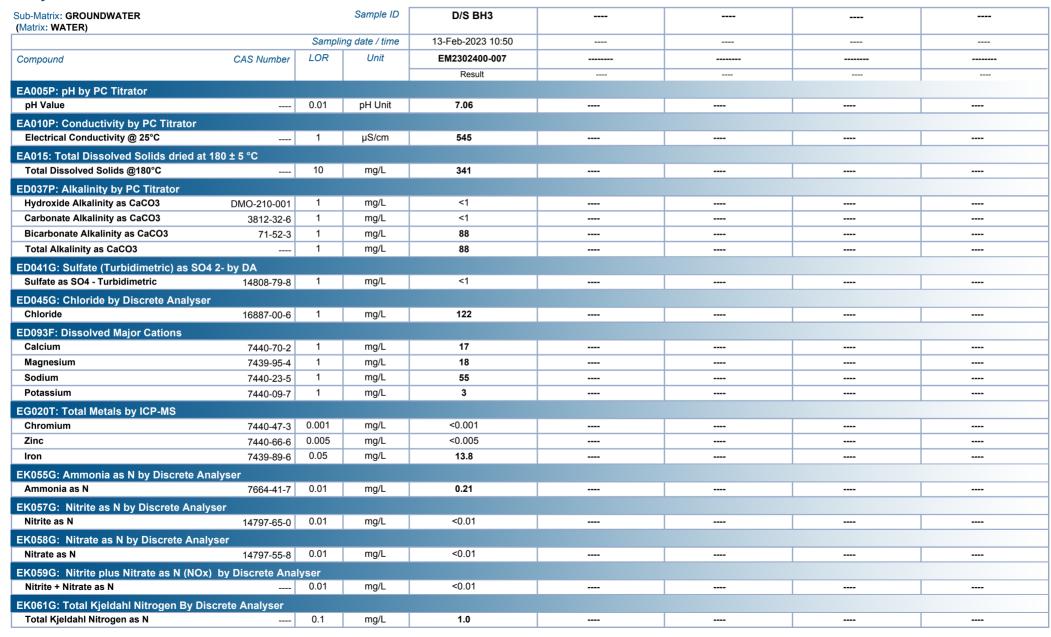

5

mg/L

25

Project Creswick Landfill

Analytical Results


11

Page : 5 of 6 Work Order : EM2302400

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill

Analytical Results

Page : 6 of 6 Work Order : EM2302400

Client : VENTIA UTILITY SERVICES PTY LTD

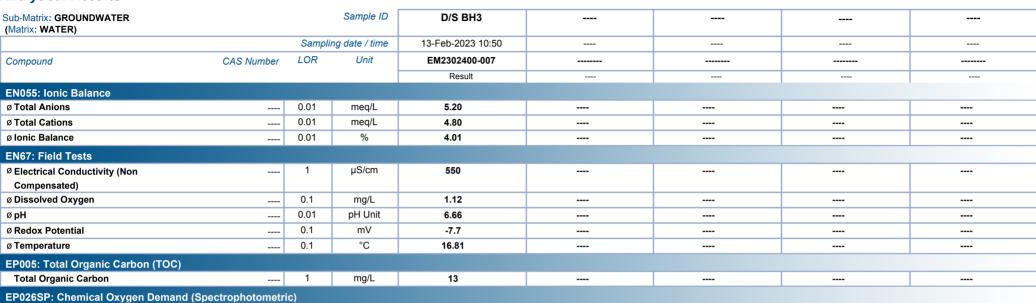
10

5

mg/L

mg/L

14


14

Project : Creswick Landfill

Analytical Results

Chemical Oxygen Demand

EP045: Volatile Acids as CH3COOH
Volatile Acids as Acetic Acid

QUALITY CONTROL REPORT

: 1 of 7

Accreditation No. 825

Accredited for compliance with

Work Order : EM2302400 Page

Client : VENTIA UTILITY SERVICES PTY LTD Laboratory : Environmental Division Melbourne

Contact : ROBERT CALLANDER Contact : Peter Ravlic

Address : 25-37 HUNTINGDALE ROAD Address : 4 Westall Rd Springvale VIC Australia 3171

BURWOOD VIC 3125

Telephone : +6138549 9645

Project : Creswick Landfill Date Samples Received : 14-Feb-2023

Order number : Creswick Landfill Date Analysis Commenced : 15-Feb-2023

C-O-C number : 20-Feb-2023
Sampler : 20-Feb-2023

Site :---

No. of samples analysed : 6

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall

This Quality Control Report contains the following information:

: 6

: ME/793/19

Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits

Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits

Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

Quote number

No. of samples received

not be reproduced, except in full.

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
-------------	----------	------------------------

Dilani Fernando Laboratory Coordinator Melbourne External Subcontracting, Springvale, VIC

Dilani Fernando Laboratory Coordinator Melbourne Inorganics, Springvale, VIC

Jarwis Nheu Non-Metals Team Leader Melbourne Inorganics, Springvale, VIC

Page : 2 of 7
Work Order : EM2302400

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: WATER					Laboratory Duplicate (DUP) Report				
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EA005P: pH by PC 1	itrator (QC Lot: 4873035)								
EM2302394-004	Anonymous	EA005-P: pH Value		0.01	pH Unit	7.46	7.41	0.7	0% - 20%
EM2302401-001	Anonymous	EA005-P: pH Value		0.01	pH Unit	2.48	2.47	0.4	0% - 20%
EA010P: Conductivity by PC Titrator (QC Lot: 4873034)									
EM2302393-001	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	7830	7920	1.2	0% - 20%
EM2302393-006	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	6620	6590	0.5	0% - 20%
EA010P: Conductivi	ty by PC Titrator (QC Lot:	4873037)							
EM2302412-001	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	228	221	3.1	0% - 20%
EM2302401-001	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	11300	11200	0.2	0% - 20%
EA015: Total Dissol	ved Solids dried at 180 ± 5	°C (QC Lot: 4878500)							
EM2302364-001	Anonymous	EA015H: Total Dissolved Solids @180°C		10	mg/L	626	594	5.2	0% - 20%
EM2302393-007	Anonymous	EA015H: Total Dissolved Solids @180°C		10	mg/L	7260	7170	1.2	0% - 20%
EM2302400-001	BH4	EA015H: Total Dissolved Solids @180°C		10	mg/L	1060	1060	0.6	0% - 20%
EM2302426-001	Anonymous	EA015H: Total Dissolved Solids @180°C		10	mg/L	2010	2020	0.1	0% - 20%
ED037P: Alkalinity b	y PC Titrator (QC Lot: 487	3036)							
EM2302394-004	Anonymous	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	809	778	3.8	0% - 20%
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	809	778	3.8	0% - 20%
EM2302401-001	Anonymous	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	<1	<1	0.0	No Limit
ED041G: Sulfate (Τι	rbidimetric) as SO4 2- by D	A (QC Lot: 4873416)							

Page : 3 of 7
Work Order : EM2302400

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill

Sub-Matrix: WATER	Sub-Matrix: WATER					Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
ED041G: Sulfate (Tu	ırbidimetric) as SO4 2- b	by DA (QC Lot: 4873416) - continued							
EM2302400-001	BH4	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	6	8	14.4	No Limit
EM2302452-004	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	1840	1930	4.3	0% - 20%
ED045G: Chloride b	y Discrete Analyser (QC	C Lot: 4873417)							
EM2302400-001	BH4	ED045G: Chloride	16887-00-6	1	mg/L	550	550	0.0	0% - 20%
EM2302452-004	Anonymous	ED045G: Chloride	16887-00-6	1	mg/L	3900	3910	0.3	0% - 20%
ED093F: Dissolved	Major Cations (QC Lot:	4876344)							
EM2302271-002	Anonymous	ED093F: Calcium	7440-70-2	1	mg/L	94	94	0.0	0% - 20%
		ED093F: Magnesium	7439-95-4	1	mg/L	127	127	0.0	0% - 20%
		ED093F: Sodium	7440-23-5	1	mg/L	1550	1550	0.2	0% - 20%
		ED093F: Potassium	7440-09-7	1	mg/L	30	30	0.0	0% - 20%
EM2302400-003	BLIND	ED093F: Calcium	7440-70-2	1	mg/L	22	22	0.0	0% - 20%
		ED093F: Magnesium	7439-95-4	1	mg/L	39	39	0.0	0% - 20%
		ED093F: Sodium	7440-23-5	1	mg/L	158	160	0.7	0% - 20%
		ED093F: Potassium	7440-09-7	1	mg/L	4	4	0.0	No Limit
EG020T: Total Metal	ls by ICP-MS (QC Lot: 4	875506)							
EM2302400-001 BH4	BH4	EG020A-T: Chromium	7440-47-3	0.001	mg/L	0.012	0.012	0.0	0% - 50%
		EG020A-T: Zinc	7440-66-6	0.005	mg/L	0.035	0.036	0.0	No Limit
		EG020A-T: Iron	7439-89-6	0.05	mg/L	39.5	39.5	0.0	0% - 20%
EM2302482-002	Anonymous	EG020A-T: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Zinc	7440-66-6	0.005	mg/L	3.46	3.58	3.5	0% - 20%
		EG020A-T: Iron	7439-89-6	0.05	mg/L	0.90	0.72	21.6	0% - 50%
EK055G: Ammonia	as N by Discrete Analys	er (QC Lot: 4875779)							
EM2302278-001	Anonymous	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	2.49	2.49	0.0	0% - 20%
EM2302364-003	Anonymous	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	0.36	0.36	0.0	0% - 20%
EK057G: Nitrite as I	N by Discrete Analyser	(QC Lot: 4873415)							
EM2302400-001	BH4	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	0.0	No Limit
EM2302452-004	Anonymous	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.02	<0.02	0.0	No Limit
EK059G: Nitrite plu		Discrete Analyser (QC Lot: 4875780)			_				
EM2302278-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	0.04	0.04	0.0	No Limit
EM2302364-003	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	0.01	0.01	0.0	No Limit
EK061G: Total Kield	lahl Nitrogen By Discret	e Analyser (QC Lot: 4873873)			J				
EM2302335-009	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	<0.1	0.3	97.2	No Limit
EM2302084-005	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	1.6	<1.0	45.7	No Limit
	ic Carbon (TOC) (QC Lo	·			<u> </u>		-	<u> </u>	1
EM2302400-001	BH4	EP005: Total Organic Carbon		1	mg/L	39	33	16.7	0% - 20%
EM2302452-004	Anonymous	EP005: Total Organic Carbon		1	mg/L	30	30	0.0	0% - 20%
	•	trophotometric) (QC Lot: 4873903)		•				0.0	0.0 20.0
LP 0203P. Cheffical	Oxygen Demand (Spec			10	mg/L		585	1.7	0% - 50%
		EP026SP: Chemical Oxygen Demand		10	my/L		300	1.7	0 /0 - 30 /0

Page : 4 of 7
Work Order : EM2302400

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill

Sub-Matrix: WATER	ıb-Matrix: WATER			Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)	
EP026SP: Chemical	Oxygen Demand (Spectroph									
EM2302393-007	Anonymous	EP026SP: Chemical Oxygen Demand		10	mg/L	<20	<20	0.0	No Limit	
EP026SP: Chemical	Oxygen Demand (Spectroph									
EM2302400-003	BLIND	EP026SP: Chemical Oxygen Demand		10	mg/L	100	98	2.0	0% - 50%	
EP045: Volatile Acid	EP045: Volatile Acids as CH3COOH (QC Lot: 4873436)									
EM2302160-002	Anonymous	EP045: Volatile Acids as Acetic Acid		5	mg/L	48	51	6.3	0% - 50%	

Page : 5 of 7 Work Order : EM2302400

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill

Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Acceptable	e Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EA005P: pH by PC Titrator (QCLot: 4873035)									
EA005-P: pH Value			pH Unit		4 pH Unit	99.5	98.8	101	
					7 pH Unit	100	99.3	101	
EA010P: Conductivity by PC Titrator (QCLot: 4873034)									
EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	<1	1412 μS/cm	107	85.0	119	
EA010P: Conductivity by PC Titrator (QCLot: 4873037)									
EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	<1	1412 μS/cm	106	85.0	119	
EA015: Total Dissolved Solids dried at 180 ± 5 °C (QCLot: 48	78500)								
EA015H: Total Dissolved Solids @180°C		10	mg/L	<10	2000 mg/L	99.6	91.0	110	
				<10	2440 mg/L	99.7	81.6	118	
				<10	293 mg/L	106	91.0	110	
ED037P: Alkalinity by PC Titrator (QCLot: 4873036)									
ED037-P: Total Alkalinity as CaCO3			mg/L		200 mg/L	99.4	85.0	116	
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA (QCLot: 487	3416)								
	14808-79-8	1	mg/L	<1	25 mg/L	103	90.0	110	
				<1	500 mg/L	102	90.0	110	
ED045G: Chloride by Discrete Analyser (QCLot: 4873417)									
	16887-00-6	1	mg/L	<1	10 mg/L	109	90.0	110	
				<1	1000 mg/L	104	90.0	110	
ED093F: Dissolved Major Cations (QCLot: 4876344)									
ED093F: Calcium	7440-70-2	1	mg/L	<1	50 mg/L	111	80.0	120	
ED093F: Magnesium	7439-95-4	1	mg/L	<1	50 mg/L	110	80.0	120	
ED093F: Sodium	7440-23-5	1	mg/L	<1	50 mg/L	109	80.0	120	
ED093F: Potassium	7440-09-7	1	mg/L	<1	50 mg/L	108	80.0	120	
EG020T: Total Metals by ICP-MS (QCLot: 4875506)									
EG020A-T: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	101	86.9	112	
EG020A-T: Zinc	7440-66-6	0.005	mg/L	<0.005	0.1 mg/L	115	86.7	117	
EG020A-T: Iron	7439-89-6	0.05	mg/L	<0.05	0.5 mg/L	108	92.8	118	
EK055G: Ammonia as N by Discrete Analyser (QCLot: 48757)	79)								
EK055G: Ammonia as N	7664-41-7	0.01	mg/L	<0.01	1 mg/L	97.0	90.0	110	
EK057G: Nitrite as N by Discrete Analyser (QCLot: 4873415)									
	14797-65-0	0.01	mg/L	<0.01	0.5 mg/L	98.3	90.0	110	
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser					,	1111			
EK059G: Nitrite + Nitrate as N (NOX) by Discrete Analyser	(QCL0t: 46	0.01	mg/L	<0.01	0.5 mg/L	102	90.0	110	
LN0030. Millile " Milliale as IV	-	0.01	mg/L	-0.01	0.5 mg/L	102	30.0	110	

Page : 6 of 7
Work Order : EM2302400

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill

Sub-Matrix: WATER			Method Blank (MB)	Laboratory Control Spike (LCS) Report						
			Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)			
Method: Compound CAS Numb	er LOR	Unit	Result	Concentration	LCS	Low	High			
EK061G: Total Kjeldahl Nitrogen By Discrete Analyser (QCLot: 4873873)										
EK061G: Total Kjeldahl Nitrogen as N	- 0.1	mg/L	<0.1	5 mg/L	89.9	70.0	117			
EP005: Total Organic Carbon (TOC) (QCLot: 4876174)										
EP005: Total Organic Carbon	- 1	mg/L	<1	100 mg/L	101	81.2	110			
EP026SP: Chemical Oxygen Demand (Spectrophotometric) (QCLot: 4	373903)									
EP026SP: Chemical Oxygen Demand	- 10	mg/L	<10	25 mg/L	104	89.7	111			
EP026SP: Chemical Oxygen Demand (Spectrophotometric) (QCLot: 4	373904)									
EP026SP: Chemical Oxygen Demand	- 10	mg/L	<10	500 mg/L	105	89.7	111			
EP045: Volatile Acids as CH3COOH (QCLot: 4873436)										
EP045: Volatile Acids as Acetic Acid	- 5	mg/L	<5	185 mg/L	97.4	85.5	116			

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER				Ma	trix Spike (MS) Report					
				Spike	SpikeRecovery(%)	Acceptable L	imits (%)			
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High			
ED041G: Sulfate (Furbidimetric) as SO4 2- by DA (QCLot: 4873416)									
EM2302400-002	BH14	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	100 mg/L	98.2	70.0	130			
ED045G: Chloride by Discrete Analyser (QCLot: 4873417)										
EM2302400-002	BH14	ED045G: Chloride	16887-00-6	400 mg/L	91.3	70.0	142			
EG020T: Total Metals by ICP-MS (QCLot: 4875506)										
EM2302400-001	BH4	EG020A-T: Chromium	7440-47-3	1 mg/L	101	78.9	119			
		EG020A-T: Zinc	7440-66-6	1 mg/L	104	74.0	120			
EK055G: Ammonia as N by Discrete Analyser (QCLot: 4875779)										
EM2302278-002	Anonymous	EK055G: Ammonia as N	7664-41-7	1 mg/L	# Not	70.0	130			
					Determined					
EK057G: Nitrite as	N by Discrete Analyser (QCLot: 4873415)									
EM2302400-002	BH14	EK057G: Nitrite as N	14797-65-0	0.5 mg/L	105	80.0	114			
EK059G: Nitrite p	us Nitrate as N (NOx) by Discrete Analyser (QCLot: 487	75780)								
EM2302278-002	Anonymous	EK059G: Nitrite + Nitrate as N		0.5 mg/L	89.4	70.0	130			
EK061G: Total Kje	Idahl Nitrogen By Discrete Analyser (QCLot: 4873873)									
EM2302271-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		5 mg/L	100	70.0	130			
EP005: Total Orga	nic Carbon (TOC) (QCLot: 4876174)									
EM2302400-002	BH14	EP005: Total Organic Carbon		100 mg/L	115	76.6	125			

Page : 7 of 7 Work Order : EM2302400

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill

Sub-Matrix: WATER			Matrix Spike (MS) Report						
			Spike	SpikeRecovery(%)	Acceptable L	imits (%)			
Laboratory sample ID	Sample ID	CAS Number	Concentration	MS	Low	High			
EP026SP: Chemical Oxygen Demand (Spectrophotometric) (QCLot: 4873903)									
EM2302318-002	Anonymous	EP026SP: Chemical Oxygen Demand		500 mg/L	125	70.0	130		
EP026SP: Chemical Oxygen Demand (Spectrophotometric) (QCLot: 4873904)									
EM2302400-005	U/S BH3	EP026SP: Chemical Oxygen Demand		500 mg/L	113	70.0	130		

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **EM2302400** Page : 1 of 8

Client : VENTIA UTILITY SERVICES PTY LTD Laboratory : Environmental Division Melbourne

 Contact
 : ROBERT CALLANDER
 Telephone
 : +6138549 9645

 Project
 : Creswick Landfill
 Date Samples Received
 : 14-Feb-2023

 Site
 :--- Issue Date
 : 20-Feb-2023

Sampler : --- No. of samples received : 6
Order number : Creswick Landfill No. of samples analysed : 6

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this

Brief method summaries and references are also provided to assist in traceability.

report contribute to the overall DQO assessment and reporting for guideline compliance.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- Matrix Spike outliers exist please see following pages for full details.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers: Frequency of Quality Control Samples

NO Quality Control Sample Frequency Outliers exist.

Page : 2 of 8 Work Order : EM2302400

Client : VENTIA UTILITY SERVICES PTY LTD

Project · Creswick Landfill

Outliers: Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: WATER

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Matrix Spike (MS) Recoveries							
EK055G: Ammonia as N by Discrete Analyser	EM2302278002	Anonymous	Ammonia as N	7664-41-7	Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.

Outliers: Analysis Holding Time Compliance

Matrix: WATER

Matrix: WATER							
Method		E	xtraction / Preparation		Analysis		
Container / Client Sample ID(s)		Date extracted	Due for extraction	Days	Date analysed	Due for analysis	Days
				overdue			overdue
EA005P: pH by PC Titrator							
Clear Plastic Bottle - Natural							
BH4,	BH14,				16-Feb-2023	13-Feb-2023	3
BLIND,	U/S BH3,						
@ BH3,	D/S BH3						
EK057G: Nitrite as N by Discrete Ana	llyser						
Clear Plastic Bottle - Natural							
BH4,	BH14,				16-Feb-2023	15-Feb-2023	1
BLIND,	U/S BH3,						
@ BH3,	D/S BH3						

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: WATER

Evaluation:	x = Holding	time breach : 🗸	= Within holding	time.

							2.000.,	g tilling	
Method Method		Sample Date	Extraction / Preparation			Analysis			
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
EA005P: pH by PC Titrator									
Clear Plastic Bottle - Natural (EA005-P)									
BH4,	BH14,	13-Feb-2023				16-Feb-2023	13-Feb-2023	x	
BLIND,	U/S BH3,								
@ BH3,	D/S BH3								

Page : 3 of 8
Work Order : EM2302400

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill

Matrix: WATER						Evaluation	n: × = Holding time	breach ; ✓ = Withi	n holding tim
Method			Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)				Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA010P: Conductivity by PC Titrator									
Clear Plastic Bottle - Natural (EA010-P)									
BH4,	BH14,		13-Feb-2023				16-Feb-2023	13-Mar-2023	✓
BLIND,	U/S BH3,								
@ BH3,	D/S BH3								
EA015: Total Dissolved Solids dried at 180 ± 5	°C								
Clear Plastic Bottle - Natural (EA015H)								00 5-1-0000	
BH4,	BH14,		13-Feb-2023				17-Feb-2023	20-Feb-2023	✓
BLIND,	U/S BH3,								
@ BH3,	D/S BH3								
ED037P: Alkalinity by PC Titrator									
Clear Plastic Bottle - Natural (ED037-P)			40 5 1 0000				40 5 1 0000	07 F. I. 0000	
BH4,	BH14,		13-Feb-2023				16-Feb-2023	27-Feb-2023	✓
BLIND,	U/S BH3,								
@ BH3,	D/S BH3								
ED041G: Sulfate (Turbidimetric) as SO4 2- by D	A								
Clear Plastic Bottle - Natural (ED041G)			40 5 1 0000				00 5 1 0000	40 M 0000	
BH4,	BH14,		13-Feb-2023				20-Feb-2023	13-Mar-2023	✓
BLIND,	U/S BH3,								
@ BH3,	D/S BH3								
ED045G: Chloride by Discrete Analyser				ı					
Clear Plastic Bottle - Natural (ED045G)	BH14,		13-Feb-2023				20-Feb-2023	13-Mar-2023	,
BH4,			13-Feb-2023				20-Feb-2023	13-Mai-2023	✓
BLIND,	U/S BH3,								
@ BH3,	D/S BH3								
ED093F: Dissolved Major Cations				I	I				I
Clear Plastic Bottle - Natural (ED093F) BH4,	BH14,		13-Feb-2023				17-Feb-2023	20-Feb-2023	1
BLIND,	U/S BH3,		13-1 65-2023				17-1 65-2023	20 1 00 2020	V
@ BH3,	D/S BH3								
	D/3 BH3								
EG020T: Total Metals by ICP-MS Clear Plastic Bottle - Nitric Acid; Unfiltered (EG0	120A T)	1		<u> </u>	<u> </u>		I		
BH4,	BH14,		13-Feb-2023	16-Feb-2023	12-Aug-2023	✓	16-Feb-2023	12-Aug-2023	1
BLIND,	U/S BH3,					_	10100000000		Y
@ BH3,	D/S BH3								
EK055G: Ammonia as N by Discrete Analyser Clear Plastic Bottle - Sulfuric Acid (EK055G)				l			I		
BH4,	BH14,		13-Feb-2023				17-Feb-2023	13-Mar-2023	✓
BLIND,	U/S BH3,								"
@ BH3,	D/S BH3								
₩ D. 10,	5/0 5/10								

Page : 4 of 8
Work Order : EM2302400

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill

Matrix: WATER					Evaluation	ı: × = Holding time	breach ; ✓ = Withi	n holding tim
Method		Sample Date	E	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EK057G: Nitrite as N by Discrete Ana	alyser							
Clear Plastic Bottle - Natural (EK057G								
BH4,	BH14,	13-Feb-2023				16-Feb-2023	15-Feb-2023	Jc
BLIND,	U/S BH3,							
@ BH3,	D/S BH3							
EK059G: Nitrite plus Nitrate as N (NC	Dx) by Discrete Analyser							
Clear Plastic Bottle - Sulfuric Acid (EK								
BH4,	BH14,	13-Feb-2023				16-Feb-2023	13-Mar-2023	✓
BLIND,	U/S BH3,							
@ BH3,	D/S BH3							
EK061G: Total Kjeldahl Nitrogen By I	Discrete Analyser							
Clear Plastic Bottle - Sulfuric Acid (EK	(061G)							
BH4,	BH14,	13-Feb-2023	19-Feb-2023	13-Mar-2023	✓	20-Feb-2023	13-Mar-2023	✓
BLIND,	U/S BH3,							
@ BH3,	D/S BH3							
EP005: Total Organic Carbon (TOC)								
Amber VOC Vial - Sulfuric Acid (EP00	5)							
BH4,	BH14,	13-Feb-2023				17-Feb-2023	13-Mar-2023	✓
BLIND,	U/S BH3,							
@ BH3,	D/S BH3							
EP026SP: Chemical Oxygen Demand	(Spectrophotometric)							
Clear Plastic Bottle - Sulfuric Acid (EP	026SP)							
BH4,	BH14,	13-Feb-2023				15-Feb-2023	13-Mar-2023	✓
BLIND,	U/S BH3,							
@ BH3,	D/S BH3							
EP045: Volatile Acids as CH3COOH								
Clear Plastic Bottle - Natural (EP045)								
BH4,	BH14,	13-Feb-2023				15-Feb-2023	27-Feb-2023	✓
BLIND,	U/S BH3,							
@ BH3,	D/S BH3							

Page 5 of 8 Work Order EM2302400

Client VENTIA UTILITY SERVICES PTY LTD

Creswick Landfill Project

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Quality Control Sample Type		Count		Evaluation: × = Quality Control frequency no			Quality Control Specification
Analytical Methods	Method	OC C	Regular	Actual	Expected	Evaluation	Quality Control Specification
Laboratory Duplicates (DUP)		400	rtedalai	Actual	Expected		
Alkalinity by Auto Titrator	ED037-P	2	20	10.00	10.00		NEPM 2013 B3 & ALS QC Standard
Ammonia as N by Discrete analyser	EK055G	2	20	10.00	10.00		NEPM 2013 B3 & ALS QC Standard
Chemical Oxygen Demand (COD) (Spectrophotometric)	EP026SP	3	24	12.50	10.00		NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G	2	20	10.00	10.00		NEPM 2013 B3 & ALS QC Standard
Conductivity by Auto Titrator	EA010-P	4	34	11.76	10.00	<u> </u>	NEPM 2013 B3 & ALS QC Standard
Major Cations - Dissolved	ED093F	2	20	10.00	10.00	<u> </u>	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	20	10.00	10.00		NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	2	20	10.00	10.00	<u> </u>	NEPM 2013 B3 & ALS QC Standard
pH by Auto Titrator	EA005-P	2	20	10.00	10.00	<u> </u>	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	2	20	10.00	10.00	√	NEPM 2013 B3 & ALS QC Standard
Total Dissolved Solids (High Level)	EA015H	4	40	10.00	10.00	<u> </u>	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	2	17	11.76	10.00	<u>√</u>	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	2	12	16.67	10.00	√	NEPM 2013 B3 & ALS QC Standard
Total Organic Carbon	EP005	2	20	10.00	10.00	<u>√</u>	NEPM 2013 B3 & ALS QC Standard
Volatile Acids as CH3COOH	EP045	1	10	10.00	10.00	√	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Alkalinity by Auto Titrator	ED037-P	1	20	5.00	5.00	√	NEPM 2013 B3 & ALS QC Standard
Ammonia as N by Discrete analyser	EK055G	1	20	5.00	5.00	√	NEPM 2013 B3 & ALS QC Standard
Chemical Oxygen Demand (COD) (Spectrophotometric)	EP026SP	2	24	8.33	5.00	√	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Conductivity by Auto Titrator	EA010-P	2	34	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Major Cations - Dissolved	ED093F	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
pH by Auto Titrator	EA005-P	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Dissolved Solids (High Level)	EA015H	3	40	7.50	7.50	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	1	12	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Organic Carbon	EP005	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Volatile Acids as CH3COOH	EP045	1	10	10.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Ammonia as N by Discrete analyser	EK055G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Chemical Oxygen Demand (COD) (Spectrophotometric)	EP026SP	2	24	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Conductivity by Auto Titrator	EA010-P	2	34	5.88	5.00	1	NEPM 2013 B3 & ALS QC Standard

Page : 6 of 8
Work Order : EM2302400

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill

Matrix: WATER Evaluation: × = Quality Control frequency not within specification; ✓ = Quality Control frequency within specification								
Quality Control Sample Type		С	ount		Rate (%)		Quality Control Specification	
Analytical Methods	Method	ОC	Reaular	Actual	Expected	Evaluation		
Method Blanks (MB) - Continued								
Major Cations - Dissolved	ED093F	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Nitrite as N by Discrete Analyser	EK057G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Dissolved Solids (High Level)	EA015H	2	40	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Metals by ICP-MS - Suite A	EG020A-T	1	12	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Organic Carbon	EP005	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Volatile Acids as CH3COOH	EP045	1	10	10.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Matrix Spikes (MS)								
Ammonia as N by Discrete analyser	EK055G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Chemical Oxygen Demand (COD) (Spectrophotometric)	EP026SP	2	24	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Chloride by Discrete Analyser	ED045G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Nitrite as N by Discrete Analyser	EK057G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Metals by ICP-MS - Suite A	EG020A-T	1	12	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Organic Carbon	EP005	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	

Page : 7 of 8 Work Order : EM2302400

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
pH by Auto Titrator	EA005-P	WATER	In house: Referenced to APHA 4500 H+ B. This procedure determines pH of water samples by automated ISE. This method is compliant with NEPM Schedule B(3)
Conductivity by Auto Titrator	EA010-P	WATER	In house: Referenced to APHA 2510 B. This procedure determines conductivity by automated ISE. This method is compliant with NEPM Schedule B(3)
Total Dissolved Solids (High Level)	EA015H	WATER	In house: Referenced to APHA 2540C. A gravimetric procedure that determines the amount of 'filterable' residue in an aqueous sample. A well-mixed sample is filtered through a glass fibre filter (1.2um). The filtrate is evaporated to dryness and dried to constant weight at 180+/-5C. This method is compliant with NEPM Schedule B(3)
Alkalinity by Auto Titrator	ED037-P	WATER	In house: Referenced to APHA 2320 B This procedure determines alkalinity by automated measurement (e.g. PC Titrate) on a settled supernatant aliquot of the sample using pH 4.5 for indicating the total alkalinity end-point. This method is compliant with NEPM Schedule B(3)
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	WATER	In house: Referenced to APHA 4500-SO4. Dissolved sulfate is determined in a 0.45um filtered sample. Sulfate ions are converted to a barium sulfate suspension in an acetic acid medium with barium chloride. Light absorbance of the BaSO4 suspension is measured by a photometer and the SO4-2 concentration is determined by comparison of the reading with a standard curve. This method is compliant with NEPM Schedule B(3)
Chloride by Discrete Analyser	ED045G	WATER	In house: Referenced to APHA 4500 CI - G.The thiocyanate ion is liberated from mercuric thiocyanate through sequestration of mercury by the chloride ion to form non-ionised mercuric chloride. In the presence of ferric ions the liberated thiocynate forms highly-coloured ferric thiocynate which is measured at 480 nm.
Major Cations - Dissolved	ED093F	WATER	In house: Referenced to APHA 3120 and 3125; USEPA SW 846 - 6010 and 6020; Cations are determined by either ICP-AES or ICP-MS techniques. This method is compliant with NEPM Schedule B(3) Sodium Adsorption Ratio is calculated from Ca, Mg and Na which determined by ALS in house method QWI-EN/ED093F. This method is compliant with NEPM Schedule B(3) Hardness parameters are calculated based on APHA 2340 B. This method is compliant with NEPM Schedule B(3)
Total Metals by ICP-MS - Suite A	EG020A-T	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Ammonia as N by Discrete analyser	EK055G	WATER	In house: Referenced to APHA 4500-NH3 G Ammonia is determined by direct colorimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)
Nitrite as N by Discrete Analyser	EK057G	WATER	In house: Referenced to APHA 4500-NO2- B. Nitrite is determined by direct colourimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)
Nitrate as N by Discrete Analyser	EK058G	WATER	In house: Referenced to APHA 4500-NO3- F. Nitrate is reduced to nitrite by way of a chemical reduction followed by quantification by Discrete Analyser. Nitrite is determined seperately by direct colourimetry and result for Nitrate calculated as the difference between the two results. This method is compliant with NEPM Schedule B(3)
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	WATER	In house: Referenced to APHA 4500-NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by Chemical Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)

Page : 8 of 8 Work Order : EM2302400

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill

Analytical Methods	Method	Matrix	Method Descriptions
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	WATER	In house: Referenced to APHA 4500-Norg D (In house). An aliquot of sample is digested using a high temperature Kjeldahl digestion to convert nitrogenous compounds to ammonia. Ammonia is determined colorimetrically by discrete analyser. This method is compliant with NEPM Schedule B(3)
Ionic Balance by PCT DA and Turbi SO4 DA	* EN055 - PG	WATER	In house: Referenced to APHA 1030F. This method is compliant with NEPM Schedule B(3)
Field Tests (performed by external sampler)	* EN67-B02	WATER	Field determinations as per methods described in APHA or supplied by client. The analysis is performed in the field by non-ALS samplers. ALS NATA accreditation does not apply for this service.
Total Organic Carbon	EP005	WATER	In house: Referenced to APHA 5310 B, The automated TOC analyzer determines Total and Inorganic Carbon by IR cell. TOC is calculated as the difference. This method is compliant with NEPM Schedule B(3)
Chemical Oxygen Demand (COD) (Spectrophotometric)	EP026SP	WATER	In house: Referenced to APHA 5220 D. Samples are digested with a known excess of an acidic potassium dichromate solution using silver sulfate as a catalyst. The chromium is reduced from the Cr (VI) oxidation state to the Cr (III) state by the oxygen present in the organic material. Both of these chromium species are coloured and absorb in the visible region of (400nm & 600nm) the spectrum. The oxidisable organic matter can be calculated in terms of oxygen equivalents.
Volatile Acids as CH3COOH	EP045	WATER	In house: Referenced to APHA 5560 C. Steam distillable acids are captured in caustic solution and determined titremetrically. This method is compliant with NEPM Schedule B(3)
Preparation Methods	Method	Matrix	Method Descriptions
TKN/TP Digestion	EK061/EK067	WATER	In house: Referenced to APHA 4500 Norg - D; APHA 4500 P - H. This method is compliant with NEPM Schedule B(3)
Digestion for Total Recoverable Metals	EN25	WATER	In house: Referenced to USEPA SW846-3005. Method 3005 is a Nitric/Hydrochloric acid digestion procedure used to prepare surface and ground water samples for analysis by ICPAES or ICPMS. This method is compliant with NEPM Schedule B(3)

BURWOOD VIC 3125

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order : EM2302400

Client : VENTIA UTILITY SERVICES PTY LTD Laboratory : Environmental Division Melbourne

Contact : ROBERT CALLANDER Contact : Peter Ravlic

Address : 25-37 HUNTINGDALE ROAD Address : 4 Westall Rd Springvale VIC Australia

3171

 Telephone
 : --- Telephone
 : +6138549 9645

 Facsimile
 : --- Facsimile
 : +61-3-8549 9626

Project : Creswick Landfill Page : 1 of 3

 Order number
 : --- Quote number
 : EM2016THISER0010 (ME/793/19)

 C-O-C number
 : --- QC Level
 : NEPM 2013 B3 & ALS QC Standard

Site : ----

Sampler :

Dates

Date Samples Received : 14-Feb-2023 10:05 Issue Date : 14-Feb-2023 Client Requested Due : 21-Feb-2023 Scheduled Reporting Date : 21-Feb-2023

Date

Delivery Details

 Mode of Delivery
 : Carrier
 Security Seal
 : Not Available

 No. of coolers/boxes
 : 1
 Temperature
 : 3.4°C - Ice present

Receipt Detail : No. of samples received / analysed : 6 / 6

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- Please direct any queries related to sample condition / numbering / breakages to Client Services.
- Sample Disposal Aqueous (3 weeks), Solid (2 months) from receipt of samples.
- Analytical work for this work order will be conducted at ALS Springvale.
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The laboratory will process these samples unless instructions are received from you indicating you do not wish to proceed. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical
 analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this
 temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS
 recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.

: 14-Feb-2023 Issue Date

Page

2 of 3 EM2302400 Amendment 0 Work Order

Client : VENTIA UTILITY SERVICES PTY LTD

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

process necessal tasks. Packages as the determinatasks, that are included in the sampling default 00:00 on	cribed below may ry for the executi may contain ad ation of moisture uded in the package. time is provided, the date of samplin sampling date wi displayed in bra	WATER - EA005P pH (Auto Titrator)	WATER - EA010P Electrical Conductivity (Auto Titrator)	WATER - EK055G Ammonia as N By Discrete Analyser	WATER - EK058G Nitrate as N by Discrete Analyser	WATER - EK061G Total Kjeldahl Nitrogen as N (TKN) By Discrete	WATER - EP005 Total Organic Carbon (TOC)	WATER - EP045 Volatile Acids as CH3COOH	
EM2302400-001	13-Feb-2023 14:02	✓	✓	✓	✓	✓	✓	✓	
EM2302400-002	13-Feb-2023 11:52	BH14	✓	✓	✓	✓	✓	✓	✓
EM2302400-003	13-Feb-2023 00:00	BLIND	✓	✓	✓	✓	✓	✓	✓
EM2302400-005	13-Feb-2023 13:15	U/S BH3	✓	✓	✓	✓	✓	✓	✓
EM2302400-006	13-Feb-2023 12:55	@ BH3	✓	✓	✓	✓	✓	✓	✓
EM2302400-007	13-Feb-2023 10:50	D/S BH3	✓	1	1	✓	1	✓	✓
Matrix: WATER <i>Laboratory sample ID</i>	Sampling date / time	Sample ID	WATER - EA015H Total Dissolved Solids - Standard Level	WATER - EG020T Total Metals by ICP/MS (including digestion)	WATER - EN67-B02 Field Tests (performed by external sampler)	WATER - EP026SP Chemical Oxygen Demand (COD)	WATER - NT-01 & 02 Ca, Mg, Na, K, Cl, SO4, Alkalinity		
EM2302400-001	13-Feb-2023 14:02	BH4	✓	1	1	✓	1		
EM2302400-002	13-Feb-2023 11:52	BH14	✓	✓	✓	✓	✓		
EM2302400-003	13-Feb-2023 00:00	BLIND	✓	✓		✓	✓		
EM2302400-005	13-Feb-2023 13:15	U/S BH3	✓	✓	✓	✓	✓		
EM2302400-006	13-Feb-2023 12:55	@ BH3	✓	✓	✓	✓	✓		
EM2302400-007	13-Feb-2023 10:50	✓	✓	✓	✓	✓			

Proactive Holding Time Report

The following table summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory.

Motrice MATER

Matrix: WATER		Evaluation: × = Holding time breach; ✓ = Within holding time									
Method		Due for	Due for	Samples Re	eceived	Instructions Received					
Client Sample ID(s)	Container	extraction	analysis	Date	Evaluation	Date	Evaluation				
EA005-P: pH by Auto Titrator											
@ BH3	Clear Plastic Bottle - Natural		13-Feb-2023	14-Feb-2023	×						
BH14	Clear Plastic Bottle - Natural		13-Feb-2023	14-Feb-2023	×						
BH4	Clear Plastic Bottle - Natural		13-Feb-2023	14-Feb-2023	×						
BLIND	Clear Plastic Bottle - Natural		13-Feb-2023	14-Feb-2023	×						
D/S BH3	Clear Plastic Bottle - Natural		13-Feb-2023	14-Feb-2023	×						

: 14-Feb-2023 Issue Date

Page

U/S BH3

: 3 of 3 : EM2302400 Amendment 0 Work Order

Client : VENTIA UTILITY SERVICES PTY LTD

Clear Plastic Bottle - Natural

Requested Deliverables

ACCOUNTS PAYABLE - VIC ONLY		
- A4 - AU Tax Invoice (INV)	Email	Nicole.Robins@ventia.com
LUCY EDWARDS		
 *AU Certificate of Analysis - NATA (COA) 	Email	lucy.edwards@ventia.com.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	lucy.edwards@ventia.com.au
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	lucy.edwards@ventia.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	lucy.edwards@ventia.com.au
- Chain of Custody (CoC) (COC)	Email	lucy.edwards@ventia.com.au
- EDI Format - ENMRG (ENMRG)	Email	lucy.edwards@ventia.com.au
- EDI Format - ESDAT (ESDAT)	Email	lucy.edwards@ventia.com.au
Ping Yao		
 *AU Certificate of Analysis - NATA (COA) 	Email	ping.yao@ventia.com
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	ping.yao@ventia.com
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	ping.yao@ventia.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	ping.yao@ventia.com
- Chain of Custody (CoC) (COC)	Email	ping.yao@ventia.com
- EDI Format - ENMRG (ENMRG)	Email	ping.yao@ventia.com
- EDI Format - ESDAT (ESDAT)	Email	ping.yao@ventia.com
ROBERT CALLANDER		
 *AU Certificate of Analysis - NATA (COA) 	Email	robert.callander@ventia.com.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	robert.callander@ventia.com.au
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	robert.callander@ventia.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	robert.callander@ventia.com.au
- A4 - AU Tax Invoice (INV)	Email	robert.callander@ventia.com.au
- Chain of Custody (CoC) (COC)	Email	robert.callander@ventia.com.au
- EDI Format - ENMRG (ENMRG)	Email	robert.callander@ventia.com.au
- EDI Format - ESDAT (ESDAT)	Email	robert.callander@ventia.com.au

13-Feb-2023

14-Feb-2023

													COURT TO SEE	Sales Alexander					
C	Client:			Ve	ntia				Job	Ref:			Cres	wick Lai	ndfill 1 of	3			
Co	ntact:			Robert	Calla	nder				TEST	SREC	UIRE	DAS	PER C	QUOTE	ME/412	/16		
Address: 25-37 Huntingdale					Road,	Burwood	l, 3125		1	Market Street									
Phone: 0427529051			F	ax:		1.50													
lucy		lucy.ed	oing.yao@ventia.com ucy.edwards@ventia.com obert.callander@ventia.com																
P/C	O No.:			Quote N	o.: 1	ME/412/16					8					Environmental Division Melbourne			
T/A	Time:					- Hard									IVI	Work Order	Reference		
Sample ID		Sample I	Description		No of Date Containers Sampled		Time sampled	Matrix	H	EC E	00	TEMP	ORP	SWL		EM23	302400		
BH1	Groun	dwater E	Bore					2270.02											
BH2	Groun	dwater E	Bore												-	Telephone: +61-3-8549 9600			
ВН3	Groun	dwater E	Bore										,						
BH4	Groun	dwater E	Bore	4	4	13/2/23	11,02	W	5-77	1840	0.37	14.36	6.5	4.88	1	elepriorie : + or o			
ВН6	Groun	dwater E	Bore	1		1070100	1400		311	1040				1					
ВН7	Groun	dwater E	Bore										.0						
ВН8	Groun	dwater E	Bore							-			-						
ВН9	Groun	dwater E	Bore																
In	Sp nstructi		Please email	Invoices t	o Nico	ole.robins@	ventia.c	<u>om</u>	L										
Relinquished By: Company: Date: Time:				Time:		Rece	eived By	:	Co	mpany:		Date:	Time:						
A Callandel Ventia 13/2/23 1700				5		M	anth			my		14/2	20-01						
This form is for recording of sample data after prior consultation with an analyst regarding sampling procedures and does nover-ride pricing agreements, OHS requirements and our terms and conditions. As an Occupational Health and Safety consideration, it is a requirement of Ecowise Environmental (Victoria), that all sample received be undamaged and prior advice given in writing of any potential health risks.										Samples adequately preserved [Yes Samples within recommended holding times: [Yes							erved [Yes/No]		

Document: OF002 i1

C	lient:				Job	Ref:			Cres	wick La	ndfill 2	of 3					
	tact:	25	Robert Callander 25-37 Huntingdale Road, Burwood, 3125						TEST	SRE	QUIRE	D AS	PER	QUOT	E ME/	1 12/1	6
Ph	one:	042752905	51	Fax:						I	T		1.	T			T
E	mail:	lucy.edwar	ventia.com ds@ventia.c ander@ventia														5.
P/O	No.:			Quote No.:													
T/A T	ime:																
Sample ID		Sample Description		No of Container s	Date Sample d	Time sample d	7	HA	EC	00	TEMP	ORP	SWL				
BH10	Grou	indwater boi	re														
BH##14	Grou	indwater bo	re	4	13/2/23	1152		6.40	1190	0.12	14.53	8.5	3.19				
LB1	V 2018/03/2018	hate bore												P.			
LB2		hate bore															
LB3	Leac	hate bore						ONLY	NO) SAM	1PLE -	SWL					
BLIND			sed by ALS)	4	13/2/23	1											
RINSAT E	Rins	ate blank		4	13/2/23									4			è
	structi	ons:	se email Invo	pices to <u>Nic</u>	ole.robins	@ventia.d	com										į.
Relinquished			By: Company:		ate:		Time:		Rec	eived By	y:	Co	mpany:		Date	e:	Time:
AC	allan	Jel Vent	ia	13/	2/23	17	700		1	wow	n					9	
This form is for recording of sample data after prior consultation with an analyst regarding sampling procedures not over-ride pricing agreements, OHS requirements and our terms and conditions. As an Occupational Health and Safety consideration, it is a requirement of Ecowise Environmental (Victoria), that								LAB USE ONLY Sample conditions: Samples received undi Samples adequately preserved [Samples within recommended holding times:						[Yes/No] ed [Yes/No]			
Document	ved be ur	idamaged and pr	ior advice given in	writing of any p	otential health	risks.									appropriate t		

2

3

4

Job Ref:

Ventia

Robert Callander

25-37 Huntingdale Road Burwood 3125

Date:

13/2/23

Date:

Samples received undamaged [Yes/No]

Samples adequately preserved [Yes/No]

Samples within recommended holding times: [Yes/No]

Samples transported at appropriate temperature [Yes/No]

Time:

Creswick Landfill 3 of 3

TESTS REQUIRED AS PER QUOTE ME/412/16

Company:

Sample conditions:

Client:

Contact:

Address:

Pł	none:	0427529051								T	T	1			
Email:		ping.yao@ventia.co lucy.edwards@ven robert.callander@v	tia.com												
P/O	No.:														
T/A 1	Γime:	7													
Sample ID		Sample Description	No of Containers	Date Sampled	Time sampled		HA .	EC	0	TEMP	ORP	SWL			
U/S BH3	Cree	k Sample		13/2/23	1226	315	5 6.83	668.5	4.96	19.4	20.4	_			
@ BH3		k Sample		13/2/23			6.04			15.55		-			
D/S BH3	Cree	k Sample	13/2/23			6.66	549.7		16.51	-7.7	-				
														-	2
Leachate	Surfa	ace water sample													
Wetland	Surfa	ace water sample												_	
Dredge	Surfa	ace water sample						,							
												×			
ln:	Sp structi		Invoices to Nico	ole.robins@	②ventia.c	om				*					N.

Time:

1700

Received By:

LAB USE ONLY

Document: OF002 i1

Relinquished By:

Collember

Company:

This form is for recording of sample data after prior consultation with an analyst regarding sampling procedures and does not

As an Occupational Health and Safety consideration, it is a requirement of Ecowise Environmental (Victoria), that all samples

Ventia

over-ride pricing agreements, OHS requirements and our terms and conditions.

received be undamaged and prior advice given in writing of any potential health risks.

CERTIFICATE OF ANALYSIS

Work Order : EM2302525

Client : VENTIA UTILITY SERVICES PTY LTD

Contact : ROBERT CALLANDER

Address : 25-37 HUNTINGDALE ROAD

BURWOOD VIC 3125

Telephone : ---

Project : Creswick Landfill
Order number : Creswick Landfill

C-O-C number : ---Sampler : ---Site : ----

Quote number : ME/793/19

No. of samples received : 8
No. of samples analysed : 8

Page : 1 of 6

Laboratory : Environmental Division Melbourne

Contact : Peter Ravlic

Address : 4 Westall Rd Springvale VIC Australia 3171

Telephone : +6138549 9645

Date Samples Received : 15-Feb-2023 12:35

Date Analysis Commenced : 16-Feb-2023

Issue Date : 22-Feb-2023 21:15

av ALC. This decument shall

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Dilani Fernando Laboratory Coordinator Melbourne Inorganics, Springvale, VIC
Jarwis Nheu Non-Metals Team Leader Melbourne Inorganics, Springvale, VIC

Samantha Smith Assistant Laboratory Manager Melbourne External Subcontracting, Springvale, VIC

Page : 2 of 6 Work Order : EM2302525

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- As per QWI EN55-3 Data Interpreting Procedures, Ionic balances are typically calculated using Major Anions Chloride, Alkalinity and Sulfate; and Major Cations Calcium, Magnesium, Potassium and Sodium. Where applicable and dependent upon sample matrix, the Ionic Balance may also include the additional contribution of Ammonia, Dissolved Metals by ICPMS and H+ to the Cations and Nitrate, SiO2 and Fluoride to the Anions.
- EA015H: EM2302525 #1: TDS by method EA-015 may bias high due to the presence of fine particulate matter, which may pass through the prescribed GF/C paper.
- lonic balances were calculated using: major anions chloride, alkalinity and sulfate; and major cations calcium, magnesium, potassium and sodium.
- ED045G: The presence of thiocyanate can positively contribute to the chloride result, thereby may bias results higher than expected. Results should be scrutinised accordingly.
- ED045G: The presence of Thiocyanate, Thiosulfate and Sulfite can positively contribute to the chloride result, thereby may bias results higher than expected. Results should be scrutinised accordingly.
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

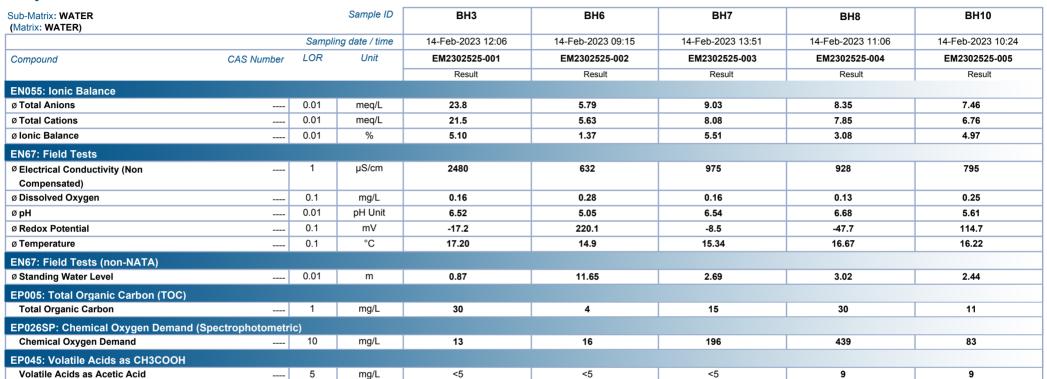


Page : 3 of 6 Work Order : EM2302525

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill

Analytical Results



Page : 4 of 6 Work Order : EM2302525

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill

Analytical Results

Page : 5 of 6 Work Order : EM2302525

Client : VENTIA UTILITY SERVICES PTY LTD

EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser

EK061G: Total Kjeldahl Nitrogen By Discrete Analyser

0.01

0.1

mg/L

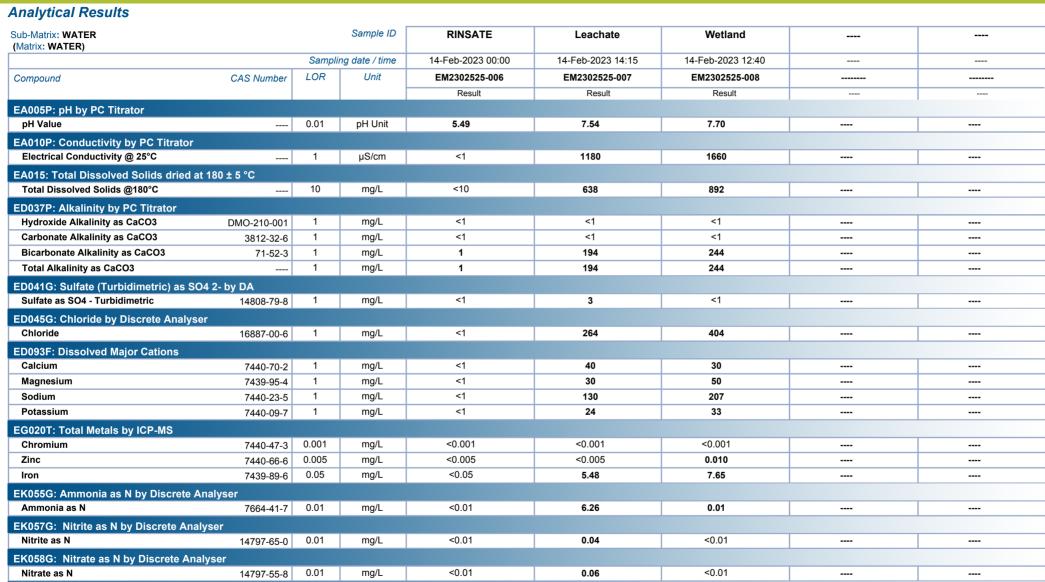
mg/L

< 0.01

< 0.1

0.10

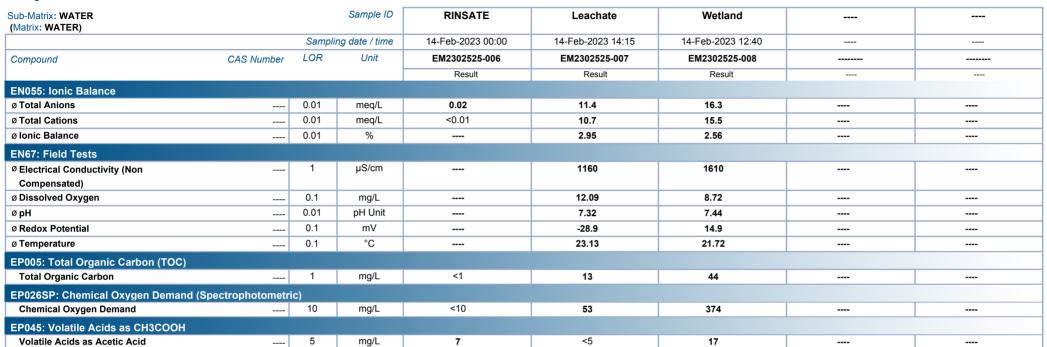
6.6


< 0.01

10.4

Nitrite + Nitrate as N

Total Kjeldahl Nitrogen as N



Page : 6 of 6 Work Order : EM2302525

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill

Analytical Results

QUALITY CONTROL REPORT

: 1 of 7

Accreditation No. 825

Accredited for compliance with ISO/IEC 17025 - Testing

Work Order : EM2302525 Page

Client : VENTIA UTILITY SERVICES PTY LTD Laboratory : Environmental Division Melbourne

Contact : ROBERT CALLANDER Contact : Peter Ravlic

Address : 25-37 HUNTINGDALE ROAD Address : 4 Westall Rd Springvale VIC Australia 3171

BURWOOD VIC 3125

Telephone : ---- Telephone : +6138549 9645

Project : Creswick Landfill Date Samples Received : 15-Feb-2023

Order number : Creswick Landfill Date Analysis Commenced : 16-Feb-2023

C-O-C number : ---- Issue Date : 22-Feb-2023

Quote number : ME/793/19

No. of samples analysed : 8

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

: 8

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

No. of samples received

Sampler Site

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Dilani Fernando Laboratory Coordinator Melbourne Inorganics, Springvale, VIC
Jarwis Nheu Non-Metals Team Leader Melbourne Inorganics, Springvale, VIC

Samantha Smith Assistant Laboratory Manager Melbourne External Subcontracting, Springvale, VIC

Page : 2 of 7
Work Order : EM2302525

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: WATER				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)		
EA005P: pH by PC Ti	trator (QC Lot: 4878798)										
EM2302499-001	Anonymous	EA005-P: pH Value		0.01	pH Unit	8.35	8.69	4.0	0% - 20%		
EM2302625-002	Anonymous	EA005-P: pH Value		0.01	pH Unit	7.33	7.35	0.3	0% - 20%		
EA010P: Conductivit	y by PC Titrator (QC Lot:	4878796)									
EM2302447-001	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	16500	16700	1.3	0% - 20%		
EM2302381-003	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	16000	16200	0.9	0% - 20%		
EA010P: Conductivit	y by PC Titrator (QC Lot:	4878802)									
EM2302525-007	Leachate	EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	1180	1180	0.0	0% - 20%		
EM2302625-002	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	5710	5720	0.1	0% - 20%		
EA015: Total Dissolv	ed Solids dried at 180 ± 5	°C (QC Lot: 4881384)									
EM2302447-004	Anonymous	EA015H: Total Dissolved Solids @180°C		10	mg/L	13300	13600	1.6	0% - 20%		
EM2302502-004	Anonymous	EA015H: Total Dissolved Solids @180°C		10	mg/L	83	78	6.2	No Limit		
EM2302525-002	BH6	EA015H: Total Dissolved Solids @180°C		10	mg/L	395	377	4.5	0% - 20%		
EM2302783-001	Anonymous	EA015H: Total Dissolved Solids @180°C		10	mg/L	2920	2920	0.1	0% - 20%		
ED037P: Alkalinity by	PC Titrator (QC Lot: 487	(8799)									
EM2302525-007	Leachate	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.0	No Limit		
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.0	No Limit		
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	194	195	0.0	0% - 20%		
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	194	195	0.0	0% - 20%		
EM2302474-006	Anonymous	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.0	No Limit		
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.0	No Limit		
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	12	12	0.0	0% - 50%		
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	12	12	0.0	0% - 50%		

Page : 3 of 7
Work Order : EM2302525

Client : VENTIA UTILITY SERVICES PTY LTD

Sub-Matrix: WATER						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
ED041G: Sulfate (T	urbidimetric) as SO4 2-	by DA (QC Lot: 4876169) - continued							
EM2302525-002	BH6	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	19	20	0.0	0% - 50%
EM2302484-001	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	886	879	0.8	0% - 20%
ED041G: Sulfate (T	urbidimetric) as SO4 2-	by DA (QC Lot: 4876326)							
EM2302493-001	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	143	143	0.0	0% - 20%
ED045G: Chloride k	y Discrete Analyser (C	QC Lot: 4876170)							
EM2302525-002	BH6	ED045G: Chloride	16887-00-6	1	mg/L	182	180	1.2	0% - 20%
EM2302484-001	Anonymous	ED045G: Chloride	16887-00-6	1	mg/L	13	13	0.0	0% - 50%
ED045G: Chloride b	by Discrete Analyser (C	QC Lot: 4876324)							
EM2302487-006	Anonymous	ED045G: Chloride	16887-00-6	1	mg/L	12	12	0.0	0% - 50%
EM2302456-003	Anonymous	ED045G: Chloride	16887-00-6	1	mg/L	65	66	0.0	0% - 20%
ED093F: Dissolved	Major Cations (QC Lot								
EM2302494-001	Anonymous	ED093F: Calcium	7440-70-2	1	mg/L	284	292	2.7	0% - 20%
		ED093F: Magnesium	7439-95-4	1	mg/L	19	22	12.0	0% - 20%
		ED093F: Sodium	7440-23-5	1	mg/L	1020	1040	2.6	0% - 20%
		ED093F: Potassium	7440-09-7	1	mg/L	68	69	1.8	0% - 20%
EM2302525-007	Leachate	ED093F: Calcium	7440-70-2	1	mg/L	40	39	0.0	0% - 20%
		ED093F: Magnesium	7439-95-4	1	mg/L	30	30	0.0	0% - 20%
		ED093F: Sodium	7440-23-5	1	mg/L	130	130	0.0	0% - 20%
		ED093F: Potassium	7440-09-7	1	mg/L	24	24	0.0	0% - 20%
EG020T: Total Meta	als by ICP-MS (QC Lot:	4881401)							
EM2301244-013	Anonymous	EG020A-T: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	0.0	No Limit
		EG020A-T: Iron	7439-89-6	0.05	mg/L	<0.05	<0.05	0.0	No Limit
EM2302421-006	Anonymous	EG020A-T: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	0.0	No Limit
		EG020A-T: Iron	7439-89-6	0.05	mg/L	<0.05	<0.05	0.0	No Limit
EK055G: Ammonia	as N by Discrete Analy	ser (QC Lot: 4880973)							
EM2302525-004	BH8	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	1.43	1.38	3.9	0% - 20%
EM2302221-006	Anonymous	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	0.19	0.17	9.9	0% - 50%
EK057G: Nitrite as	N by Discrete Analyser	r (QC Lot: 4876168)							
EM2302525-002	BH6	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	0.0	No Limit
EM2302484-001	Anonymous	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	0.28	0.28	0.0	0% - 20%
EK057G: Nitrite as	N by Discrete Analyser	r (QC Lot: 4876325)							
EM2302493-006	Anonymous	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	0.0	No Limit
EM2302486-006	Anonymous	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	0.0	No Limit
EK059G: Nitrite plu	us Nitrate as N (NOx) b	y Discrete Analyser (QC Lot: 4880972)							
EM2302493-004	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	0.28	0.29	0.0	0% - 20%
EM2302221-006	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	4.28	4.27	0.0	0% - 20%

Page : 4 of 7
Work Order : EM2302525

Client : VENTIA UTILITY SERVICES PTY LTD

Sub-Matrix: WATER						Laboratory D	Ouplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EK059G: Nitrite plus	s Nitrate as N (NOx) by Disc	rete Analyser (QC Lot: 4880974)							
EM2302525-005	BH10	EK059G: Nitrite + Nitrate as N		0.01	mg/L	0.03	0.03	0.0	No Limit
EK061G: Total Kjeld	ahl Nitrogen By Discrete Ana	alyser (QC Lot: 4881365)							
EM2302525-001	ВН3	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	0.9	0.9	0.0	No Limit
EM2302596-002	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	1.7	1.8	0.0	0% - 50%
EP005: Total Organi	c Carbon (TOC) (QC Lot: 48	78505)							
EM2302421-004	Anonymous	EP005: Total Organic Carbon		1	mg/L	23	24	0.0	0% - 20%
EM2302525-008	Wetland	EP005: Total Organic Carbon		1	mg/L	44	43	3.1	0% - 20%
EP026SP: Chemical	Oxygen Demand (Spectroph	otometric) (QC Lot: 4881021)							
EM2302376-001	Anonymous	EP026SP: Chemical Oxygen Demand		10	mg/L	60	<10	143	No Limit
EM2302525-008	Wetland	EP026SP: Chemical Oxygen Demand		10	mg/L	374	361	3.5	0% - 20%
EP045: Volatile Acid	s as CH3COOH (QC Lot: 488	31553)							
EM2302525-001	ВН3	EP045: Volatile Acids as Acetic Acid		5	mg/L	<5	<5	0.0	No Limit
EM2302629-003	Anonymous	EP045: Volatile Acids as Acetic Acid		5	mg/L	15	15	0.0	No Limit

Page : 5 of 7
Work Order : EM2302525

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill

Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LCS) Report		
				Report	Spike	Spike Recovery (%)	Acceptable	e Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EA005P: pH by PC Titrator (QCLot: 4878798)								
EA005-P: pH Value			pH Unit		4 pH Unit	99.2	98.8	101
					7 pH Unit	100	99.3	101
EA010P: Conductivity by PC Titrator (QCLot: 4878796)								
EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	<1	1412 μS/cm	104	85.0	119
EA010P: Conductivity by PC Titrator (QCLot: 4878802)								
EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	<1	1412 μS/cm	106	85.0	119
EA015: Total Dissolved Solids dried at 180 ± 5 °C (QCLot: 4	1881384)							
EA015H: Total Dissolved Solids @180°C		10	mg/L	<10	2000 mg/L	102	91.0	110
27070111 70141 270001704 001140 @ 100 0				<10	2440 mg/L	107	81.6	118
				<10	293 mg/L	101	91.0	110
ED037P: Alkalinity by PC Titrator (QCLot: 4878799)								
ED037-P: Total Alkalinity as CaCO3			mg/L		200 mg/L	93.9	85.0	116
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA (QCLot: 4	876169)							
ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	<1	25 mg/L	105	90.0	110
EBOTTO. Gallato de GGT Tariblamonto				<1	500 mg/L	106	90.0	110
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA (QCLot: 4	876326)							
ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	<1	25 mg/L	108	90.0	110
EBOTTO. Gallato de GGT Tariblamonto				<1	500 mg/L	100	90.0	110
ED045G: Chloride by Discrete Analyser (QCLot: 4876170)								
ED045G: Chloride	16887-00-6	1	mg/L	<1	10 mg/L	104	90.0	110
				<1	1000 mg/L	106	90.0	110
ED045G: Chloride by Discrete Analyser (QCLot: 4876324)					_			
ED045G: Chloride	16887-00-6	1	mg/L	<1	10 mg/L	104	90.0	110
EBO 100. Official				<1	1000 mg/L	105	90.0	110
ED093F: Dissolved Major Cations (QCLot: 4878277)								
ED093F: Calcium	7440-70-2	1	mg/L	<1	50 mg/L	108	80.0	120
ED093F: Magnesium	7439-95-4	1	mg/L	<1	50 mg/L	102	80.0	120
ED093F: Sodium	7440-23-5	1	mg/L	<1	50 mg/L	105	80.0	120
ED093F: Potassium	7440-09-7	1	mg/L	<1	50 mg/L	103	80.0	120
EG020T: Total Metals by ICP-MS (QCLot: 4881401)								
EG020A-T: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	95.4	86.9	112
EG020A-T: Zinc	7440-66-6	0.005	mg/L	<0.005	0.1 mg/L	106	86.7	117
EG020A-T: Iron	7439-89-6	0.05	mg/L	<0.05	0.5 mg/L	105	92.8	118

Page : 6 of 7
Work Order : EM2302525

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EK055G: Ammonia as N by Discrete Analyser (QC	Lot: 4880973)							
EK055G: Ammonia as N	7664-41-7	0.01	mg/L	<0.01	1 mg/L	96.2	90.0	110
EK057G: Nitrite as N by Discrete Analyser (QCLo	t: 4876168)							
EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	0.5 mg/L	97.2	90.0	110
EK057G: Nitrite as N by Discrete Analyser (QCLo	t: 4876325)							
EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	0.5 mg/L	100	90.0	110
EK059G: Nitrite plus Nitrate as N (NOx) by Discre	te Analyser (QCLot: 4880	0972)						
EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	0.5 mg/L	101	90.0	110
EK059G: Nitrite plus Nitrate as N (NOx) by Discre	te Analyser (QCLot: 4880	0974)						
EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	0.5 mg/L	103	90.0	110
EK061G: Total Kjeldahl Nitrogen By Discrete Analy	/ser (QCLot: 4881365)							
EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	<0.1	5 mg/L	91.7	70.0	117
EP005: Total Organic Carbon (TOC) (QCLot: 4878	505)							
EP005: Total Organic Carbon		1	mg/L	<1	100 mg/L	99.8	81.2	110
EP026SP: Chemical Oxygen Demand (Spectrophot	tometric) (QCLot: 488102	21)						
EP026SP: Chemical Oxygen Demand		10	mg/L	<10	500 mg/L	106	89.7	111
EP045: Volatile Acids as CH3COOH (QCLot: 48815	553)							
EP045: Volatile Acids as Acetic Acid		5	mg/L	<5	185 mg/L	100	85.5	116

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER				Ма	trix Spike (MS) Repor	t	
				Spike	SpikeRecovery(%)	Acceptable L	imits (%)
Laboratory sample ID	Sample ID	Method: Compound CA	AS Number	Concentration	MS	Low	High
ED041G: Sulfate (T	urbidimetric) as SO4 2- by DA (QCLot: 4876169)						
EM2302421-002	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric 148	808-79-8	100 mg/L	# Not	70.0	130
					Determined		
ED041G: Sulfate (T	urbidimetric) as SO4 2- by DA (QCLot: 4876326)						
EM2302493-002	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric 146	808-79-8	100 mg/L	96.3	70.0	130
ED045G: Chloride b	by Discrete Analyser (QCLot: 4876170)						
EM2302421-002	Anonymous	ED045G: Chloride 166	887-00-6	400 mg/L	101	70.0	142
ED045G: Chloride b	by Discrete Analyser (QCLot: 4876324)						
EM2302456-002	Anonymous	ED045G: Chloride 166	887-00-6	400 mg/L	# Not	70.0	142
					Determined		
EG020T: Total Meta	als by ICP-MS (QCLot: 4881401)						

Page : 7 of 7 Work Order : EM2302525

Client : VENTIA UTILITY SERVICES PTY LTD

Sub-Matrix: WATER				Ma	trix Spike (MS) Repor	t	
				Spike	SpikeRecovery(%)	Acceptable Li	imits (%)
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EG020T: Total Met	als by ICP-MS (QCLot: 4881401) - continued						
EM2301244-013	Anonymous	EG020A-T: Chromium	7440-47-3	1 mg/L	93.8	78.9	119
		EG020A-T: Zinc	7440-66-6	1 mg/L	90.9	74.0	120
EK055G: Ammonia	a as N by Discrete Analyser (QCLot: 4880973)						
EM2302221-007	Anonymous	EK055G: Ammonia as N	7664-41-7	1 mg/L	125	70.0	130
EK057G: Nitrite as	N by Discrete Analyser (QCLot: 4876168)						
EM2302488-001	Anonymous	EK057G: Nitrite as N	14797-65-0	0.5 mg/L	95.7	80.0	114
EK057G: Nitrite as	N by Discrete Analyser (QCLot: 4876325)						
EM2302486-007	Anonymous	EK057G: Nitrite as N	14797-65-0	0.5 mg/L	97.3	80.0	114
EK059G: Nitrite p	us Nitrate as N (NOx) by Discrete Analyser (QCLot: 488	30972)					
EM2302221-007	Anonymous	EK059G: Nitrite + Nitrate as N		0.5 mg/L	# Not	70.0	130
					Determined		
EK059G: Nitrite p	us Nitrate as N (NOx) by Discrete Analyser (QCLot: 488	30974)					
EM2302525-006	RINSATE	EK059G: Nitrite + Nitrate as N		0.5 mg/L	94.9	70.0	130
EK061G: Total Kje	Idahl Nitrogen By Discrete Analyser (QCLot: 4881365)						
EM2302525-002	ВН6	EK061G: Total Kjeldahl Nitrogen as N		5 mg/L	96.7	70.0	130
EP005: Total Orga	nic Carbon (TOC) (QCLot: 4878505)						
EM2302421-005	Anonymous	EP005: Total Organic Carbon		100 mg/L	102	76.6	125

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **EM2302525** Page : 1 of 9

Client : VENTIA UTILITY SERVICES PTY LTD Laboratory : Environmental Division Melbourne

 Contact
 : ROBERT CALLANDER
 Telephone
 : +6138549 9645

 Project
 : Creswick Landfill
 Date Samples Received
 : 15-Feb-2023

 Site
 : --- Issue Date
 : 22-Feb-2023

Sampler : --- No. of samples received : 8
Order number : Creswick Landfill No. of samples analysed : 8

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- Matrix Spike outliers exist please see following pages for full details.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers: Frequency of Quality Control Samples

Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Page : 2 of 9
Work Order : EM2302525

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill

Outliers: Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: WATER

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Matrix Spike (MS) Recoveries							
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA	EM2302421002	Anonymous	Sulfate as SO4 -	14808-79-8	Not		MS recovery not determined,
			Turbidimetric		Determined		background level greater than or
							equal to 4x spike level.
ED045G: Chloride by Discrete Analyser	EM2302456002	Anonymous	Chloride	16887-00-6	Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete A	EM2302221007	Anonymous	Nitrite + Nitrate as N		Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.

Outliers: Analysis Holding Time Compliance

Matrix: WATER

Mania. WAILK								
Method		Ex	traction / Preparation		Analysis			
Container / Client Sample ID(s)		Date extracted	Due for extraction	Days	Date analysed	Due for analysis	Days	
				overdue			overdue	
EA005P: pH by PC Titrator								
Clear Plastic Bottle - Natural								
BH3,	BH6,				20-Feb-2023	14-Feb-2023	6	
BH7,	BH8,							
BH10,	RINSATE,							
Leachate,	Wetland							

Outliers: Frequency of Quality Control Samples

Matrix: WATER

Quality Control Sample Type	Co	Count		e (%)	Quality Control Specification
Method	QC	Regular	Actual	Expected	
Matrix Spikes (MS)					
Chemical Oxygen Demand (COD) (Spectrophotometric)	0	20	0.00	5.00	NEPM 2013 B3 & ALS QC Standard

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: WATER Evaluation: ▼ = Holding time breach; ✓ = Within holding time.

Method	Sample Date	Extraction / Preparation					
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation

Page : 3 of 9
Work Order : EM2302525

Client : VENTIA UTILITY SERVICES PTY LTD

Matrix: WATER					Evaluation	n: 🗴 = Holding time	breach ; ✓ = With	in holding time
Method		Sample Date	E.	xtraction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA005P: pH by PC Titrator								
Clear Plastic Bottle - Natural (EA005-P)								
BH3,	BH6,	14-Feb-2023				20-Feb-2023	14-Feb-2023	JC .
BH7,	BH8,							
BH10,	RINSATE,							
Leachate,	Wetland							
EA010P: Conductivity by PC Titrator								
Clear Plastic Bottle - Natural (EA010-P)								
BH3,	BH6,	14-Feb-2023				20-Feb-2023	14-Mar-2023	✓
BH7,	BH8,							
BH10,	RINSATE,							
Leachate,	Wetland							
EA015: Total Dissolved Solids dried at 180 ± 5 °C	С							
Clear Plastic Bottle - Natural (EA015H)								
BH3,	BH6,	14-Feb-2023				19-Feb-2023	21-Feb-2023	✓
BH7,	BH8,							
BH10,	RINSATE,							
Leachate,	Wetland							
ED037P: Alkalinity by PC Titrator								
Clear Plastic Bottle - Natural (ED037-P)								
BH3,	BH6,	14-Feb-2023				20-Feb-2023	28-Feb-2023	✓
BH7,	BH8,							
BH10,	RINSATE,							
Leachate,	Wetland							
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA	A							
Clear Plastic Bottle - Natural (ED041G)						T		
BH3,	BH6,	14-Feb-2023				16-Feb-2023	14-Mar-2023	✓
BH7,	BH8,							
BH10,	Leachate,							
Wetland	Esashato,							
Clear Plastic Bottle - Natural (ED041G)								
RINSATE		14-Feb-2023				20-Feb-2023	14-Mar-2023	✓
ED045G: Chloride by Discrete Analyser								
Clear Plastic Bottle - Natural (ED045G)								
BH3,	BH6,	14-Feb-2023				16-Feb-2023	14-Mar-2023	✓
BH7,	BH8,							
BH10,	Leachate,							
Wetland								
Clear Plastic Bottle - Natural (ED045G)								
RINSATE		14-Feb-2023				20-Feb-2023	14-Mar-2023	✓

Page : 4 of 9
Work Order : EM2302525

Client : VENTIA UTILITY SERVICES PTY LTD

Matrix: WATER						Evaluation	: × = Holding time	breach ; ✓ = Withi	in holding time
Method		San	mple Date	Ext	raction / Preparation			Analysis	
Container / Client Sample ID(s)				Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
ED093F: Dissolved Major Cations									
Clear Plastic Bottle - Natural (ED093F)									
BH3,	BH6,	14-F	-Feb-2023				20-Feb-2023	21-Feb-2023	✓
BH7,	BH8,								
BH10,	RINSATE,								
Leachate,	Wetland								
EG020T: Total Metals by ICP-MS									
Clear Plastic Bottle - Nitric Acid; Unfiltered (EG020					40.4			40.4 0000	
BH3,	BH6,	14-F	-Feb-2023	20-Feb-2023	13-Aug-2023	✓	20-Feb-2023	13-Aug-2023	✓
BH7,	BH8,								
BH10,	RINSATE,								
Leachate,	Wetland								
EK055G: Ammonia as N by Discrete Analyser									
Clear Plastic Bottle - Sulfuric Acid (EK055G)									
BH3,	BH6,	14-F	-Feb-2023				22-Feb-2023	14-Mar-2023	✓
BH7,	BH8,								
BH10,	RINSATE,								
Leachate,	Wetland								
EK057G: Nitrite as N by Discrete Analyser									
Clear Plastic Bottle - Natural (EK057G)									
BH3,	BH6,	14-F	-Feb-2023				16-Feb-2023	16-Feb-2023	✓
BH7,	BH8,								
BH10,	RINSATE,								
Leachate,	Wetland								
EK059G: Nitrite plus Nitrate as N (NOx) by Discr	ete Analyser								
Clear Plastic Bottle - Sulfuric Acid (EK059G)	,								
BH3,	BH6,	14-F	-Feb-2023				21-Feb-2023	14-Mar-2023	1
BH7,	BH8,								_
BH10,	RINSATE,								
Leachate,	Wetland								
EK061G: Total Kjeldahl Nitrogen By Discrete Ana									
Clear Plastic Bottle - Sulfuric Acid (EK061G)	nysei								
BH3,	BH6,	14-F	-Feb-2023	22-Feb-2023	14-Mar-2023	1	22-Feb-2023	14-Mar-2023	1
BH7,	BH8,	'''		- 7		_			
BH10.	RINSATE,								
Leachate.	Wetland								
,	vveudilu								
EP005: Total Organic Carbon (TOC)		The second secon	ı						I
Amber TOC Vial - Sulfuric Acid (EP005)	DUE	44.5	-Feb-2023				17-Feb-2023	14-Mar-2023	
BH3,	BH6,	14-г	-1 60-7079				17-1-60-2023	14-IVIAI-2U23	✓
BH7,	BH8,								
BH10,	RINSATE,								
Leachate,	Wetland								

Page : 5 of 9
Work Order : EM2302525

Client : VENTIA UTILITY SERVICES PTY LTD

Matrix: WATER					Evaluation	ı: 🗴 = Holding time	breach ; ✓ = Withi	n holding time
Method		Sample Date	Ex	traction / Preparation		Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP026SP: Chemical Oxygen Deman	id (Spectrophotometric)							
Clear Plastic Bottle - Sulfuric Acid (E	EP026SP)							
BH3,	BH6,	14-Feb-2023				18-Feb-2023	14-Mar-2023	✓
BH7,	BH8,							
BH10,	RINSATE,							
Leachate,	Wetland							
EP045: Volatile Acids as CH3COOH								
Clear Plastic Bottle - Natural (EP045)								
BH3,	BH6,	14-Feb-2023				20-Feb-2023	28-Feb-2023	✓
BH7,	BH8,							
BH10,	RINSATE,							
Leachate,	Wetland							

Page 6 of 9 Work Order EM2302525

Client VENTIA UTILITY SERVICES PTY LTD

Creswick Landfill Project

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: WATER				⊨vaiuatio		THE OF TREQUENCY	not within specification; ✓ = Quality Control frequency within specification
Quality Control Sample Type	14.4		ount		Rate (%)	F t ti	Quality Control Specification
Analytical Methods	Method	QC	Regular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Alkalinity by Auto Titrator	ED037-P	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Ammonia as N by Discrete analyser	EK055G	2	15	13.33	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Chemical Oxygen Demand (COD) (Spectrophotometric)	EP026SP	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G	4	28	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Conductivity by Auto Titrator	EA010-P	4	40	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Major Cations - Dissolved	ED093F	2	19	10.53	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	3	17	17.65	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	4	28	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard
pH by Auto Titrator	EA005-P	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	3	28	10.71	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Dissolved Solids (High Level)	EA015H	4	31	12.90	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	2	10	20.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Organic Carbon	EP005	2	10	20.00	10.00	√	NEPM 2013 B3 & ALS QC Standard
Volatile Acids as CH3COOH	EP045	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Alkalinity by Auto Titrator	ED037-P	1	20	5.00	5.00	√	NEPM 2013 B3 & ALS QC Standard
Ammonia as N by Discrete analyser	EK055G	1	15	6.67	5.00	√	NEPM 2013 B3 & ALS QC Standard
Chemical Oxygen Demand (COD) (Spectrophotometric)	EP026SP	1	20	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G	4	28	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Conductivity by Auto Titrator	EA010-P	2	40	5.00	5.00	√	NEPM 2013 B3 & ALS QC Standard
Major Cations - Dissolved	ED093F	1	19	5.26	5.00	1	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	17	11.76	5.00	√	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	2	28	7.14	5.00	<u> </u>	NEPM 2013 B3 & ALS QC Standard
pH by Auto Titrator	EA005-P	2	20	10.00	10.00	√	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	4	28	14.29	10.00	<u>√</u>	NEPM 2013 B3 & ALS QC Standard
Total Dissolved Solids (High Level)	EA015H	3	31	9.68	7.50	<u> </u>	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	10	10.00	5.00	<u> </u>	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	1	20	5.00	5.00	<u> </u>	NEPM 2013 B3 & ALS QC Standard
Total Organic Carbon	EP005	1	10	10.00	5.00		NEPM 2013 B3 & ALS QC Standard
Volatile Acids as CH3COOH	EP045	1	20	5.00	5.00	<u> </u>	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)						_	
Ammonia as N by Discrete analyser	EK055G	1	15	6.67	5.00	√	NEPM 2013 B3 & ALS QC Standard
Chemical Oxygen Demand (COD) (Spectrophotometric)	EP026SP	1	20	5.00	5.00	<u> </u>	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G	2	28	7.14	5.00	<u> </u>	NEPM 2013 B3 & ALS QC Standard
Conductivity by Auto Titrator	EA010-P	2	40	5.00	5.00		NEPM 2013 B3 & ALS QC Standard
• •							<u> </u>

Page : 7 of 9
Work Order : EM2302525

Client : VENTIA UTILITY SERVICES PTY LTD

Matrix: WATER				Evaluatio	n: × = Quality Co	ntrol frequency	not within specification; ✓ = Quality Control frequency within specification
Quality Control Sample Type		С	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
Method Blanks (MB) - Continued							
Major Cations - Dissolved	ED093F	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	17	11.76	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	2	28	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	2	28	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Dissolved Solids (High Level)	EA015H	2	31	6.45	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	10	10.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Organic Carbon	EP005	1	10	10.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Volatile Acids as CH3COOH	EP045	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
Ammonia as N by Discrete analyser	EK055G	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Chemical Oxygen Demand (COD) (Spectrophotometric)	EP026SP	0	20	0.00	5.00	3c	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G	2	28	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	17	11.76	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	2	28	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	2	28	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	10	10.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Organic Carbon	EP005	1	10	10.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Page : 8 of 9
Work Order : EM2302525

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
pH by Auto Titrator	EA005-P	WATER	In house: Referenced to APHA 4500 H+ B. This procedure determines pH of water samples by automated ISE. This method is compliant with NEPM Schedule B(3)
Conductivity by Auto Titrator	EA010-P	WATER	In house: Referenced to APHA 2510 B. This procedure determines conductivity by automated ISE. This method is compliant with NEPM Schedule B(3)
Total Dissolved Solids (High Level)	EA015H	WATER	In house: Referenced to APHA 2540C. A gravimetric procedure that determines the amount of `filterable` residue in an aqueous sample. A well-mixed sample is filtered through a glass fibre filter (1.2um). The filtrate is evaporated to dryness and dried to constant weight at 180+/-5C. This method is compliant with NEPM Schedule B(3)
Alkalinity by Auto Titrator	ED037-P	WATER	In house: Referenced to APHA 2320 B This procedure determines alkalinity by automated measurement (e.g. PC Titrate) on a settled supernatant aliquot of the sample using pH 4.5 for indicating the total alkalinity end-point. This method is compliant with NEPM Schedule B(3)
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	WATER	In house: Referenced to APHA 4500-SO4. Dissolved sulfate is determined in a 0.45um filtered sample. Sulfate ions are converted to a barium sulfate suspension in an acetic acid medium with barium chloride. Light absorbance of the BaSO4 suspension is measured by a photometer and the SO4-2 concentration is determined by comparison of the reading with a standard curve. This method is compliant with NEPM Schedule B(3)
Chloride by Discrete Analyser	ED045G	WATER	In house: Referenced to APHA 4500 CI - G.The thiocyanate ion is liberated from mercuric thiocyanate through sequestration of mercury by the chloride ion to form non-ionised mercuric chloride. In the presence of ferric ions the liberated thiocynate forms highly-coloured ferric thiocynate which is measured at 480 nm.
Major Cations - Dissolved	ED093F	WATER	In house: Referenced to APHA 3120 and 3125; USEPA SW 846 - 6010 and 6020; Cations are determined by either ICP-AES or ICP-MS techniques. This method is compliant with NEPM Schedule B(3) Sodium Adsorption Ratio is calculated from Ca, Mg and Na which determined by ALS in house method QWI-EN/ED093F. This method is compliant with NEPM Schedule B(3) Hardness parameters are calculated based on APHA 2340 B. This method is compliant with NEPM Schedule B(3)
Total Metals by ICP-MS - Suite A	EG020A-T	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Ammonia as N by Discrete analyser	EK055G	WATER	In house: Referenced to APHA 4500-NH3 G Ammonia is determined by direct colorimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)
Nitrite as N by Discrete Analyser	EK057G	WATER	In house: Referenced to APHA 4500-NO2- B. Nitrite is determined by direct colourimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)
Nitrate as N by Discrete Analyser	EK058G	WATER	In house: Referenced to APHA 4500-NO3- F. Nitrate is reduced to nitrite by way of a chemical reduction followed by quantification by Discrete Analyser. Nitrite is determined seperately by direct colourimetry and result for Nitrate calculated as the difference between the two results. This method is compliant with NEPM Schedule B(3)
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	WATER	In house: Referenced to APHA 4500-NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by Chemical Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)

Page : 9 of 9
Work Order : EM2302525

Client : VENTIA UTILITY SERVICES PTY LTD

Analytical Methods	Method	Matrix	Method Descriptions
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	WATER	In house: Referenced to APHA 4500-Norg D (In house). An aliquot of sample is digested using a high temperature Kjeldahl digestion to convert nitrogenous compounds to ammonia. Ammonia is determined colorimetrically by discrete analyser. This method is compliant with NEPM Schedule B(3)
Ionic Balance by PCT DA and Turbi SO4 DA	* EN055 - PG	WATER	In house: Referenced to APHA 1030F. This method is compliant with NEPM Schedule B(3)
Field Tests (performed by external sampler)	* EN67-B02	WATER	Field determinations as per methods described in APHA or supplied by client. The analysis is performed in the field by non-ALS samplers. ALS NATA accreditation does not apply for this service.
Total Organic Carbon	EP005	WATER	In house: Referenced to APHA 5310 B, The automated TOC analyzer determines Total and Inorganic Carbon by IR cell. TOC is calculated as the difference. This method is compliant with NEPM Schedule B(3)
Chemical Oxygen Demand (COD) (Spectrophotometric)	EP026SP	WATER	In house: Referenced to APHA 5220 D. Samples are digested with a known excess of an acidic potassium dichromate solution using silver sulfate as a catalyst. The chromium is reduced from the Cr (VI) oxidation state to the Cr (III) state by the oxygen present in the organic material. Both of these chromium species are coloured and absorb in the visible region of (400nm & 600nm) the spectrum. The oxidisable organic matter can be calculated in terms of oxygen equivalents.
Volatile Acids as CH3COOH	EP045	WATER	In house: Referenced to APHA 5560 C. Steam distillable acids are captured in caustic solution and determined titremetrically. This method is compliant with NEPM Schedule B(3)
Preparation Methods	Method	Matrix	Method Descriptions
TKN/TP Digestion	EK061/EK067	WATER	In house: Referenced to APHA 4500 Norg - D; APHA 4500 P - H. This method is compliant with NEPM Schedule B(3)
Digestion for Total Recoverable Metals	EN25	WATER	In house: Referenced to USEPA SW846-3005. Method 3005 is a Nitric/Hydrochloric acid digestion procedure used to prepare surface and ground water samples for analysis by ICPAES or ICPMS. This method is compliant with NEPM Schedule B(3)

BURWOOD VIC 3125

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order : EM2302525

Client : VENTIA UTILITY SERVICES PTY LTD Laboratory : Environmental Division Melbourne

Contact : ROBERT CALLANDER Contact : Peter Ravlic

Address : 25-37 HUNTINGDALE ROAD Address : 4 Westall Rd Springvale VIC Australia

3171

 Telephone
 : --- Telephone
 : +6138549 9645

 Facsimile
 : --- Facsimile
 : +61-3-8549 9626

Project : Creswick Landfill Page : 1 of 3

 Order number
 : --- Quote number
 : EM2016THISER0010 (ME/793/19)

 C-O-C number
 : --- QC Level
 : NEPM 2013 B3 & ALS QC Standard

Site : ----

Sampler :

Dates

Date

Delivery Details

 Mode of Delivery
 : Carrier
 Security Seal
 : Not Available

 No. of coolers/boxes
 : 1
 Temperature
 : 2.8°C - Ice present

Receipt Detail : No. of samples received / analysed : 8 / 8

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- Please direct any queries related to sample condition / numbering / breakages to Client Services.
- Sample Disposal Aqueous (3 weeks), Solid (2 months) from receipt of samples.
- Analytical work for this work order will be conducted at ALS Springvale.
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The laboratory will process these samples unless instructions are received from you indicating you do not wish to proceed. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.

: 15-Feb-2023 Issue Date

Page

2 of 3 EM2302525 Amendment 0 Work Order

Client : VENTIA UTILITY SERVICES PTY LTD

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

EM2302525-001	process necessa tasks. Packages as the determin- tasks, that are included in the sampling default 00:00 on	ry for the execut may contain ad ation of moisture uded in the package. time is provided, the date of samplin sampling date wi	Il be assumed by the ckets without a time	WATER - EA005P pH (Auto Titrator)	WATER - EA010P Electrical Conductivity (Auto Titrator)	WATER - EK055G Ammonia as N By Discrete Analyser	WATER - EK058G Nitrate as N by Discrete Analyser	WATER - EK061G Total Kjeldahl Nitrogen as N (TKN) By Discrete	WATER - EP005 Total Organic Carbon (TOC)	WATER - EP045 Volatile Acids as CH3COOH
EM2302525-002	ID	time		¥ ₽	₩ W W W W	A A	ĕ ₹	A ₹	WA Tot	W A
EM2302525-003	EM2302525-001	14-Feb-2023 12:06	BH3	✓	✓	✓	✓	✓	✓	✓
EM2302525-004	EM2302525-002	14-Feb-2023 09:15	BH6	✓	✓	✓	✓	✓	✓	✓
EM2302525-005	EM2302525-003	14-Feb-2023 13:51	BH7	✓	✓	1	✓	✓	✓	✓
EM2302525-006 14-Feb-2023 10:00 RINSATE	EM2302525-004	14-Feb-2023 11:06	BH8	✓	✓	✓	✓	✓	✓	✓
EM2302525-008	EM2302525-005	14-Feb-2023 10:24	BH10	✓	✓	✓	✓	✓	✓	✓
Matrix: WATER	EM2302525-006	14-Feb-2023 00:00	RINSATE	✓	✓	✓	✓	✓	✓	✓
Matrix: WATER Laboratory sample Sampling date / Sample ID Helef Lest Cooperation Helef L	EM2302525-007	14-Feb-2023 14:15	Leachate	✓	✓	1	✓	✓	✓	✓
EM2302525-001 14-Feb-2023 12:06 BH3 ✓	EM2302525-008	14-Feb-2023 12:40	Wetland	1	✓	1	✓	✓	✓	✓
EM2302525-001 14-Feb-2023 12:06 BH3 ✓	Laboratory sample		Sample ID	VATER - EA015H otal Dissolved Solids - Standard Level	VATER - EG020T otal Metals by ICP/MS (including digestion)	VATER - EN67-B02 ield Tests (performed by external sampler)	VATER - EP026SP Chemical Oxygen Demand (COD)	- NT-01 & 02 Na, K, Cl, SO4,		
EM2302525-002 14-Feb-2023 09:15 BH6 ✓			BH3							
EM2302525-003 14-Feb-2023 13:51 BH7 ✓			-							
EM2302525-004 14-Feb-2023 11:06 BH8 ✓										
EM2302525-005 14-Feb-2023 10:24 BH10 ✓										
EM2302525-006 14-Feb-2023 00:00 RINSATE ✓ ✓ ✓ ✓ EM2302525-007 14-Feb-2023 14:15 Leachate ✓ ✓ ✓ ✓										
EM2302525-007 14-Feb-2023 14:15 Leachate										
						1				
LINESOCCIO 14 1 GD 2020 12.40 VVCtidild	EM2302525-008	14-Feb-2023 12:40	Wetland	✓	✓	✓	✓	✓		

Proactive Holding Time Report

The following table summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory.

Matrix: WATER

Evaluation: **x** = Holding time breach : ✓ = Within holding time

Walth. WATER													
Method		Due for	Due for	Samples Ro	eceived	Instructions Received							
Client Sample ID(s)	Container	extraction	analysis	Date	Evaluation	Date	Evaluation						
EA005-P: pH by Aut	o Titrator												

: 15-Feb-2023 Issue Date

Page

3 of 3 EM2302525 Amendment 0 Work Order

Client : VENTIA UTILITY SERVICES PTY LTD

BH10	Clear Plastic Bottle - Natural	 14-Feb-2023	15-Feb-2023	×	
ВН3	Clear Plastic Bottle - Natural	 14-Feb-2023	15-Feb-2023	x	
BH6	Clear Plastic Bottle - Natural	 14-Feb-2023	15-Feb-2023	×	
BH7	Clear Plastic Bottle - Natural	 14-Feb-2023	15-Feb-2023	×	
BH8	Clear Plastic Bottle - Natural	 14-Feb-2023	15-Feb-2023	×	
Leachate	Clear Plastic Bottle - Natural	 14-Feb-2023	15-Feb-2023	æ	
RINSATE	Clear Plastic Bottle - Natural	 14-Feb-2023	15-Feb-2023	×	
Wetland	Clear Plastic Bottle - Natural	 14-Feb-2023	15-Feb-2023	x	

Requested Deliverables

ACCOUNTS PAYABLE - VIC ONLY

- Purchase Order Request Letter (PO_Request)

- A4 - AU Tax Invoice (INV)	Email	Nicole.Robins@ventia.com
LUCY EDWARDS		
 *AU Certificate of Analysis - NATA (COA) 	Email	Lucy.Edwards@ventia.com
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	Lucy.Edwards@ventia.com
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	Lucy.Edwards@ventia.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	Lucy.Edwards@ventia.com
- Chain of Custody (CoC) (COC)	Email	Lucy.Edwards@ventia.com
- EDI Format - ENMRG (ENMRG)	Email	Lucy.Edwards@ventia.com
- EDI Format - ESDAT (ESDAT)	Email	Lucy.Edwards@ventia.com
Ping Yao		
 *AU Certificate of Analysis - NATA (COA) 	Email	ping.yao@ventia.com
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	ping.yao@ventia.com
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	ping.yao@ventia.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	ping.yao@ventia.com
- Chain of Custody (CoC) (COC)	Email	ping.yao@ventia.com
- EDI Format - ENMRG (ENMRG)	Email	ping.yao@ventia.com
- EDI Format - ESDAT (ESDAT)	Email	ping.yao@ventia.com
ROBERT CALLANDER		
 *AU Certificate of Analysis - NATA (COA) 	Email	robert.callander@ventia.com
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	robert.callander@ventia.com
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	robert.callander@ventia.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	robert.callander@ventia.com
- Chain of Custody (CoC) (COC)	Email	robert.callander@ventia.com
- EDI Format - ENMRG (ENMRG)	Email	robert.callander@ventia.com
- EDI Format - ESDAT (ESDAT)	Email	robert.callander@ventia.com

Email

robert.callander@ventia.com

	Client:			Ventia		,		Job	Ref:		*	Cresv	vick Land	dfill 1 of 3	73/1	9
Co	ontact:		Rob	ert Callan	der				TEST	SREC	UIRE	DAS	PER Q	UOTE ME/41	2/16	-(
Ad	dress:	25-37	7 Huntingd	ale Road,	Burwood	, 3125										
F	Phone:	0427529051		Fax:												
	Email:	ping.yao@ver lucy.edwards@ robert.callande	ventia.con				7							*		
P/	O No.:				o.: ME/412/16											
T/A	Time:	382			200			,			i k					
Sample ID			ple Description No of Containers				Matrix	표	EC	00	TEMP	ORP	SWL			
3H1	Groun	dwater Bore	Ardense Badasis da bi													
3H2	Groun	dwater Bore												Environmental	Divisio	n
3H3	Groun	dwater Bore		4	14/2/23	1206	W	6.52	2481	0.16	17.20	-17.2	0.87	Melbourne Work Order Reference		
3H4	Groun	dwater Bore				20			- (0.	EM2302		5
3H6	Groun	dwater Bore		4	14/2/23	915	u	5.05	632	0.28	14.9	220.1	11.65		MVC= ESI	111
3H7	Groun	dwater Bore		4	14/2/23		1	26.54		0.16	15.34	-8.5	2.69		735	
3H8	Groun	dwater Bore		4	14/2/23	1106	U	6.68	928	0.13	16.62	-47.7	3.02		113	
3H9	Groun	dwater Bore			141010			- 00			1 47			Telephone : + 61-3-854	9 9600	11.1
														, and the second	1	
I	Sp nstructi		email Invoic	es to Nico	le.robins@	ventia.c	<u>om</u>	2						,		
Reli	nquishe		ompany:	D	ate:		Time:		Rec	eived By	:	Co	mpany:	Date:	T	ime
A Ca	llander	Ventia		14/2	1/23	170	00		H	cuth		ALS		50.2	23 17	.39
ver-ride pri	icing agreer	ng of sample data after nents, OHS requirements and Safety consider	nts and our terms	s and condition	ıs.				LAB	JSE ONLY	S	Sample con		Samples received une Samples adequately p thin recommended holding	reserved	[Yes

С	lient:			Ve	ntia				Job	Ref:			Cres	wick La	ndfill 2	of 3		
	tact:			Robert						TEST	SREC	UIRE	DAS	PER (TOUS	E MÉ/	112/1	6
Add	ress:		25-37 Hunti	ngdale l	Road	, Burwood	I, 3125											
Ph	one:	0427	529051	Fa	ax:													
E	mail:	lucy.e	yao@ventia.con edwards@ventia	a.com														
P/O	No.:	rober	t.callander@ver	Quote No.:				4										
T/A 1	Time:																	
Sample ID	ID Sample Description				o of tainer s	Date Sample d	Time sample d		H	EC	00	TEMP	ORP	SWL				
BH10	Grou	ındwat	er bore	4		14/2/23	1024	W	5-61	795	0.25	16.22	114.7	2.44				
BH13	Grou	Groundwater bore																
LB1	Leac	hate b	ore															-
LB2	Leac	hate b	ore															
LB3	Leac	hate b	ore						ONLY	NO	SAM	PLE -	SWL					
BLIND	Blind	dup (analysed by ALS	5)														
RINSAT E	Rins	ate bla	nk	4		1412/23		W										
Ins	Sp.	ecial ons:	Please email Ir	nvoices t	o <u>Nic</u>	ole.robins(@ventia.d	com										
Reline	quishe	d By:	Company	r :	D	ate:		Time:		Rec	eived By	:	Co	mpany:		Date	e:	Time:
ACalle	ander		Ventia		14/	2/23	170	0										
not over-ride As an Occupa	pricing ag ational He ived be ur	greements alth and S ndamage	nple data after prior co s, OHS requirements ar Safety consideration, it d and prior advice give	is a require	and co	nditions. Ecowise Enviro	nmental (Vic				LAB USE	ONLY	San		Sample:	Samples r s adequately mended hol appropriate t	preserv	s: [Yes/No]

Date:

Samples received undamaged [Yes/No]

Samples adequately preserved [Yes/No]

Samples within recommended holding times: [Yes/No]

Samples transported at appropriate temperature [Yes/No]

Time:

Creswick Landfill 3 of 3

TESTS REQUIRED AS PER QUOTE ME/412/16

Company:

Sample conditions:

CHAIN OF CUSTODY

Job Ref:

Client:

Contact:

Address:

Phone: Email: 0427529051

ping.yao@ventia.com lucy.edwards@ventia.com robert_callander@ventia.com

			0111101100111				-4				I .	1	4		(
P/O	No.:		Quote No.:												
T/A T	ime:													9	
Sample ID		Sample Description	No of Containers	Date Sampled	Time sampled		H	EC	00	TEMP	ORP	SWL		PC	
U/S BH3	Cree	k Sample						14.							
@ BH3	Cree	k Sample													
D/S BH3	Cree	k Sample													
Leachate	Surfa	ace water sample	i4	14/2/23	1415	W	7.32	1158	12.09	23.13	-28.9	_			
Wetland	Surfa	ace water sample	4	14/2/23	1240	W	8	1607		21.72		_			
Dredge	Surfa	ace water sample		. 1170			7.44	1001	- 1-		14.1				
						-									

Time:

1700

Received By:

LAB USE ONLY

Ventia

Robert Callander

25-37 Huntingdale Road, Burwood, 3125

Fax:

Please email Invoices to Nicole.robins@ventia.com

This form is for recording of sample data after prior consultation with an analyst regarding sampling procedures and does not

As an Occupational Health and Safety consideration, it is a requirement of Ecowise Environmental (Victoria), that all samples

Date:

14/2/23

Company:

Ventia

over-ride pricing agreements, OHS requirements and our terms and conditions.

received be undamaged and prior advice given in writing of any potential health risks.

A Callander

Special Instructions: Relinquished By:

CERTIFICATE OF ANALYSIS

Work Order : EM2302773

Client : VENTIA UTILITY SERVICES PTY LTD

Contact : ROBERT CALLANDER

Address : 25-37 HUNTINGDALE ROAD

BURWOOD VIC 3125

Telephone : ----

Project : Creswick Landfill 3 of 3
Order number : Creswick Landfill 3 of 3

C-O-C number : ---Sampler : ---Site : ----

Quote number : ME/793/19

No. of samples received : 1

No. of samples analysed : 1

Page : 1 of 4

Laboratory : Environmental Division Melbourne

Contact : Peter Ravlic

Address : 4 Westall Rd Springvale VIC Australia 3171

Telephone : +6138549 9645

Date Samples Received : 17-Feb-2023 12:55

Date Analysis Commenced : 17-Feb-2023

Issue Date 24-Feb-2023 19:23

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Dilani Fernando Laboratory Coordinator Melbourne Inorganics, Springvale, VIC
Jarwis Nheu Non-Metals Team Leader Melbourne Inorganics, Springvale, VIC

Tom Maloney Laboratory Manager Melbourne External Subcontracting, Springvale, VIC

Page : 2 of 4 Work Order : EM2302773

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill 3 of 3

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

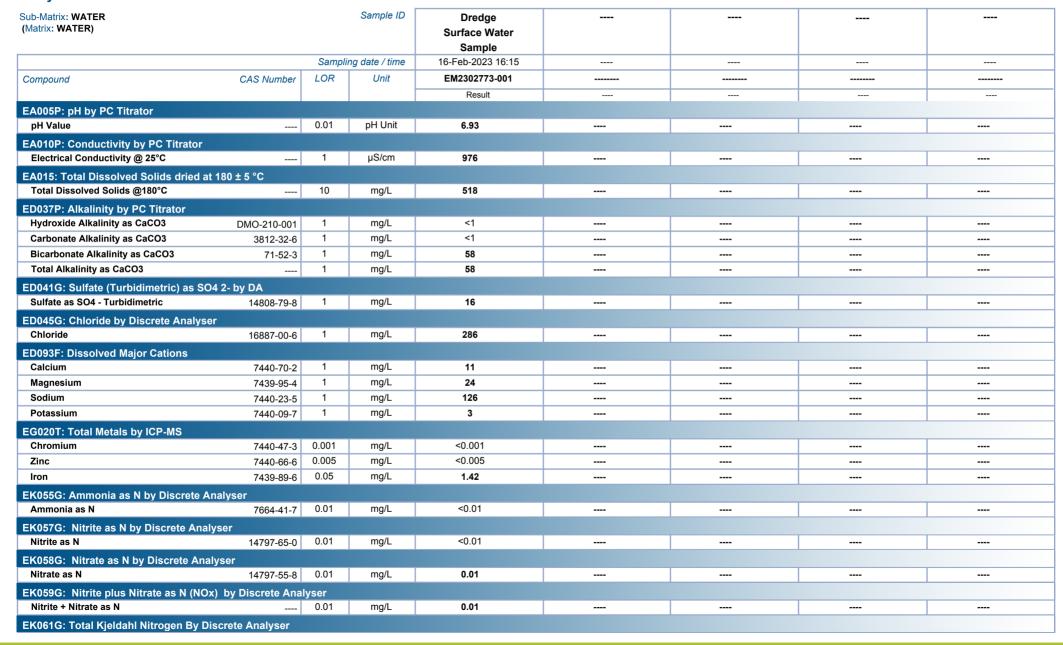
When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- Field Readings
 - sample ID:Dredge, SWL = -m, EC = 914uS/cm, pH =6.85 , Temp = 22.0°C, DO = 7.53mg/L, ORP =63.6mV
- As per QWI EN55-3 Data Interpreting Procedures, Ionic balances are typically calculated using Major Anions Chloride, Alkalinity and Sulfate; and Major Cations Calcium, Magnesium, Potassium and Sodium.
 Where applicable and dependent upon sample matrix, the Ionic Balance may also include the additional contribution of Ammonia, Dissolved Metals by ICPMS and H+ to the Cations and Nitrate, SiO2 and Fluoride to the Anions.
- Ionic Balance out of acceptable limits for sample #1 due to analytes not quantified in this report.
- lonic balances were calculated using: major anions chloride, alkalinity and sulfate; and major cations calcium, magnesium, potassium and sodium.
- ED045G: The presence of Thiocyanate, Thiosulfate and Sulfite can positively contribute to the chloride result, thereby may bias results higher than expected. Results should be scrutinised accordingly.
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

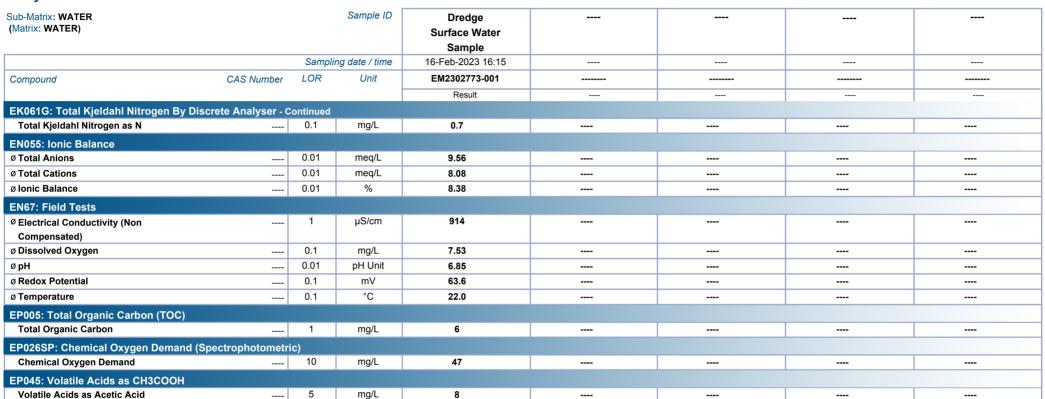


Page : 3 of 4 Work Order : EM2302773

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill 3 of 3

Analytical Results



Page : 4 of 4 Work Order : EM2302773

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill 3 of 3

Analytical Results

QUALITY CONTROL REPORT

Work Order : **EM2302773**

: VENTIA UTILITY SERVICES PTY LTD

Contact : ROBERT CALLANDER

Address : 25-37 HUNTINGDALE ROAD

BURWOOD VIC 3125

Telephone : ----

Client

Project : Creswick Landfill 3 of 3
Order number : Creswick Landfill 3 of 3

C-O-C number : ---Sampler : ---Site : ----

Quote number : ME/793/19

No. of samples received : 1
No. of samples analysed : 1

Page : 1 of 5

Laboratory : Environmental Division Melbourne

Contact : Peter Ravlic

Address : 4 Westall Rd Springvale VIC Australia 3171

Telephone : +6138549 9645

Date Samples Received : 17-Feb-2023

Date Analysis Commenced : 17-Feb-2023

Issue Date : 24-Feb-2023

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Dilani Fernando Laboratory Coordinator Melbourne Inorganics, Springvale, VIC
Jarwis Nheu Non-Metals Team Leader Melbourne Inorganics, Springvale, VIC

Tom Maloney Laboratory Manager Melbourne External Subcontracting, Springvale, VIC

Page : 2 of 5
Work Order : EM2302773

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill 3 of 3

ALS

Laboratorii Dunlinata (DUD) Donort

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: WATER						Laboratory L	Duplicate (DUP) Report	UP) Report				
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)			
EA005P: pH by PC T	itrator (QC Lot: 4884669)											
EM2302765-002	Anonymous	EA005-P: pH Value		0.01	pH Unit	7.03	7.15	1.7	0% - 20%			
EM2302782-008	Anonymous	EA005-P: pH Value		0.01	pH Unit	5.84	5.64	3.5	0% - 20%			
EA010P: Conductivi	ty by PC Titrator (QC Lot: 48	384670)										
EM2302765-002	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	411	429	4.3	0% - 20%			
EM2302782-008	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	2	1	0.0	No Limit			
EA015: Total Dissol	ved Solids dried at 180 ± 5 °C	(QC Lot: 4889801)										
EM2302719-001	Anonymous	EA015H: Total Dissolved Solids @180°C		10	mg/L	613	605	1.3	0% - 20%			
EM2302771-002	Anonymous	EA015H: Total Dissolved Solids @180°C		10	mg/L	1250	1180	5.3	0% - 20%			
EM2302778-005	Anonymous	EA015H: Total Dissolved Solids @180°C		10	mg/L	8830	9090	3.0	0% - 20%			
EM2302879-001	Anonymous	EA015H: Total Dissolved Solids @180°C		10	mg/L	7180	7610	5.9	0% - 20%			
ED037P: Alkalinity b	y PC Titrator (QC Lot: 48846	668)										
EM2302765-002	Anonymous	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.0	No Limit			
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.0	No Limit			
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	120	121	0.0	0% - 20%			
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	120	121	0.0	0% - 20%			
EM2302782-008	Anonymous	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.0	No Limit			
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.0	No Limit			
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	<1	<1	0.0	No Limit			
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	<1	<1	0.0	No Limit			
ED041G: Sulfate (Tu	rbidimetric) as SO4 2- by DA	(QC Lot: 4880707)										
EM2302787-004	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	273	267	2.3	0% - 20%			
EM2302668-001	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	2470	2420	2.1	0% - 20%			
ED045G: Chloride b	y Discrete Analyser (QC Lot	: 4880708)										
	<u> </u>	<u> </u>										

Page : 3 of 5
Work Order : EM2302773

Client : VENTIA UTILITY SERVICES PTY LTD

Sub-Matrix: WATER						Laboratory l	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
ED045G: Chloride b	y Discrete Analyser (QC Lot: 4880708) - continued							
EM2302668-001	Anonymous	ED045G: Chloride	16887-00-6	1	mg/L	3690	3650	1.1	0% - 20%
ED093F: Dissolved	Major Cations (QC Lo	t: 4884270)							
EM2302775-001	Anonymous	ED093F: Calcium	7440-70-2	1	mg/L	1	1	0.0	No Limit
	-	ED093F: Magnesium	7439-95-4	1	mg/L	14	14	0.0	0% - 50%
		ED093F: Sodium	7440-23-5	1	mg/L	103	104	0.0	0% - 20%
		ED093F: Potassium	7440-09-7	1	mg/L	1	1	0.0	No Limit
EM2302782-008	Anonymous	ED093F: Calcium	7440-70-2	1	mg/L	<1	<1	0.0	No Limit
		ED093F: Magnesium	7439-95-4	1	mg/L	<1	<1	0.0	No Limit
		ED093F: Sodium	7440-23-5	1	mg/L	<1	<1	0.0	No Limit
		ED093F: Potassium	7440-09-7	1	mg/L	<1	<1	0.0	No Limit
EG020T: Total Meta	Is by ICP-MS (QC Lot:	: 4887233)							
EM2301023-015	Anonymous	EG020A-T: Chromium	7440-47-3	0.001	mg/L	0.002	<0.001	0.0	No Limit
		EG020A-T: Zinc	7440-66-6	0.005	mg/L	0.757	0.749	1.0	0% - 20%
		EG020A-T: Iron	7439-89-6	0.05	mg/L	31.1	31.8	2.3	0% - 20%
EM2302747-001	Anonymous	EG020A-T: Chromium	7440-47-3	0.001	mg/L	0.010	0.008	26.6	No Limit
		EG020A-T: Zinc	7440-66-6	0.005	mg/L	0.026	0.022	15.0	No Limit
		EG020A-T: Iron	7439-89-6	0.05	mg/L	3.62	3.64	0.7	0% - 20%
EK055G: Ammonia	as N by Discrete Analy	yser (QC Lot: 4884420)							
EM2302781-001	Anonymous	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	<0.01	<0.01	0.0	No Limit
EM2302688-001	Anonymous	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	5.78	5.73	0.9	0% - 20%
EK057G: Nitrite as	N by Discrete Analyse	r (QC Lot: 4880706)							
EM2302787-003	Anonymous	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	0.11	0.11	0.0	0% - 50%
EM2302668-001	Anonymous	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	0.01	0.01	0.0	No Limit
EK059G: Nitrite plu	s Nitrate as N (NOx) b	by Discrete Analyser (QC Lot: 4884421)							
EM2302756-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	5.46	5.54	1.5	0% - 20%
EM2302688-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	0.10	0.10	0.0	No Limit
EK061G: Total Kjeld	dahl Nitrogen By Discr	ete Analyser (QC Lot: 4884194)							
EM2302747-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	0.7	0.7	0.0	No Limit
EM2302867-004	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	0.6	0.6	0.0	No Limit
EP005: Total Organ	ic Carbon (TOC) (QC I								
EM2302767-001	Anonymous	EP005: Total Organic Carbon		1	mg/L	<1	2	0.0	No Limit
EM2302906-001	Anonymous	EP005: Total Organic Carbon		1	mg/L	2	2	0.0	No Limit
EP026SP: Chemical	-	ectrophotometric) (QC Lot: 4890950)							
EM2302694-001	Anonymous	EP026SP: Chemical Oxygen Demand		10	mg/L	88	86	2.3	No Limit
EM2302703-004	Anonymous	EP026SP: Chemical Oxygen Demand		10	mg/L	49	45	8.5	No Limit
EP045: Volatile Acid	ds as CH3COOH (QC I								
EM2302623-001	Anonymous	EP045: Volatile Acids as Acetic Acid		5	mg/L	13	13	0.0	No Limit
		1 111 1111 11				1			

Page : 4 of 5 Work Order : EM2302773

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill 3 of 3

Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER			Method Blank (MB)	Laboratory Control Spike (LCS) Report					
			Report	Spike	Spike Recovery (%)	Acceptable	e Limits (%)		
Method: Compound CAS Num	ber LOR	Unit	Result	Concentration	LCS	Low	High		
EA005P: pH by PC Titrator (QCLot: 4884669)									
EA005-P: pH Value		pH Unit		7 pH Unit	100	98.8	101		
				9 pH Unit	100	99.3	101		
EA010P: Conductivity by PC Titrator (QCLot: 4884670)									
	1	μS/cm	<1	1412 μS/cm	97.8	85.0	119		
EA015: Total Dissolved Solids dried at 180 ± 5 °C (QCLot: 4889801)									
	10	mg/L	<10	2000 mg/L	102	91.0	110		
J. O. Total. Place 1900 College (B. 1900			<10	2440 mg/L	105	81.6	118		
			<10	293 mg/L	104	91.0	110		
ED037P: Alkalinity by PC Titrator (QCLot: 4884668)									
		mg/L		200 mg/L	98.5	85.0	116		
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA (QCLot: 4880707)									
ED041G: Sulfate as SO4 - Turbidimetric 14808-79	-8 1	mg/L	<1	25 mg/L	108	90.0	110		
200410. Guilate as GO4 - Turbiumetric		mg/L	<1	500 mg/L	110	90.0	110		
ED04EC: Chlorida by Diagreta Analysau (OCI at: 4000700)			·	000 mg/2	1.0	00.0			
ED045G: Chloride by Discrete Analyser (QCLot: 4880708) =D045G: Chloride 16887-00	-6 1	mg/L	<1	10 mg/L	105	90.0	110		
ED045G: Chloride 16887-00	-0	IIIg/L	<1	1000 mg/L	107	90.0	110		
			-1	1000 1119/2	101	00.0	110		
ED093F: Dissolved Major Cations (QCLot: 4884270) FD093F: Calcium 7440-70	2 1	ma/l	<1	50 ma/l	104	90.0	120		
		mg/L	<1	50 mg/L	104 101	80.0	120		
		mg/L	·	50 mg/L	-	80.0	120		
ED093F: Sodium 7440-23		mg/L	<1	50 mg/L	103	80.0			
ED093F: Potassium 7440-09	-7 1	mg/L	<1	50 mg/L	98.8	80.0	120		
EG020T: Total Metals by ICP-MS (QCLot: 4887233)									
EG020A-T: Chromium 7440-47		mg/L	<0.001	0.1 mg/L	98.5	86.9	112		
EG020A-T: Zinc 7440-66		mg/L	<0.005	0.1 mg/L	107	86.7	117		
EG020A-T: Iron 7439-89	-6 0.05	mg/L	<0.05	0.5 mg/L	99.8	92.8	118		
EK055G: Ammonia as N by Discrete Analyser (QCLot: 4884420)									
EK055G: Ammonia as N 7664-41	-7 0.01	mg/L	<0.01	1 mg/L	96.4	90.0	110		
EK057G: Nitrite as N by Discrete Analyser (QCLot: 4880706)									
EK057G: Nitrite as N 14797-65	-0 0.01	mg/L	<0.01	0.5 mg/L	90.9	90.0	110		
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser (QCLo	t: 4884421)								
	0.01	mg/L	<0.01	0.5 mg/L	97.9	90.0	110		
					21.15				
EK061G: Total Kieldahl Nitrogen By Discrete Analyser (QCLot: 48841	94) 0.1	ma/l	<0.1	5 mg/L	93.7	70.0	117		
EK061G: Total Kjeldahl Nitrogen as N	0.1	mg/L	~ 0.1	3 mg/L	93.1	70.0	117		

Page : 5 of 5 Work Order : EM2302773

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill 3 of 3

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report							
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)				
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High				
EP005: Total Organic Carbon (TOC) (QCLot: 4887576)												
EP005: Total Organic Carbon		1	mg/L	<1	100 mg/L	94.9	81.2	110				
EP026SP: Chemical Oxygen Demand (Spectrophotometric) (QCLot: 4890950)												
EP026SP: Chemical Oxygen Demand		10	mg/L	<10	500 mg/L	102	89.7	111				
EP045: Volatile Acids as CH3COOH (QCLot: 4887593)												
EP045: Volatile Acids as Acetic Acid		5	mg/L	<5	185 mg/L	101	85.5	116				

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER			Γ	Matrix Spike (MS) Report			
				Spike	SpikeRecovery(%)	Acceptable L	imits (%)
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
ED041G: Sulfate (Furbidimetric) as SO4 2- by DA (QCLot: 4880707)						
EM2302668-002	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	100 mg/L	# Not Determined	70.0	130
ED045G: Chloride	by Discrete Analyser (QCLot: 4880708)						
EM2302668-002	Anonymous	ED045G: Chloride	16887-00-6	400 mg/L	# Not Determined	70.0	142
EG020T: Total Met	als by ICP-MS (QCLot: 4887233)						
EM2301023-015	Anonymous	EG020A-T: Chromium 74	440-47-3	1 mg/L	94.9	78.9	119
		EG020A-T: Zinc 7-	7440-66-6	1 mg/L	102	74.0	120
EK055G: Ammonia	as N by Discrete Analyser (QCLot: 4884420)						
EM2302747-001	Anonymous	EK055G: Ammonia as N	664-41-7	1 mg/L	130	70.0	130
EK057G: Nitrite as	N by Discrete Analyser (QCLot: 4880706)						
EM2302668-002	Anonymous	EK057G: Nitrite as N	14797-65-0	0.5 mg/L	95.5	80.0	114
EK059G: Nitrite p	us Nitrate as N (NOx) by Discrete Analyser (QCLot: 48	34421)					
EM2302700-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.5 mg/L	99.4	70.0	130
EK061G: Total Kje	Idahl Nitrogen By Discrete Analyser (QCLot: 4884194)						
EM2302747-002	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		5 mg/L	96.9	70.0	130
EP005: Total Orga	nic Carbon (TOC) (QCLot: 4887576)						
EM2302773-001	Dredge Surface Water Sample	EP005: Total Organic Carbon		100 mg/L	105	76.6	125
EP026SP: Chemic	al Oxygen Demand (Spectrophotometric) (QCLot: 48909	950)					
EM2302694-002	Anonymous	EP026SP: Chemical Oxygen Demand		5000 mg/L	90.8	70.0	130

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **EM2302773** Page : 1 of 7

Client : VENTIA UTILITY SERVICES PTY LTD Laboratory : Environmental Division Melbourne

 Contact
 : ROBERT CALLANDER
 Telephone
 : +6138549 9645

 Project
 : Creswick Landfill 3 of 3
 Date Samples Received
 : 17-Feb-2023

 Site
 :--- Issue Date
 : 24-Feb-2023

Sampler : ---- No. of samples received : 1

Order number : Creswick Landfill 3 of 3 No. of samples analysed : 1

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- Matrix Spike outliers exist please see following pages for full details.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers: Frequency of Quality Control Samples

NO Quality Control Sample Frequency Outliers exist.

Page : 2 of 7
Work Order : EM2302773

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill 3 of 3

Outliers: Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: WATER

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Matrix Spike (MS) Recoveries							
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA	EM2302668002	Anonymous	Sulfate as SO4 -	14808-79-8	Not		MS recovery not determined,
			Turbidimetric		Determined		background level greater than or
							equal to 4x spike level.
ED045G: Chloride by Discrete Analyser	EM2302668002	Anonymous	Chloride	16887-00-6	Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.

Outliers: Analysis Holding Time Compliance

Matrix: WATER

MORE TO THE CONTRACT OF THE CO						
Method	Extraction / Preparation			Analysis		
Container / Client Sample ID(s)	Date extracted			Date analysed	Due for analysis	Days
			overdue			overdue
EA005P: pH by PC Titrator						
Clear Plastic Bottle - Natural						
Dredge - Surface Water Sample				22-Feb-2023	16-Feb-2023	6

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: WATER

Evaluation: ★ = Holding time breach: ✓ = Within holding time

Matrix: WATER				Evaluation	i. 🗸 – Holding time	breach, V = With	ir noluling time
Method	Sample Date	Extraction / Preparation					
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA005P: pH by PC Titrator							
Clear Plastic Bottle - Natural (EA005-P) Dredge - Surface Water Sample	16-Feb-2023				22-Feb-2023	16-Feb-2023	*
EA010P: Conductivity by PC Titrator							
Clear Plastic Bottle - Natural (EA010-P) Dredge - Surface Water Sample	16-Feb-2023				22-Feb-2023	16-Mar-2023	✓
EA015: Total Dissolved Solids dried at 180 ± 5 °C							
Clear Plastic Bottle - Natural (EA015H) Dredge - Surface Water Sample	16-Feb-2023				23-Feb-2023	23-Feb-2023	✓
ED037P: Alkalinity by PC Titrator							
Clear Plastic Bottle - Natural (ED037-P) Dredge - Surface Water Sample	16-Feb-2023				22-Feb-2023	02-Mar-2023	✓

Page : 3 of 7
Work Order : EM2302773

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill 3 of 3

Matrix: WATER				Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time
Method	Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA							
Clear Plastic Bottle - Natural (ED041G) Dredge - Surface Water Sample	16-Feb-2023				22-Feb-2023	16-Mar-2023	✓
ED045G: Chloride by Discrete Analyser							
Clear Plastic Bottle - Natural (ED045G) Dredge - Surface Water Sample	16-Feb-2023				22-Feb-2023	16-Mar-2023	✓
ED093F: Dissolved Major Cations							
Clear Plastic Bottle - Natural (ED093F) Dredge - Surface Water Sample	16-Feb-2023				21-Feb-2023	23-Feb-2023	✓
EG020T: Total Metals by ICP-MS							
Clear Plastic Bottle - Nitric Acid; Unfiltered (EG020A-T) Dredge - Surface Water Sample	16-Feb-2023	22-Feb-2023	15-Aug-2023	✓	22-Feb-2023	15-Aug-2023	✓
EK055G: Ammonia as N by Discrete Analyser							
Clear Plastic Bottle - Sulfuric Acid (EK055G) Dredge - Surface Water Sample	16-Feb-2023				23-Feb-2023	16-Mar-2023	✓
EK057G: Nitrite as N by Discrete Analyser							
Clear Plastic Bottle - Natural (EK057G) Dredge - Surface Water Sample	16-Feb-2023				17-Feb-2023	18-Feb-2023	✓
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser							
Clear Plastic Bottle - Sulfuric Acid (EK059G) Dredge - Surface Water Sample	16-Feb-2023				23-Feb-2023	16-Mar-2023	✓
EK061G: Total Kjeldahl Nitrogen By Discrete Analyser							
Clear Plastic Bottle - Sulfuric Acid (EK061G) Dredge - Surface Water Sample	16-Feb-2023	24-Feb-2023	16-Mar-2023	✓	24-Feb-2023	16-Mar-2023	✓
EP005: Total Organic Carbon (TOC)							
Amber TOC Vial - Sulfuric Acid (EP005) Dredge - Surface Water Sample	16-Feb-2023				23-Feb-2023	16-Mar-2023	✓
EP026SP: Chemical Oxygen Demand (Spectrophotometric)							
Clear Plastic Bottle - Sulfuric Acid (EP026SP) Dredge - Surface Water Sample	16-Feb-2023				23-Feb-2023	16-Mar-2023	✓
EP045: Volatile Acids as CH3COOH							
Clear Plastic Bottle - Natural (EP045) Dredge - Surface Water Sample	16-Feb-2023				22-Feb-2023	02-Mar-2023	✓

Page : 4 of 7
Work Order : EM2302773

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill 3 of 3

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: WATER

Evaluation: x = Quality Control frequency not within specification: $\sqrt{}$ = Quality Control frequency within specification.

Matrix: WATER				Evaluatio	n: 🗴 = Quality Co	ontrol frequency	not within specification; ✓ = Quality Control frequency within specificatio
Quality Control Sample Type		C	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	OC	Regular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Alkalinity by Auto Titrator	ED037-P	2	19	10.53	10.00	1	NEPM 2013 B3 & ALS QC Standard
Ammonia as N by Discrete analyser	EK055G	2	15	13.33	10.00	1	NEPM 2013 B3 & ALS QC Standard
Chemical Oxygen Demand (COD) (Spectrophotometric)	EP026SP	2	19	10.53	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G	1	6	16.67	10.00	1	NEPM 2013 B3 & ALS QC Standard
Conductivity by Auto Titrator	EA010-P	2	12	16.67	10.00	1	NEPM 2013 B3 & ALS QC Standard
Major Cations - Dissolved	ED093F	2	17	11.76	10.00	1	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	19	10.53	10.00	1	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	2	11	18.18	10.00	1	NEPM 2013 B3 & ALS QC Standard
pH by Auto Titrator	EA005-P	2	15	13.33	10.00	1	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	2	10	20.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Dissolved Solids (High Level)	EA015H	4	40	10.00	10.00	1	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	2	12	16.67	10.00	1	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	2	19	10.53	10.00	1	NEPM 2013 B3 & ALS QC Standard
Total Organic Carbon	EP005	2	11	18.18	10.00	1	NEPM 2013 B3 & ALS QC Standard
Volatile Acids as CH3COOH	EP045	1	10	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Alkalinity by Auto Titrator	ED037-P	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Ammonia as N by Discrete analyser	EK055G	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Chemical Oxygen Demand (COD) (Spectrophotometric)	EP026SP	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G	2	6	33.33	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Conductivity by Auto Titrator	EA010-P	1	12	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Major Cations - Dissolved	ED093F	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	1	11	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard
pH by Auto Titrator	EA005-P	2	15	13.33	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	2	10	20.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Dissolved Solids (High Level)	EA015H	3	40	7.50	7.50	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	12	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Organic Carbon	EP005	1	11	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Volatile Acids as CH3COOH	EP045	1	10	10.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Ammonia as N by Discrete analyser	EK055G	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Chemical Oxygen Demand (COD) (Spectrophotometric)	EP026SP	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G	1	6	16.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Conductivity by Auto Titrator	EA010-P	1	12	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Page : 5 of 7
Work Order : EM2302773

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill 3 of 3

Matrix: WATER				Evaluatio	n: × = Quality Co	ntrol frequency	not within specification; ✓ = Quality Control frequency within specifica
Quality Control Sample Type		С	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	OC	Reaular	Actual	Expected	Evaluation	
Method Blanks (MB) - Continued							
Major Cations - Dissolved	ED093F	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
litrite as N by Discrete Analyser	EK057G	1	11	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	1	10	10.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
otal Dissolved Solids (High Level)	EA015H	2	40	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
otal Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	12	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
otal Metals by ICP-MS - Suite A	EG020A-T	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
otal Organic Carbon	EP005	1	11	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard
olatile Acids as CH3COOH	EP045	1	10	10.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
Ammonia as N by Discrete analyser	EK055G	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Chemical Oxygen Demand (COD) (Spectrophotometric)	EP026SP	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G	1	6	16.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
litrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
litrite as N by Discrete Analyser	EK057G	1	11	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard
ulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	1	10	10.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
otal Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	12	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
otal Metals by ICP-MS - Suite A	EG020A-T	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
otal Organic Carbon	EP005	1	11	9.09	5.00	√	NEPM 2013 B3 & ALS QC Standard

Page : 6 of 7
Work Order : EM2302773

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill 3 of 3

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
pH by Auto Titrator	EA005-P	WATER	In house: Referenced to APHA 4500 H+ B. This procedure determines pH of water samples by automated ISE. This method is compliant with NEPM Schedule B(3)
Conductivity by Auto Titrator	EA010-P	WATER	In house: Referenced to APHA 2510 B. This procedure determines conductivity by automated ISE. This method is compliant with NEPM Schedule B(3)
Total Dissolved Solids (High Level)	EA015H	WATER	In house: Referenced to APHA 2540C. A gravimetric procedure that determines the amount of `filterable` residue in an aqueous sample. A well-mixed sample is filtered through a glass fibre filter (1.2um). The filtrate is evaporated to dryness and dried to constant weight at 180+/-5C. This method is compliant with NEPM Schedule B(3)
Alkalinity by Auto Titrator	ED037-P	WATER	In house: Referenced to APHA 2320 B This procedure determines alkalinity by automated measurement (e.g. PC Titrate) on a settled supernatant aliquot of the sample using pH 4.5 for indicating the total alkalinity end-point. This method is compliant with NEPM Schedule B(3)
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	WATER	In house: Referenced to APHA 4500-SO4. Dissolved sulfate is determined in a 0.45um filtered sample. Sulfate ions are converted to a barium sulfate suspension in an acetic acid medium with barium chloride. Light absorbance of the BaSO4 suspension is measured by a photometer and the SO4-2 concentration is determined by comparison of the reading with a standard curve. This method is compliant with NEPM Schedule B(3)
Chloride by Discrete Analyser	ED045G	WATER	In house: Referenced to APHA 4500 CI - G.The thiocyanate ion is liberated from mercuric thiocyanate through sequestration of mercury by the chloride ion to form non-ionised mercuric chloride. In the presence of ferric ions the liberated thiocynate forms highly-coloured ferric thiocynate which is measured at 480 nm.
Major Cations - Dissolved	ED093F	WATER	In house: Referenced to APHA 3120 and 3125; USEPA SW 846 - 6010 and 6020; Cations are determined by either ICP-AES or ICP-MS techniques. This method is compliant with NEPM Schedule B(3) Sodium Adsorption Ratio is calculated from Ca, Mg and Na which determined by ALS in house method QWI-EN/ED093F. This method is compliant with NEPM Schedule B(3) Hardness parameters are calculated based on APHA 2340 B. This method is compliant with NEPM Schedule B(3)
Total Metals by ICP-MS - Suite A	EG020A-T	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Ammonia as N by Discrete analyser	EK055G	WATER	In house: Referenced to APHA 4500-NH3 G Ammonia is determined by direct colorimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)
Nitrite as N by Discrete Analyser	EK057G	WATER	In house: Referenced to APHA 4500-NO2- B. Nitrite is determined by direct colourimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)
Nitrate as N by Discrete Analyser	EK058G	WATER	In house: Referenced to APHA 4500-NO3- F. Nitrate is reduced to nitrite by way of a chemical reduction followed by quantification by Discrete Analyser. Nitrite is determined seperately by direct colourimetry and result for Nitrate calculated as the difference between the two results. This method is compliant with NEPM Schedule B(3)
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	WATER	In house: Referenced to APHA 4500-NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by Chemical Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)

Page : 7 of 7
Work Order : EM2302773

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill 3 of 3

Analytical Methods	Method	Matrix	Method Descriptions
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	WATER	In house: Referenced to APHA 4500-Norg D (In house). An aliquot of sample is digested using a high temperature Kjeldahl digestion to convert nitrogenous compounds to ammonia. Ammonia is determined colorimetrically by discrete analyser. This method is compliant with NEPM Schedule B(3)
Ionic Balance by PCT DA and Turbi SO4 DA	* EN055 - PG	WATER	In house: Referenced to APHA 1030F. This method is compliant with NEPM Schedule B(3)
Field Tests (performed by external sampler)	* EN67-B02	WATER	Field determinations as per methods described in APHA or supplied by client. The analysis is performed in the field by non-ALS samplers. ALS NATA accreditation does not apply for this service.
Total Organic Carbon	EP005	WATER	In house: Referenced to APHA 5310 B, The automated TOC analyzer determines Total and Inorganic Carbon by IR cell. TOC is calculated as the difference. This method is compliant with NEPM Schedule B(3)
Chemical Oxygen Demand (COD) (Spectrophotometric)	EP026SP	WATER	In house: Referenced to APHA 5220 D. Samples are digested with a known excess of an acidic potassium dichromate solution using silver sulfate as a catalyst. The chromium is reduced from the Cr (VI) oxidation state to the Cr (III) state by the oxygen present in the organic material. Both of these chromium species are coloured and absorb in the visible region of (400nm & 600nm) the spectrum. The oxidisable organic matter can be calculated in terms of oxygen equivalents.
Volatile Acids as CH3COOH	EP045	WATER	In house: Referenced to APHA 5560 C. Steam distillable acids are captured in caustic solution and determined titremetrically. This method is compliant with NEPM Schedule B(3)
Preparation Methods	Method	Matrix	Method Descriptions
TKN/TP Digestion	EK061/EK067	WATER	In house: Referenced to APHA 4500 Norg - D; APHA 4500 P - H. This method is compliant with NEPM Schedule B(3)
Digestion for Total Recoverable Metals	EN25	WATER	In house: Referenced to USEPA SW846-3005. Method 3005 is a Nitric/Hydrochloric acid digestion procedure used to prepare surface and ground water samples for analysis by ICPAES or ICPMS. This method is compliant with NEPM Schedule B(3)

BURWOOD VIC 3125

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order : EM2302773

Client : VENTIA UTILITY SERVICES PTY LTD Laboratory : Environmental Division Melbourne

Contact : ROBERT CALLANDER Contact : Peter Ravlic

Address : 25-37 HUNTINGDALE ROAD Address : 4 Westall Rd Springvale VIC Australia

3171

 Telephone
 : --- Telephone
 : +6138549 9645

 Facsimile
 : --- Facsimile
 : +61-3-8549 9626

Project : Creswick Landfill 3 of 3 Page : 1 of 3

 Order number
 : --- Quote number
 : EM2016THISER0010 (ME/793/19)

 C-O-C number
 : --- QC Level
 : NEPM 2013 B3 & ALS QC Standard

Site : ----

Sampler :

Dates

Date

Delivery Details

Mode of Delivery : Client Drop Off Security Seal : Intact.

No. of coolers/boxes ; 1 Temperature ; 8.3°C - Ice present

Receipt Detail : No. of samples received / analysed : 1 / 1

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- Please direct any queries related to sample condition / numbering / breakages to Client Services.
- Sample Disposal Aqueous (3 weeks), Solid (2 months) from receipt of samples.
- Analytical work for this work order will be conducted at ALS Springvale.
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The laboratory will process these samples unless instructions are received from you indicating you do not wish to proceed. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.

Issue Date · 17-Feb-2023

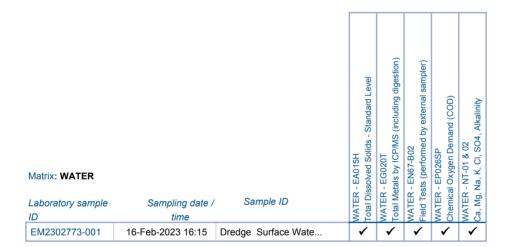
Page

2 of 3 EM2302773 Amendment 0 Work Order

Client : VENTIA UTILITY SERVICES PTY LTD

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.


• No sample container / preservation non-compliance exists.

Any sample identifications that cannot be displayed entirely in the analysis summary table will be listed below.

EM2302773-001 · 16-Feb-2023 16:15 · Dredge - Surface Water Sample

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such otal Kjeldahl Nitrogen as N (TKN) By Discrete as the determination of moisture content and preparation tasks, that are included in the package. (Auto Titrator) If no sampling time is provided, the sampling time will nmonia as N By Discrete Analyser Vitrate as N by Discrete Analyser default 00:00 on the date of sampling. If no sampling date Volatile Acids as CH3COOH otal Organic Carbon (TOC) is provided, the sampling date will be assumed by the laboratory and displayed in brackets without a time ectrical Conductivity component VATER - EK055G VATER - EK058G VATER - EA010P NATER - EA005F VATER - EP005 (Auto Titrator) Matrix: WATER Sample ID Laboratory sample Sampling date / ID time EM2302773-001 16-Feb-2023 16:15 Dredge Surface Wate...

Proactive Holding Time Report

The following table summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory.

Matrix: WATER

Evaluation: * = Holding time breach : \checkmark = Within holding time

Method		Due for	Due for	Samples Re	eceived	Instructions R	eceived
Client Sample ID(s)	Container	extraction	analysis	Date	Evaluation	Date	Evaluation
EA005-P: pH by Aut	o Titrator						
Dredge	Clear Plastic Bottle - Natural		16-Feb-2023	17-Feb-2023	×		

Issue Date : 17-Feb-2023

Page : 3 of 3
Work Order : EM2302773 Amendment 0
Client : VENTIA UTILITY SERVICES PTY LTD

Requested Deliverables

CY		

LUCY EDWARDS		
- *AU Certificate of Analysis - NATA (COA)	Email	lucy.edwards@ventia.com.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	lucy.edwards@ventia.com.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	lucy.edwards@ventia.com.au
 A4 - AU Sample Receipt Notification - Environmental HT (SRN) 	Email	lucy.edwards@ventia.com.au
- Chain of Custody (CoC) (COC)	Email	lucy.edwards@ventia.com.au
- EDI Format - ENMRG (ENMRG)	Email	lucy.edwards@ventia.com.au
- EDI Format - ESDAT (ESDAT)	Email	lucy.edwards@ventia.com.au

NICOLE ROBBINS

- *AU Certificate of Analysis - NATA (COA)	Email	nicole.robbins@ventia.com
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	nicole.robbins@ventia.com
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	nicole.robbins@ventia.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	nicole.robbins@ventia.com
- Chain of Custody (CoC) (COC)	Email	nicole.robbins@ventia.com
- EDI Format - ENMRG (ENMRG)	Email	nicole.robbins@ventia.com
- EDI Format - ESDAT (ESDAT)	Email	nicole.robbins@ventia.com

Ping Yao

- *AU Certificate of Analysis - NATA (COA)	Email	ping.yao@ventia.com
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	ping.yao@ventia.com
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	ping.yao@ventia.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	ping.yao@ventia.com
- Chain of Custody (CoC) (COC)	Email	ping.yao@ventia.com
- EDI Format - ENMRG (ENMRG)	Email	ping.yao@ventia.com
- EDI Format - ESDAT (ESDAT)	Email	ping.yao@ventia.com
ROBERT CALLANDER		
*ALL Cartificate of Analysis - NATA (COA)	Email	robert callander@ventia.co

- *AU Certificate of Analysis - NATA (COA)	Email	robert.callander@ventia.com
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	robert.callander@ventia.com
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	robert.callander@ventia.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	robert.callander@ventia.com
- A4 - AU Tax Invoice (INV)	Email	robert.callander@ventia.com
- Chain of Custody (CoC) (COC)	Email	robert.callander@ventia.com
- EDI Format - ENMRG (ENMRG)	Email	robert.callander@ventia.com
- EDI Format - ESDAT (ESDAT)	Email	robert.callander@ventia.com

CHAIN OF CUSTODY

ME/793/19

											8.1	VIT	311				
CI	ient:				entia/				Job	Ref:			Cres	wick Lan	ndfill 3 of	3	
Con	tact:			Rober	t Calla	nder				TEST	SREC	QUIRE	DAS	PER Q	UOTE	VIE/412	/16
Addr	ess:		25-37 Hun	tingdale	Road	Burwood	1, 3125	4									
Ph	one:	04275	529051		Fax:					ı.							
Er	mail:	lucy.e	rao@ventia.co dwards@vent callander@ve	ia.com	<u>1</u>		"a ₃										
P/O	No.:			Quote	No.:		•										
T/A T	ime:		•														
Sample ID		Sampl	e Description		No of ntainers	Date Sampled	Time sampled		PH	EC	00	TEMP	ORP	SWL			
U/S BH3	Cree	k Samp	ole		310000000000000000000000000000000000000		t processor and a section of a	0.0000000000000000000000000000000000000	19						2000	nmental D	ivision
@ BH3	Cree	k Samp	ole													k Order Refe	
D/S BH3	Cree	k Samp	ole												E	M2302	2773
		i.									=					则之形为数	Se Willi
Leachate	Surfa	ace wat	er sample														
Wetland	Surfa	ace wat	er sample	L		16/2/2	1615	W									
Dredge	Surfa	ace wat	er sample		4	16/2/23		U	6.85	914	7.53	22.0	63.6	-	Telephon	e: +61-3-8549 9	600
Ins	Sp structi	ecial ions:	Please email	Invoices	to Nice	ole.robins(@ventia.c	<u>om</u>									
Relino	quishe	d By:	Compa	ny:		Date:		Time:		Rec	eived By	r:	Co	mpany:		Date:	Time:
A Ca	ullan	Der	Ventia		17	12/23	12	50		He	wh	1	fus			1702.23	12:55
over-ride pricis	ng agreer tional Hea	ments, OF	ple data after prior co IS requirements and afety consideration, r advice given in writ	our terms ar	d condition	ons. cowise Environ				LAB	USE ONLY		Sample con	Samples w	Samples a	dequately pre nded holding	maged [Yes/No] served [Yes/No] times: [Yes/No] erature [Yes/No]

Document: OF002 i1

CERTIFICATE OF ANALYSIS

Work Order : EM2302775

Client : VENTIA UTILITY SERVICES PTY LTD

Contact : ROBERT CALLANDER

Address : 25-37 HUNTINGDALE ROAD

BURWOOD VIC 3125

Telephone : ----

Project : Creswick Landfill 1 of 3
Order number : Creswick Landfill 1 of 3

C-O-C number : ---Sampler : ---Site : ----

Quote number : ME/793/19

No. of samples received : 1
No. of samples analysed : 1

Page : 1 of 4

Laboratory : Environmental Division Melbourne

Contact : Peter Ravlic

Address : 4 Westall Rd Springvale VIC Australia 3171

Telephone : +6138549 9645

Date Samples Received : 17-Feb-2023 12:55

Date Analysis Commenced : 18-Feb-2023

Issue Date 24-Feb-2023 18:45

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Dilani Fernando Laboratory Coordinator Melbourne External Subcontracting, Springvale, VIC

Dilani Fernando Laboratory Coordinator Melbourne External Subcontracting, Spr Dilani Fernando Laboratory Coordinator Melbourne Inorganics, Springvale, VIC Jarwis Nheu Non-Metals Team Leader Melbourne Inorganics, Springvale, VIC Page : 2 of 4 Work Order : EM2302775

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill 1 of 3

ALS

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

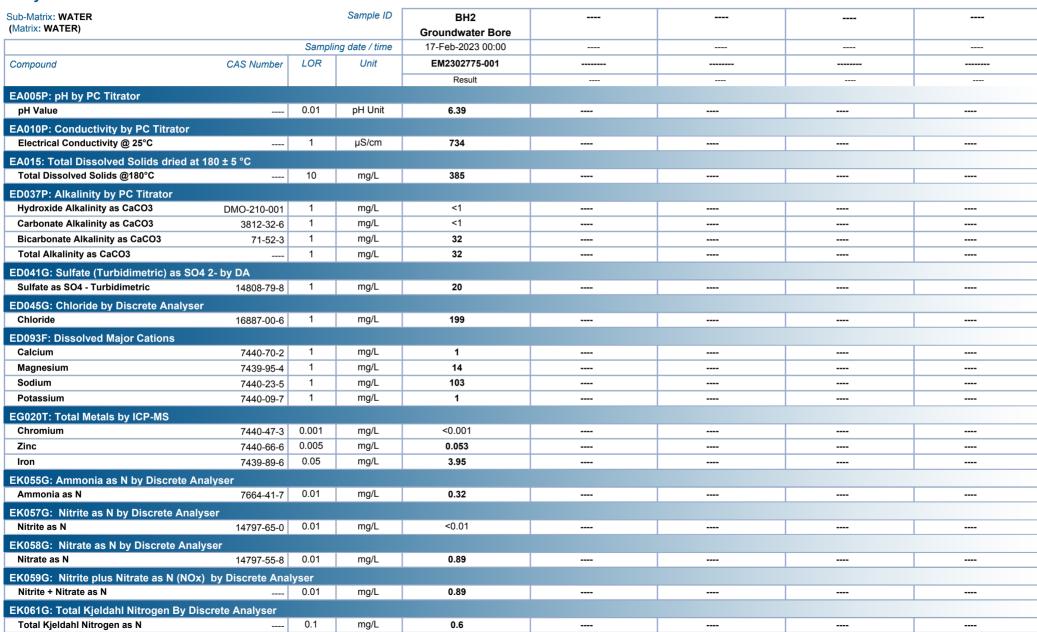
Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting


- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- Field Readings
 - sample ID:BH2, SWL = 2.98m, EC = 685uS/cm, pH = 5.73, Temp = 19.7°C, Redox = 122.2mV, DO = 2.69mg/L
- As per QWI EN55-3 Data Interpreting Procedures, Ionic balances are typically calculated using Major Anions Chloride, Alkalinity and Sulfate; and Major Cations Calcium, Magnesium, Potassium and Sodium.
 Where applicable and dependent upon sample matrix, the Ionic Balance may also include the additional contribution of Ammonia, Dissolved Metals by ICPMS and H+ to the Cations and Nitrate, SiO2 and Fluoride to the Anions.
- Ionic Balance out of acceptable limits for sample #1 due to analytes not quantified in this report.
- Ionic balances were calculated using: major anions chloride, alkalinity and sulfate; and major cations calcium, magnesium, potassium and sodium.
- ED045G: The presence of Thiocyanate, Thiosulfate and Sulfite can positively contribute to the chloride result, thereby may bias results higher than expected. Results should be scrutinised accordingly.
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

Page : 3 of 4 Work Order : EM2302775

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill 1 of 3

Analytical Results

Page : 4 of 4
Work Order : EM2302775

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill 1 of 3

Analytical Results

Sub-Matrix: WATER			Sample ID	BH2	 	
(Matrix: WATER)				Groundwater Bore		
		Sampli	ng date / time	17-Feb-2023 00:00	 	
Compound	CAS Number	LOR	Unit	EM2302775-001	 	
				Result	 	
EN055: Ionic Balance						
Ø Total Anions		0.01	meq/L	6.67	 	
ø Total Cations		0.01	meq/L	5.71	 	
Ø Ionic Balance		0.01	%	7.77	 	
EN67: Field Tests						
Ø Electrical Conductivity (Non		1	μS/cm	68	 	
Compensated)						
Ø Dissolved Oxygen		0.1	mg/L	2.69	 	
Ø pH		0.01	pH Unit	5.73	 	
ø Redox Potential		0.1	mV	122.2	 	
Ø Temperature		0.1	°C	19.7	 	
EN67: Field Tests (non-NATA)						
ø Standing Water Level		0.01	m	2.98	 	
EP005: Total Organic Carbon (TOC)						
Total Organic Carbon		1	mg/L	1	 	
EP026SP: Chemical Oxygen Demand (S	pectrophotometr	ic)				
Chemical Oxygen Demand		10	mg/L	34	 	
EP045: Volatile Acids as CH3COOH						
Volatile Acids as Acetic Acid		5	mg/L	12	 	

QUALITY CONTROL REPORT

Page

: 1 of 5

: +6138549 9645

Accreditation No. 825

Accredited for compliance with ISO/IEC 17025 - Testing

· EM2302775 Work Order

Client : VENTIA UTILITY SERVICES PTY LTD Laboratory : Environmental Division Melbourne

Contact : ROBERT CALLANDER Contact : Peter Ravlic

Address Address : 25-37 HUNTINGDALE ROAD : 4 Westall Rd Springvale VIC Australia 3171

BURWOOD VIC 3125

Telephone Telephone

Project Creswick Landfill 1 of 3 Date Samples Received : 17-Feb-2023 Order number : Creswick Landfill 1 of 3 **Date Analysis Commenced** : 18-Feb-2023

· 24-Feb-2023 C-O-C number Issue Date Sampler

Site

: 1 This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall

This Quality Control Report contains the following information:

: 1

Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits

Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits

Matrix Spike (MS) Report; Recovery and Acceptance Limits

: ME/793/19

Signatories

Quote number

No. of samples received

No. of samples analysed

not be reproduced, except in full.

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position	Accreditation Category
----------------------	------------------------

Dilani Fernando **Laboratory Coordinator** Melbourne External Subcontracting, Springvale, VIC

Dilani Fernando **Laboratory Coordinator** Melbourne Inorganics, Springvale, VIC Jarwis Nheu Non-Metals Team Leader Melbourne Inorganics, Springvale, VIC Page : 2 of 5 Work Order : EM2302775

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill 1 of 3

ALS

Laboratorii Dunlinata (DUD) Donort

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: WATER						Laboratory L	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EA005P: pH by PC	Titrator (QC Lot: 4884	4669)							
EM2302765-002	Anonymous	EA005-P: pH Value		0.01	pH Unit	7.03	7.15	1.7	0% - 20%
EM2302782-008	Anonymous	EA005-P: pH Value		0.01	pH Unit	5.84	5.64	3.5	0% - 20%
EA010P: Conductiv	ity by PC Titrator (QC	C Lot: 4884670)							
EM2302765-002	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	411	429	4.3	0% - 20%
EM2302782-008	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	2	1	0.0	No Limit
EA015: Total Dissol	lved Solids dried at 1	80 ± 5 °C (QC Lot: 4889801)							
EM2302719-001	Anonymous	EA015H: Total Dissolved Solids @180°C		10	mg/L	613	605	1.3	0% - 20%
EM2302771-002	Anonymous	EA015H: Total Dissolved Solids @180°C		10	mg/L	1250	1180	5.3	0% - 20%
EM2302778-005	Anonymous	EA015H: Total Dissolved Solids @180°C		10	mg/L	8830	9090	3.0	0% - 20%
EM2302879-001	Anonymous	EA015H: Total Dissolved Solids @180°C		10	mg/L	7180	7610	5.9	0% - 20%
ED037P: Alkalinity	by PC Titrator (QC Lo	ot: 4884668)							
EM2302765-002	Anonymous	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	120	121	0.0	0% - 20%
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	120	121	0.0	0% - 20%
EM2302782-008	Anonymous	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	<1	<1	0.0	No Limit
ED041G: Sulfate (Tu	urbidimetric) as SO4 2	2- by DA (QC Lot: 4880723)							
EM2302763-001	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	8	8	0.0	No Limit
ED045G: Chloride b	y Discrete Analyser	(QC Lot: 4880724)							
EM2302763-001	Anonymous	ED045G: Chloride	16887-00-6	1	mg/L	101	96	4.6	0% - 20%

Page : 3 of 5
Work Order : EM2302775

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill 1 of 3

Sub-Matrix: WATER						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
ED093F: Dissolved	Major Cations (QC Lot: 48	84270)							
EM2302775-001	BH2 Groundwater Bore	ED093F: Calcium	7440-70-2	1	mg/L	1	1	0.0	No Limit
		ED093F: Magnesium	7439-95-4	1	mg/L	14	14	0.0	0% - 50%
		ED093F: Sodium	7440-23-5	1	mg/L	103	104	0.0	0% - 20%
		ED093F: Potassium	7440-09-7	1	mg/L	1	1	0.0	No Limit
EM2302782-008	Anonymous	ED093F: Calcium	7440-70-2	1	mg/L	<1	<1	0.0	No Limit
		ED093F: Magnesium	7439-95-4	1	mg/L	<1	<1	0.0	No Limit
		ED093F: Sodium	7440-23-5	1	mg/L	<1	<1	0.0	No Limit
		ED093F: Potassium	7440-09-7	1	mg/L	<1	<1	0.0	No Limit
EG020T: Total Meta	Is by ICP-MS (QC Lot: 488	7233)							
EM2301023-015	Anonymous	EG020A-T: Chromium	7440-47-3	0.001	mg/L	0.002	<0.001	0.0	No Limit
		EG020A-T: Zinc	7440-66-6	0.005	mg/L	0.757	0.749	1.0	0% - 20%
		EG020A-T: Iron	7439-89-6	0.05	mg/L	31.1	31.8	2.3	0% - 20%
EM2302747-001	Anonymous	EG020A-T: Chromium	7440-47-3	0.001	mg/L	0.010	0.008	26.6	No Limit
		EG020A-T: Zinc	7440-66-6	0.005	mg/L	0.026	0.022	15.0	No Limit
		EG020A-T: Iron	7439-89-6	0.05	mg/L	3.62	3.64	0.7	0% - 20%
EK055G: Ammonia	as N by Discrete Analyser	(QC Lot: 4884420)							
EM2302781-001	Anonymous	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	<0.01	<0.01	0.0	No Limit
EM2302688-001	Anonymous	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	5.78	5.73	0.9	0% - 20%
EK057G: Nitrite as	N by Discrete Analyser (Q	C Lot: 4880722)							
EM2302763-001	Anonymous	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	0.0	No Limit
EK059G: Nitrite plu	s Nitrate as N (NOx) by Di	screte Analyser (QC Lot: 4884421)							
EM2302756-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	5.46	5.54	1.5	0% - 20%
EM2302688-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	0.10	0.10	0.0	No Limit
EK061G: Total Kjelo	dahl Nitrogen By Discrete A	Analyser (QC Lot: 4884194)							
EM2302747-001	Anonymous	EK061G: Total Kieldahl Nitrogen as N		0.1	mg/L	0.7	0.7	0.0	No Limit
EM2302867-004	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	0.6	0.6	0.0	No Limit
EP005: Total Organi	ic Carbon (TOC) (QC Lot: 4								
EM2302767-001	Anonymous	EP005: Total Organic Carbon		1	mg/L	<1	2	0.0	No Limit
EM2302906-001	Anonymous	EP005: Total Organic Carbon		1	mg/L	2	2	0.0	No Limit
EP026SP: Chemical	Oxygen Demand (Spectro	photometric) (QC Lot: 4890950)							
EM2302694-001	Anonymous	EP026SP: Chemical Oxygen Demand		10	mg/L	88	86	2.3	No Limit
EM2302703-004	Anonymous	EP026SP: Chemical Oxygen Demand		10	mg/L	49	45	8.5	No Limit
	ds as CH3COOH (QC Lot: 4				, J	-	-		
EM2302623-001	Anonymous	EP045: Volatile Acids as Acetic Acid		5	mg/L	13	13	0.0	No Limit
LIVIEUUEUEU-UU I	/ alonymous	EFU45. VUIdille Acius as Acetic Aciu		J	my/L	10	10	0.0	INO LIIIII

Page : 4 of 5 Work Order : EM2302775

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill 1 of 3

Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER		Method Blank (MB)		Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EA005P: pH by PC Titrator (QCLot: 4884669)								
EA005-P: pH Value			pH Unit		7 pH Unit	100	98.8	101
					9 pH Unit	100	99.3	101
EA010P: Conductivity by PC Titrator (QCLot: 488467	70)							
EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	<1	1412 μS/cm	97.8	85.0	119
EA015: Total Dissolved Solids dried at 180 ± 5 °C (Q	CLot: 4889801)							
EA015H: Total Dissolved Solids @180°C		10	mg/L	<10	2000 mg/L	102	91.0	110
_				<10	2440 mg/L	105	81.6	118
				<10	293 mg/L	104	91.0	110
ED037P: Alkalinity by PC Titrator (QCLot: 4884668)								
ED037-P: Total Alkalinity as CaCO3			mg/L		200 mg/L	98.5	85.0	116
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA (Q	CLot: 4880723)							
ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	<1	25 mg/L	104	90.0	110
				<1	500 mg/L	105	90.0	110
ED045G: Chloride by Discrete Analyser (QCLot: 488	0724)							
ED045G: Chloride	16887-00-6	1	mg/L	<1	10 mg/L	106	90.0	110
				<1	1000 mg/L	103	90.0	110
ED093F: Dissolved Major Cations (QCLot: 4884270)								
ED093F: Calcium	7440-70-2	1	mg/L	<1	50 mg/L	104	80.0	120
ED093F: Magnesium	7439-95-4	1	mg/L	<1	50 mg/L	101	80.0	120
ED093F: Sodium	7440-23-5	1	mg/L	<1	50 mg/L	103	80.0	120
ED093F: Potassium	7440-09-7	1	mg/L	<1	50 mg/L	98.8	80.0	120
EG020T: Total Metals by ICP-MS (QCLot: 4887233)								
EG020A-T: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	98.5	86.9	112
EG020A-T: Zinc	7440-66-6	0.005	mg/L	<0.005	0.1 mg/L	107	86.7	117
EG020A-T: Iron	7439-89-6	0.05	mg/L	<0.05	0.5 mg/L	99.8	92.8	118
EK055G: Ammonia as N by Discrete Analyser (QCLo	ot: 4884420)							
EK055G: Ammonia as N	7664-41-7	0.01	mg/L	<0.01	1 mg/L	96.4	90.0	110
EK057G: Nitrite as N by Discrete Analyser (QCLot: 4	4880722)							
EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	0.5 mg/L	91.4	90.0	110
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete	Analyser (QCLot: 4884	1421)						
EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	0.5 mg/L	97.9	90.0	110
EK061G: Total Kjeldahl Nitrogen By Discrete Analyse	er (OCI of: 4884194)							1
EK061G: Total Kjeldahl Nitrogen as N	(QCLUL 4004194)	0.1	mg/L	<0.1	5 mg/L	93.7	70.0	117

Page : 5 of 5 Work Order : EM2302775

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill 1 of 3

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EP005: Total Organic Carbon (TOC) (QCLot: 4887576)									
EP005: Total Organic Carbon		1	mg/L	<1	100 mg/L	94.9	81.2	110	
EP026SP: Chemical Oxygen Demand (Spectrophotometric)	(QCLot: 489	0950)							
EP026SP: Chemical Oxygen Demand		10	mg/L	<10	500 mg/L	102	89.7	111	
EP045: Volatile Acids as CH3COOH (QCLot: 4887593)									
EP045: Volatile Acids as Acetic Acid		5	mg/L	<5	185 mg/L	101	85.5	116	

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER				Ma	trix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Acceptable L	imits (%)
aboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA (QCLot: 4880723)						
EM2302775-001	BH2 Groundwater Bore	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	100 mg/L	97.6	70.0	130
ED045G: Chloride	by Discrete Analyser (QCLot: 4880724)						
EM2302775-001	BH2 Groundwater Bore	ED045G: Chloride	16887-00-6	400 mg/L	91.7	70.0	142
EG020T: Total Me	tals by ICP-MS (QCLot: 4887233)						
EM2301023-015	Anonymous	EG020A-T: Chromium	7440-47-3	1 mg/L	94.9	78.9	119
		EG020A-T: Zinc	7440-66-6	1 mg/L	102	74.0	120
EK055G: Ammoni	a as N by Discrete Analyser (QCLot: 4884420)						
EM2302747-001	Anonymous	EK055G: Ammonia as N	7664-41-7	1 mg/L	130	70.0	130
EK057G: Nitrite a	s N by Discrete Analyser (QCLot: 4880722)						
EM2302775-001	BH2 Groundwater Bore	EK057G: Nitrite as N	14797-65-0	0.5 mg/L	94.2	80.0	114
EK059G: Nitrite p	lus Nitrate as N (NOx) by Discrete Analyser (QCLot: 488	34421)					
EM2302700-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.5 mg/L	99.4	70.0	130
EK061G: Total Kje	Idahl Nitrogen By Discrete Analyser (QCLot: 4884194)						
EM2302747-002	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		5 mg/L	96.9	70.0	130
EP005: Total Orga	nic Carbon (TOC) (QCLot: 4887576)						
EM2302773-001	Anonymous	EP005: Total Organic Carbon		100 mg/L	105	76.6	125
EP026SP: Chemic	al Oxygen Demand (Spectrophotometric) (QCLot: 48909	150)					
EM2302694-002	Anonymous	EP026SP: Chemical Oxygen Demand		5000 mg/L	90.8	70.0	130

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **EM2302775** Page : 1 of 7

Client : VENTIA UTILITY SERVICES PTY LTD Laboratory : Environmental Division Melbourne

 Contact
 : ROBERT CALLANDER
 Telephone
 : +6138549 9645

 Project
 : Creswick Landfill 1 of 3
 Date Samples Received
 : 17-Feb-2023

 Site
 :--- Issue Date
 : 24-Feb-2023

Sampler : --- No. of samples received : 1

Order number : Creswick Landfill 1 of 3 No. of samples analysed : 1

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

• NO Quality Control Sample Frequency Outliers exist.

Page : 2 of 7
Work Order : EM2302775

Client · VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill 1 of 3

Matrix: WATER

Matrix. Water						
Method	E	xtraction / Preparation		Analysis		
Container / Client Sample ID(s)	Date extracted	Due for extraction	Days	Date analysed	Due for analysis	Days
			overdue			overdue
EA005P: pH by PC Titrator						
Clear Plastic Bottle - Natural						
BH2 - Groundwater Bore				22-Feb-2023	17-Feb-2023	5

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: WATER

Evaluation: * = Holding time breach: \checkmark = Within holding time.

Matrix: WATER				Evaluation	i: 🗴 = Holding time	breach; ✓ = vvitni	n nolaing tim
Method	Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA005P: pH by PC Titrator							
Clear Plastic Bottle - Natural (EA005-P) BH2 - Groundwater Bore	17-Feb-2023				22-Feb-2023	17-Feb-2023	×
EA010P: Conductivity by PC Titrator							
Clear Plastic Bottle - Natural (EA010-P) BH2 - Groundwater Bore	17-Feb-2023				22-Feb-2023	17-Mar-2023	✓
EA015: Total Dissolved Solids dried at 180 ± 5 °C							
Clear Plastic Bottle - Natural (EA015H) BH2 - Groundwater Bore	17-Feb-2023				23-Feb-2023	24-Feb-2023	✓
ED037P: Alkalinity by PC Titrator							
Clear Plastic Bottle - Natural (ED037-P) BH2 - Groundwater Bore	17-Feb-2023				22-Feb-2023	03-Mar-2023	✓
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA							
Clear Plastic Bottle - Natural (ED041G) BH2 - Groundwater Bore	17-Feb-2023				23-Feb-2023	17-Mar-2023	✓
ED045G: Chloride by Discrete Analyser							
Clear Plastic Bottle - Natural (ED045G) BH2 - Groundwater Bore	17-Feb-2023				23-Feb-2023	17-Mar-2023	✓
ED093F: Dissolved Major Cations							
Clear Plastic Bottle - Natural (ED093F) BH2 - Groundwater Bore	17-Feb-2023				21-Feb-2023	24-Feb-2023	√

Page : 3 of 7
Work Order : EM2302775

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill 1 of 3

Matrix: WATER				Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding tim	
Method	Sample Date	E	traction / Preparation			Analysis		
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
EG020T: Total Metals by ICP-MS								
Clear Plastic Bottle - Nitric Acid; Unfiltered (EG020A-T) BH2 - Groundwater Bore	17-Feb-2023	22-Feb-2023	16-Aug-2023	1	22-Feb-2023	16-Aug-2023	✓	
EK055G: Ammonia as N by Discrete Analyser								
Clear Plastic Bottle - Sulfuric Acid (EK055G) BH2 - Groundwater Bore	17-Feb-2023				23-Feb-2023	17-Mar-2023	✓	
EK057G: Nitrite as N by Discrete Analyser								
Clear Plastic Bottle - Natural (EK057G) BH2 - Groundwater Bore	17-Feb-2023				18-Feb-2023	19-Feb-2023	✓	
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser								
Clear Plastic Bottle - Sulfuric Acid (EK059G) BH2 - Groundwater Bore	17-Feb-2023				23-Feb-2023	17-Mar-2023	√	
EK061G: Total Kjeldahl Nitrogen By Discrete Analyser								
Clear Plastic Bottle - Sulfuric Acid (EK061G) BH2 - Groundwater Bore	17-Feb-2023	24-Feb-2023	17-Mar-2023	1	24-Feb-2023	17-Mar-2023	√	
EP005: Total Organic Carbon (TOC)								
Amber TOC Vial - Sulfuric Acid (EP005) BH2 - Groundwater Bore	17-Feb-2023				23-Feb-2023	17-Mar-2023	✓	
EP026SP: Chemical Oxygen Demand (Spectrophotometric)								
Clear Plastic Bottle - Sulfuric Acid (EP026SP) BH2 - Groundwater Bore	17-Feb-2023				23-Feb-2023	17-Mar-2023	✓	
EP045: Volatile Acids as CH3COOH								
Clear Plastic Bottle - Natural (EP045) BH2 - Groundwater Bore	17-Feb-2023				22-Feb-2023	03-Mar-2023	√	

Page : 4 of 7 Work Order EM2302775

VENTIA UTILITY SERVICES PTY LTD Client

Creswick Landfill 1 of 3 Project

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

the expected	Tale. A list	iliy oi bicac	ries is brovio	ded iii tile 30	illillially Ol	Outileis

Quality Control Sample Type		Co	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	OC OC	Regular	Actual	Expected	Evaluation	quality control operation
Laboratory Duplicates (DUP)							
Alkalinity by Auto Titrator	ED037-P	2	19	10.53	10.00	1	NEPM 2013 B3 & ALS QC Standard
Ammonia as N by Discrete analyser	EK055G	2	15	13.33	10.00		NEPM 2013 B3 & ALS QC Standard
Chemical Oxygen Demand (COD) (Spectrophotometric)	EP026SP	2	19	10.53	10.00	<u> </u>	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G	1	2	50.00	10.00		NEPM 2013 B3 & ALS QC Standard
Conductivity by Auto Titrator	EA010-P	2	12	16.67	10.00		NEPM 2013 B3 & ALS QC Standard
Major Cations - Dissolved	ED093F	2	17	11.76	10.00	√	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	19	10.53	10.00	√	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	1	6	16.67	10.00	<u>√</u>	NEPM 2013 B3 & ALS QC Standard
pH by Auto Titrator	EA005-P	2	15	13.33	10.00	√	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	1	2	50.00	10.00	√	NEPM 2013 B3 & ALS QC Standard
Total Dissolved Solids (High Level)	EA015H	4	40	10.00	10.00	<u>√</u>	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	2	12	16.67	10.00	<u>√</u>	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	2	19	10.53	10.00	√	NEPM 2013 B3 & ALS QC Standard
Total Organic Carbon	EP005	2	11	18.18	10.00	√	NEPM 2013 B3 & ALS QC Standard
/olatile Acids as CH3COOH	EP045	1	10	10.00	10.00	√	NEPM 2013 B3 & ALS QC Standard
_aboratory Control Samples (LCS)							
Alkalinity by Auto Titrator	ED037-P	1	19	5.26	5.00	1	NEPM 2013 B3 & ALS QC Standard
Ammonia as N by Discrete analyser	EK055G	1	15	6.67	5.00	√	NEPM 2013 B3 & ALS QC Standard
Chemical Oxygen Demand (COD) (Spectrophotometric)	EP026SP	1	19	5.26	5.00	√	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G	2	2	100.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Conductivity by Auto Titrator	EA010-P	1	12	8.33	5.00	√	NEPM 2013 B3 & ALS QC Standard
Major Cations - Dissolved	ED093F	1	17	5.88	5.00	√	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	1	6	16.67	5.00	√	NEPM 2013 B3 & ALS QC Standard
pH by Auto Titrator	EA005-P	2	15	13.33	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	2	2	100.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Dissolved Solids (High Level)	EA015H	3	40	7.50	7.50	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	12	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Fotal Organic Carbon	EP005	1	11	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Volatile Acids as CH3COOH	EP045	1	10	10.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Ammonia as N by Discrete analyser	EK055G	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Chemical Oxygen Demand (COD) (Spectrophotometric)	EP026SP	1	19	5.26	5.00	√	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G	1	2	50.00	5.00	√	NEPM 2013 B3 & ALS QC Standard
Conductivity by Auto Titrator	EA010-P	1	12	8.33	5.00		NEPM 2013 B3 & ALS QC Standard

Page : 5 of 7
Work Order : EM2302775

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill 1 of 3

Matrix: WATER				Evaluatio	n: × = Quality Co	ntrol frequency	not within specification; ✓ = Quality Control frequency within specifica
Quality Control Sample Type		С	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
Method Blanks (MB) - Continued							
Major Cations - Dissolved	ED093F	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
litrite as N by Discrete Analyser	EK057G	1	6	16.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	1	2	50.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
otal Dissolved Solids (High Level)	EA015H	2	40	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
otal Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	12	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
otal Metals by ICP-MS - Suite A	EG020A-T	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
otal Organic Carbon	EP005	1	11	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard
/olatile Acids as CH3COOH	EP045	1	10	10.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
Ammonia as N by Discrete analyser	EK055G	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Chemical Oxygen Demand (COD) (Spectrophotometric)	EP026SP	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G	1	2	50.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
litrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
litrite as N by Discrete Analyser	EK057G	1	6	16.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
ulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	1	2	50.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
otal Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	12	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
otal Metals by ICP-MS - Suite A	EG020A-T	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
otal Organic Carbon	EP005	1	11	9.09	5.00	√	NEPM 2013 B3 & ALS QC Standard

Page : 6 of 7
Work Order : EM2302775

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill 1 of 3

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
pH by Auto Titrator	EA005-P	WATER	In house: Referenced to APHA 4500 H+ B. This procedure determines pH of water samples by automated ISE. This method is compliant with NEPM Schedule B(3)
Conductivity by Auto Titrator	EA010-P	WATER	In house: Referenced to APHA 2510 B. This procedure determines conductivity by automated ISE. This method is compliant with NEPM Schedule B(3)
Total Dissolved Solids (High Level)	EA015H	WATER	In house: Referenced to APHA 2540C. A gravimetric procedure that determines the amount of `filterable` residue in an aqueous sample. A well-mixed sample is filtered through a glass fibre filter (1.2um). The filtrate is evaporated to dryness and dried to constant weight at 180+/-5C. This method is compliant with NEPM Schedule B(3)
Alkalinity by Auto Titrator	ED037-P	WATER	In house: Referenced to APHA 2320 B This procedure determines alkalinity by automated measurement (e.g. PC Titrate) on a settled supernatant aliquot of the sample using pH 4.5 for indicating the total alkalinity end-point. This method is compliant with NEPM Schedule B(3)
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	WATER	In house: Referenced to APHA 4500-SO4. Dissolved sulfate is determined in a 0.45um filtered sample. Sulfate ions are converted to a barium sulfate suspension in an acetic acid medium with barium chloride. Light absorbance of the BaSO4 suspension is measured by a photometer and the SO4-2 concentration is determined by comparison of the reading with a standard curve. This method is compliant with NEPM Schedule B(3)
Chloride by Discrete Analyser	ED045G	WATER	In house: Referenced to APHA 4500 CI - G.The thiocyanate ion is liberated from mercuric thiocyanate through sequestration of mercury by the chloride ion to form non-ionised mercuric chloride. In the presence of ferric ions the liberated thiocynate forms highly-coloured ferric thiocynate which is measured at 480 nm.
Major Cations - Dissolved	ED093F	WATER	In house: Referenced to APHA 3120 and 3125; USEPA SW 846 - 6010 and 6020; Cations are determined by either ICP-AES or ICP-MS techniques. This method is compliant with NEPM Schedule B(3) Sodium Adsorption Ratio is calculated from Ca, Mg and Na which determined by ALS in house method QWI-EN/ED093F. This method is compliant with NEPM Schedule B(3) Hardness parameters are calculated based on APHA 2340 B. This method is compliant with NEPM Schedule B(3)
Total Metals by ICP-MS - Suite A	EG020A-T	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Ammonia as N by Discrete analyser	EK055G	WATER	In house: Referenced to APHA 4500-NH3 G Ammonia is determined by direct colorimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)
Nitrite as N by Discrete Analyser	EK057G	WATER	In house: Referenced to APHA 4500-NO2- B. Nitrite is determined by direct colourimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)
Nitrate as N by Discrete Analyser	EK058G	WATER	In house: Referenced to APHA 4500-NO3- F. Nitrate is reduced to nitrite by way of a chemical reduction followed by quantification by Discrete Analyser. Nitrite is determined seperately by direct colourimetry and result for Nitrate calculated as the difference between the two results. This method is compliant with NEPM Schedule B(3)
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	WATER	In house: Referenced to APHA 4500-NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by Chemical Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)

Page : 7 of 7
Work Order : EM2302775

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill 1 of 3

Analytical Methods	Method	Matrix	Method Descriptions
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	WATER	In house: Referenced to APHA 4500-Norg D (In house). An aliquot of sample is digested using a high temperature Kjeldahl digestion to convert nitrogenous compounds to ammonia. Ammonia is determined colorimetrically by discrete analyser. This method is compliant with NEPM Schedule B(3)
Ionic Balance by PCT DA and Turbi SO4 DA	* EN055 - PG	WATER	In house: Referenced to APHA 1030F. This method is compliant with NEPM Schedule B(3)
Field Tests (performed by external sampler)	* EN67-B02	WATER	Field determinations as per methods described in APHA or supplied by client. The analysis is performed in the field by non-ALS samplers. ALS NATA accreditation does not apply for this service.
Total Organic Carbon	EP005	WATER	In house: Referenced to APHA 5310 B, The automated TOC analyzer determines Total and Inorganic Carbon by IR cell. TOC is calculated as the difference. This method is compliant with NEPM Schedule B(3)
Chemical Oxygen Demand (COD) (Spectrophotometric)	EP026SP	WATER	In house: Referenced to APHA 5220 D. Samples are digested with a known excess of an acidic potassium dichromate solution using silver sulfate as a catalyst. The chromium is reduced from the Cr (VI) oxidation state to the Cr (III) state by the oxygen present in the organic material. Both of these chromium species are coloured and absorb in the visible region of (400nm & 600nm) the spectrum. The oxidisable organic matter can be calculated in terms of oxygen equivalents.
Volatile Acids as CH3COOH	EP045	WATER	In house: Referenced to APHA 5560 C. Steam distillable acids are captured in caustic solution and determined titremetrically. This method is compliant with NEPM Schedule B(3)
Preparation Methods	Method	Matrix	Method Descriptions
TKN/TP Digestion	EK061/EK067	WATER	In house: Referenced to APHA 4500 Norg - D; APHA 4500 P - H. This method is compliant with NEPM Schedule B(3)
Digestion for Total Recoverable Metals	EN25	WATER	In house: Referenced to USEPA SW846-3005. Method 3005 is a Nitric/Hydrochloric acid digestion procedure used to prepare surface and ground water samples for analysis by ICPAES or ICPMS. This method is compliant with NEPM Schedule B(3)

BURWOOD VIC 3125

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order : EM2302775

Client : VENTIA UTILITY SERVICES PTY LTD Laboratory : Environmental Division Melbourne

Contact : ROBERT CALLANDER Contact : Peter Ravlic

Address : 25-37 HUNTINGDALE ROAD Address : 4 Westall Rd Springvale VIC Australia

3171

 Telephone
 : --- Telephone
 : +6138549 9645

 Facsimile
 : --- Facsimile
 : +61-3-8549 9626

Project : Creswick Landfill 1 of 3 Page : 1 of 3

 Order number
 : --- Quote number
 : EM2016THISER0010 (ME/793/19)

 C-O-C number
 : --- QC Level
 : NEPM 2013 B3 & ALS QC Standard

Site : ----

Sampler :

Dates

Date

Delivery Details

Mode of Delivery : Client Drop Off Security Seal : Intact.

No. of coolers/boxes : 1 Temperature : 8.3°C - Ice present

Receipt Detail : No. of samples received / analysed : 1 / 1

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- Please direct any queries related to sample condition / numbering / breakages to Client Services.
- Sample Disposal Aqueous (3 weeks), Solid (2 months) from receipt of samples.
- Analytical work for this work order will be conducted at ALS Springvale.
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The laboratory will process these samples unless instructions are received from you indicating you do not wish to proceed. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.

Issue Date · 17-Feb-2023

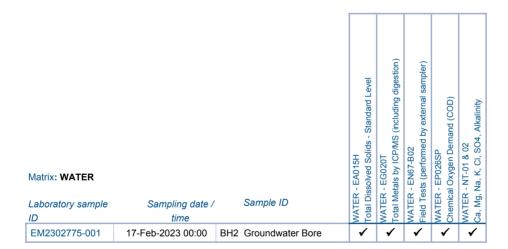
Page

2 of 3 EM2302775 Amendment 0 Work Order

Client : VENTIA UTILITY SERVICES PTY LTD

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.


• No sample container / preservation non-compliance exists.

Any sample identifications that cannot be displayed entirely in the analysis summary table will be listed below.

EM2302775-001 · [17-Feb-2023] · BH2 - Groundwater Bore

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such otal Kjeldahl Nitrogen as N (TKN) By Discrete as the determination of moisture content and preparation tasks, that are included in the package. (Auto Titrator) If no sampling time is provided, the sampling time will nmonia as N By Discrete Analyser Vitrate as N by Discrete Analyser default 00:00 on the date of sampling. If no sampling date otal Organic Carbon (TOC) Volatile Acids as CH3COOH is provided, the sampling date will be assumed by the laboratory and displayed in brackets without a time ectrical Conductivity component VATER - EK055G VATER - EA010P VATER - EK058G NATER - EA005F VATER - EP005 Matrix: WATER Sample ID Laboratory sample Sampling date / ID time EM2302775-001 17-Feb-2023 00:00 BH2 Groundwater Bore

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Issue Date : 17-Feb-2023

Page

Work Order

3 of 3 EM2302775 Amendment 0 VENTIA UTILITY SERVICES PTY LTD Client

Requested Deliverables

	C١				

- *AU Certificate of Analysis - NATA (COA)	Email	lucy.edwards@ventia.com.au
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	lucy.edwards@ventia.com.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	lucy.edwards@ventia.com.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	lucy.edwards@ventia.com.au
- Chain of Custody (CoC) (COC)	Email	lucy.edwards@ventia.com.au
- EDI Format - ENMRG (ENMRG)	Email	lucy.edwards@ventia.com.au
- EDI Format - ESDAT (ESDAT)	Email	lucv.edwards@ventia.com.au

NICOLE ROBBINS

- A4 - AU Tax Invoice (INV) Email nicole.robbins@ventia.com

Ping Yao

 *AU Certificate of Analysis - NATA (COA) 	Email	ping.yao@ventia.com
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	ping.yao@ventia.com
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	ping.yao@ventia.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	ping.yao@ventia.com
- Chain of Custody (CoC) (COC)	Email	ping.yao@ventia.com
- EDI Format - ENMRG (ENMRG)	Email	ping.yao@ventia.com
- EDI Format - ESDAT (ESDAT)	Email	ping.yao@ventia.com

ROBERT CALLANDER

- *AU Certificate of Analysis - NATA (COA)	Email	robert.callander@ventia.com
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	robert.callander@ventia.com
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	robert.callander@ventia.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	robert.callander@ventia.com
- A4 - AU Tax Invoice (INV)	Email	robert.callander@ventia.com
- Chain of Custody (CoC) (COC)	Email	robert.callander@ventia.com
- EDI Format - ENMRG (ENMRG)	Email	robert.callander@ventia.com
- EDI Format - ESDAT (ESDAT)	Email	robert.callander@ventia.com
- Purchase Order Request Letter (PO_Request)	Email	robert.callander@ventia.com

CHAIN OF CUSTODY

ME/793/19

(Client:	Ventia									Ref:			Cres	wick La	ndfill 1	of 3											
Co	ntact:			Rob	ert Cal	lan	der		-		TEST	SREC	UIRE	ED AS	PER (QUOTE	ME/4	12/1	6									
Add	dress:		25-37 Hur	ntingd	ale Roa	ale Road, Burwood, 3125																						
Р	hone:	04275	529051	1	Fax:																							
Email: ping.yao@ventia.com lucy.edwards@ventia.com robert.callander@ventia				tia.cor																								
P/0	O No.:				te No.:	IV	IE/412/16																					
T/A	Time:																											
Sample ID		Sample Description			Sample Description		Sample Description		pple Description		Description		Description		ers	Date Sampled	Time sampled	Matrix	표	EC	8	TEMP	ORP	SWL				
BH1	Groun	ndwater Bore			Ö		17/2/23	600,000,000,74,000,000,000,000,000,000,00	Be	re	los	20	- 1	o ro	000	rear	Receive	201										
BH2	Groun	roundwater Bore					V			2.69	19.7		2.48															
ВН3	Groun	dwater	Bore				11-1	-,00			-								1 - 7									
BH4	Groun	dwater	Bore												TO COMPANY OF THE PARTY OF THE	ironmenta bourne	al Divis	sion										
ВН6	Groun	dwater	Bore												W	ork Order F												
ВН7	Groun	dwater	Bore													t	EM23	027	15									
ВН8	Groun	dwater	Bore															L HAVE B	ailli 🗍									
ВН9	Groun	ndwater	Bore								e	4		1.29														
ı	Special Please email Invoices to Nicole.robins@ventia.com Instructions:														Teleph	none : + 61-3-85	49 96 00											
Reli	Relinquished By: Company: Date:						Time:		Rec	eived By	' :	Co	mpany:		Date	e:	Time:											
A C	A Callender Ventia 17/2/23				2/23	12	50		14	egy	an Acs			17.02	-23	12722												
over-ride pr As an Occu	his form is for recording of sample data after prior consultation with an analyst regarding sampling procedures and does not ver-ride pricing agreements, OHS requirements and our terms and conditions. Is an Occupational Health and Safety consideration, it is a requirement of Ecowise Environmental (Victoria), that all sample acceived be undamaged and prior advice given in writing of any potential health risks.										LAB	USE ONLY		Sample con	Samples	Sample within recon	es received us adequately nmended hole	preserv	red [Yes/No] es: [Yes/No]									

CHAIN OF CUSTODY

Cli	ient:	10		1	/entia				Job	Ref:			Cres	wick La	ndfill 2	of 3		
Cont	tact:			Rober	t Calla	nder				TECT	S DEC	IIIDE	DAG	DED	OLIOT	E ME/4	12/1	C
Addr			25-37 Hunt				d, 3125			LOI	S NEG	ZOINL	DAS	FER	QUUI	C IVIC/4	12/1	9
Pho	one:	0427	529051		Fax:		1	7						1				
	nail:		yao@ventia.co															
Managara			edwards@vent		com													
		rober	t.callander@ve	entia.co														
P/O	No.:			Quote No.:														
T/A T	ime:																	
Sample ID			SCIEDS OF THE RESERVED TO	No of ontainer	Date Sample d	Time sample d		H.	EC	00	TEMP	ORP	SWL					
BH10	Grou	ndwat	er bore	SANCHAR WARTER				basa viking dan da										
BH13	Grou	ndwat	er bore												-			
LB1	Leac	hate b	ore		6				DI	Arte	En	010	CA	1000	0			
LB2	Leac	hate b						13L	OCK	トレ	100	24	MPI					
LB3	Leac	hate b	ore						ONLY	NO	SAM	PLE -	SWL					
BLIND	Blind	l dun /	analysed by AL	6)		-										-		
RINSAT		ate bla		.3)														
E	KIIIS	ate Dia	IIIK															
		5													-			
Ins	Spe	ecial ons:	Please email	Invoices	s to Nic	ole.robins	@ventia.d	com										
Relinq	uished	hed By: Company: Date: Tir								Rec	eived By	:	Co	mpany:		Date	:	Time:
A Callender Ventia 17/2/23 125								50		1-12	ah		ALS			17-02-	25 1	7:55
This form is for recording of sample data after prior consultation with an analyst regarding sampling procedure not over-ride pricing agreements, OHS requirements and our terms and conditions. As an Occupational Health and Safety consideration, it is a requirement of Ecowise Environmental (Victoria),											LAB USE	A Victoria de la constante de		nple condit	Sample	Samples re	preserve	ndamaged [Yes/No] d [Yes/No]
samples receive	ed be ur	ndamage	d and prior advice giv	en in writin	g of any p	otential health	risks.	ionaj, inat								appropriate te		

Document: OF002 i1

ALS) Group

CHAIN OF CUSTODY

2-4 Westall Rd, Springvale VIC 3171

(171)

Client:		Ventia					Job	Job Ref: Creswick Landfill									
Contact		D. L. A O. II.															
Contact:		Robert Callander					P	lease	e forv	vard	to El	JROF	INS	for an	alvsis		
Address:		25-37 Huntingdale Road, Burwood, 3125					Please forward to EUROFINS for analysis										
			529051	Fax:													
Email:		lucy.edwards@ventia.com										i s					
		ping.yao@ventia.com															
		robert.callander@ventia.com															
P/O No.:		Quote No.: 190924VENV															
T/A T	ime:																
Sample ID		Samp	le Description	No of Containers	Date Sampled	Time sampled	Matrix	PH	EC	00	TEMP	ORP	SWL				
Creswick SPLIT	Grou	ndwat	er	5	10/5/23	1011	W	4.97	563	0.56	14.9	229.4	1196				
								·	,				10				
ы									,								
	Special Please email Invoices to Nicole.robins@ventia.com																
Instructions: Lucy.edwards@ventia.com																	
Relinquished I		г Бу.			ate: Time:			Received By:			Company:			Date:	Time	e:	
A Callander			7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7						moon			for			11/5	10-0	ð
Relinquished I		By:	By: Company: Da		ite:	Time:			Received By:			Company:			Date:	Time	e:
ELP		ALS		11/5/23 19		15		3 aug K	Bons Dosay =		EE			12/5/23 9:25			
This form is for recording of sample data after prior consultation with an analyst regarding sampling procedures and over-ride pricing agreements, OHS requirements and our terms and conditions.							LAB	<u>LAB USE ONLY</u> Sample conditions: Samples received unda Samples adequately pre			damaged [Yes	s/No]					
As an Occupational Health and Safety consideration, it is a requirement of Ecowise Environmental (Victoria), that all s received be undamaged and prior advice given in writing of any potential health risks.						amples				s	Samples v	vithin recon	nmended holdi appropriate ten	na times: [Yes	s/No1		

Document: OF002 i1

Ice 6.40

12/3/20

Environment Testing

Ventia Utility Services P/L (Burwood) Unit 11, 25-37 Huntingdale Rd Burwood VIC 3125

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention: Robert Callander

Report 989018-W

Project name CRESWICK LANDFILL

Received Date May 12, 2023

Client Sample ID			CRESWICK SPLIT
Sample Matrix			Water
Eurofins Sample No.			M23- My0031166
Date Sampled			May 10, 2023
Test/Reference	LOR	Unit	
Volatile Fatty Acids (VFA) by GC-MS	·		
Acetic Acid	5	mg/L	< 5
Propionic acid	5	mg/L	< 5
Isobutyric acid	5	mg/L	< 5
Butyric acid	5	mg/L	< 5
Isovaleric acid	5	mg/L	< 5
Valeric acid	5	mg/L	< 5
4-Methylvaleric acid	5	mg/L	< 5
Hexanoic acid	5	mg/L	< 5
Heptanoic acid	5	mg/L	< 5
Total VFA as Acetic Acid Equivalents	5	mg/L	< 5
Ammonia (as N)	0.01	mg/L	0.03
Chemical Oxygen Demand (COD)	25	mg/L	< 25
Chloride	1	mg/L	190
Nitrate (as N)	0.02	mg/L	2.4
Organic Nitrogen (as N)*	0.2	mg/L	0.27
Sulphate (as SO4)	5	mg/L	19
Total Dissolved Solids Dried at 180 °C ± 2 °C	10	mg/L	280
Total Kjeldahl Nitrogen (as N)	0.2	mg/L	0.3
Total Organic Carbon	5	mg/L	< 5
Alkalinity (speciated)			
Bicarbonate Alkalinity (as CaCO3)	20	mg/L	< 20
Carbonate Alkalinity (as CaCO3)	10	mg/L	< 10
Hydroxide Alkalinity (as CaCO3)	20	mg/L	< 20
Total Alkalinity (as CaCO3)	20	mg/L	< 20
Heavy Metals			
Arsenic	0.001	mg/L	< 0.001
Cadmium	0.0002	mg/L	< 0.0002
Chromium	0.001	mg/L	< 0.001
Copper	0.001	mg/L	0.002
Lead	0.001	mg/L	< 0.001
Mercury	0.0001	mg/L	< 0.0001
Nickel	0.001	mg/L	0.016
Zinc	0.005	mg/L	0.031

Environment Testing

Client Sample ID			CRESWICK SPLIT	
Sample Matrix			Water	
Eurofins Sample No.				M23- My0031166
Date Sampled				May 10, 2023
Test/Reference		LOR	Unit	
Alkali Metals				
Calcium		0.5	mg/L	3.6
Magnesium		0.5	mg/L	15
Potassium		0.5	mg/L	1.3
Sodium		0.5	mg/L	86

Environment Testing

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Volatile Fatty Acids (VFA) by GC-MS	Melbourne	May 12, 2023	28 Day
- Method: LTM-ORG-2360 Determination of Volatile Fatty Acids in Water by GC-MS			
Chemical Oxygen Demand (COD)	Melbourne	May 12, 2023	28 Days
- Method: LTM-INO-4220 Determination of COD in Water			
Nitrate (as N)	Melbourne	May 12, 2023	28 Days
- Method: LTM-INO-4120 Analysis of NOx NO2 NH3 by FIA			
Total Organic Carbon	Melbourne	May 12, 2023	28 Days
- Method: LTM-INO-4060 Total Organic Carbon in water and soil			
Metals M8	Melbourne	May 12, 2023	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Eurofins Suite B11C: Na/K/Ca/Mg	Melbourne	May 12, 2023	180 Days
- Method: LTM-MET-3010 Alkali Metals by ICP-AES			
Ammonia (as N)	Melbourne	May 12, 2023	28 Days
- Method: APHA 4500-NH3 Ammonia Nitrogen by FIA			
Organic Nitrogen (as N)*	Melbourne	May 12, 2023	7 Days
- Method: APHA 4500 Organic Nitrogen (N)			
Total Kjeldahl Nitrogen (as N)	Melbourne	May 12, 2023	28 Days
- Method: APHA 4500-Norg B,D Total Kjeldahl Nitrogen by FIA			
Eurofins Suite B11E: Cl/SO4/Alkalinity			
Chloride	Melbourne	May 12, 2023	28 Days
- Method: LTM-INO-4090 Chloride by Discrete Analyser			
Sulphate (as SO4)	Melbourne	May 12, 2023	28 Days
- Method: LTM-INO-4110 Sulfate by Discrete Analyser			
Alkalinity (speciated)	Melbourne	May 12, 2023	14 Days
- Method: LTM-INO-4250 Alkalinity by Electrometric Titration			
Total Dissolved Solids Dried at 180 °C ± 2 °C	Melbourne	May 12, 2023	28 Days
- Method: LTM-INO-4170 Total Dissolved Solids in Water			

web: www.eurofins.com.au email: EnviroSales@eurofins.com

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne Geelong 6 Monterey Road 19/8 Lewalan Street Dandenong South Grovedale VIC 3175 VIC 3216 Tel: +61 3 8564 5000 Tel: +61 3 8564 5000

Sydney 179 Magowar Road Girraween NSW 2145 Tel: +61 2 9900 8400

Brisbane Unit 1.2 Dacre Street 1/21 Smallwood Place Murarrie QLD 4172

Newcastle 1/2 Frost Drive Tel: +61 2 4968 8448 Tel: +61 7 3902 4600 NATA# 1261

Mayfield West NSW 2304 NATA# 1261 Site# 1254 NATA# 1261 Site# 25403 NATA# 1261 Site# 18217 NATA# 1261 Site# 25466 NATA# 1261 Site# 20794 Site# 25079 & 25289

NZBN: 9429046024954

Auckland Christchurch 35 O'Rorke Road Penrose, Rolleston, Auckland 1061 Tel: +64 9 526 4551 IANZ# 1327

43 Detroit Drive Christchurch 7675 Tel: +64 3 343 5201 IANZ# 1290

Company Name:

Ventia Utility Services P/L (Burwood)

Address:

Project Name:

Unit 11, 25-37 Huntingdale Rd

CRESWICK LANDFILL

Burwood

VIC 3125

Order No.: Report #:

Canberra

Mitchell

ACT 2911

Tel: +61 2 6113 8091

989018

Phone: Fax:

03 9861 8169 03 9861 8101

Received: May 12, 2023 9:25 AM Due: May 19, 2023

Priority: 5 Day **Contact Name:** Robert Callander

ABN: 91 05 0159 898

46-48 Banksia Road

Tel: +61 8 6253 4444

NATA# 2377 Site# 2370

Perth

Welshpool

WA 6106

Eurofins Analytical Services Manager: Savini Suduweli

```	Jeot Rame.	OKLOWICK	L/ (I VD) ILL											
		Sa	mple Detail			Chemical Oxygen Demand (COD)	Nitrate (as N)	Total Organic Carbon	Metals M8	Organic Nitrogen Set (as N)	Eurofins Suite B11E: Cl/SO4/Alkalinity	Eurofins Suite B11C: Na/K/Ca/Mg	Total Dissolved Solids Dried at 180 °C ± 2 °C	Volatile Fatty Acids (VFA) by GC-MS
Melb	ourne Laborato	ory - NATA # 12	61 Site # 12	54		Χ	Х	Х	Х	Х	Х	Х	Х	Х
Exte	rnal Laboratory													
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID									
1	CRESWICK SPLIT	May 10, 2023		Water	M23-My0031166	Х	Х	Х	Х	Х	Х	Х	Х	Х
Test	Counts					1	1	1	1	1	1	1	1	1



#### **Internal Quality Control Review and Glossary**

#### General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant, Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

#### **Holding Times**

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

#### Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre µg/L: micrograms per litre

ppm: parts per million ppb: parts per billion %: Percentage

org/100 mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100 mL: Most Probable Number of organisms per 100 millilitres

CFU: Colony forming unit

#### Terms

APHA American Public Health Association

COC Chain of Custody

CP Client Parent - QC was performed on samples pertaining to this report
CRM Certified Reference Material (ISO17034) - reported as percent recovery

**Dry** Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

**Duplicate** A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

LOR Limit of Reporting

LCS Laboratory Control Sample - reported as percent recovery.

Method Blank

In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

NCP

Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

SRA Sample Receipt Advice

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

TBTO Tributyltin oxide (bis-tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment however free tributyltin was measured

and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits.

TCLP Toxicity Characteristic Leaching Procedure
TEQ Toxic Equivalency Quotient or Total Equivalence

QSM US Department of Defense Quality Systems Manual Version 5.4

US EPA United States Environmental Protection Agency

WA DWER Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

#### QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30% NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.4 where no positive PFAS results have been reported have been reviewed and no data was affected.

#### **QC Data General Comments**

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.



# **Quality Control Results**

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Volatile Fatty Acids (VFA) by GC-MS					
Acetic Acid	mg/L	< 5	5	Pass	
Propionic acid	mg/L	< 5	5	Pass	
Isobutyric acid	mg/L	< 5	5	Pass	
Butyric acid	mg/L	< 5	5	Pass	
Isovaleric acid	mg/L	< 5	5	Pass	
Valeric acid	mg/L	< 5	5	Pass	
4-Methylvaleric acid	mg/L	< 5	5	Pass	
Hexanoic acid	mg/L	< 5	5	Pass	
Heptanoic acid	mg/L	< 5	5	Pass	
Total VFA as Acetic Acid Equivalents	mg/L	< 5	5	Pass	
Method Blank					
Ammonia (as N)	mg/L	< 0.01	0.01	Pass	
Chemical Oxygen Demand (COD)	mg/L	< 25	25	Pass	
Chloride	mg/L	< 1	1	Pass	
Nitrate (as N)	mg/L	< 0.02	0.02	Pass	
Sulphate (as SO4)	mg/L	< 5	5	Pass	
Total Dissolved Solids Dried at 180 °C ± 2 °C	mg/L	< 10	10	Pass	
Total Kjeldahl Nitrogen (as N)	mg/L	< 0.2	0.2	Pass	
Total Organic Carbon	mg/L	< 5	5	Pass	
Method Blank				1 3.00	
Alkalinity (speciated)					
Bicarbonate Alkalinity (as CaCO3)	mg/L	< 20	20	Pass	
Carbonate Alkalinity (as CaCO3)	mg/L	< 10	10	Pass	
Hydroxide Alkalinity (as CaCO3)	mg/L	< 20	20	Pass	
Total Alkalinity (as CaCO3)	mg/L	< 20	20	Pass	
Method Blank	ı mg/E	120		1 400	
Heavy Metals				П	
Arsenic	mg/L	< 0.001	0.001	Pass	
Cadmium	mg/L	< 0.0002	0.0002	Pass	
Chromium	mg/L	< 0.001	0.002	Pass	
Copper	mg/L	< 0.001	0.001	Pass	
Lead	mg/L	< 0.001	0.001	Pass	
Mercury	mg/L	< 0.0001	0.0001	Pass	
Nickel				Pass	
Zinc	mg/L	< 0.001 < 0.005	0.001 0.005	Pass	
Method Blank	mg/L	< 0.005	0.005	Fass	
		l I		Т	
Alkali Metals		105	0.5	Desa	
Calcium	mg/L	< 0.5	0.5	Pass	
Magnesium	mg/L	< 0.5	0.5	Pass	
Potassium	mg/L	< 0.5	0.5	Pass	
Sodium	mg/L	< 0.5	0.5	Pass	
LCS - % Recovery					
Volatile Fatty Acids (VFA) by GC-MS	2.	100		<u> </u>	
Acetic Acid	%	126	70-130	Pass	
Propionic acid	%	110	70-130	Pass	
Isobutyric acid	%	124	70-130	Pass	
Butyric acid	%	118	70-130	Pass	
Isovaleric acid	%	101	70-130	Pass	
Valeric acid	%	104	70-130	Pass	
4-Methylvaleric acid	%	117	70-130	Pass	



Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Hexanoic acid			%	104		70-130	Pass	
Heptanoic acid			%	108		70-130	Pass	
Total VFA as Acetic Acid Equivalent	is		%	111		70-130	Pass	
LCS - % Recovery					<u> </u>	,		
Ammonia (as N)			%	101		70-130	Pass	
Chemical Oxygen Demand (COD)			%	113		70-130	Pass	
Chloride			%	106		70-130	Pass	
Nitrate (as N)			%	100		70-130	Pass	
Sulphate (as SO4)			%	102		70-130	Pass	
Total Dissolved Solids Dried at 180	°C ± 2 °C		%	97		70-130	Pass	
Total Kjeldahl Nitrogen (as N)			%	73		70-130	Pass	
Total Organic Carbon			%	97		70-130	Pass	
LCS - % Recovery				-				
Alkalinity (speciated)								
Carbonate Alkalinity (as CaCO3)			%	96		70-130	Pass	
Total Alkalinity (as CaCO3)			<del></del> %	97		70-130	Pass	
LCS - % Recovery			,,	<u> </u>				
Heavy Metals						1		
Arsenic			%	96		80-120	Pass	
Cadmium			<del>//</del>	97		80-120	Pass	
Chromium			%	98		80-120	Pass	
Copper			%	96		80-120	Pass	
Lead			%	93		80-120	Pass	
Mercury			<del>//</del>	89		80-120	Pass	
Nickel			<del>//</del>	96		80-120	Pass	
Zinc			<del>%</del>	99		80-120	Pass	
LCS - % Recovery			/0	] 33		80-120	Fass	
Alkali Metals						T		
Calcium			%	99		80-120	Pass	
Magnesium			<del>%</del>	98		80-120	Pass	
Potassium			<del>%</del>	103		80-120	Pass	
Sodium			<del>%</del>	103		80-120	Pass	
Sodium		0.4	<u>%</u>	104			_	Ovelifyin a
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery				T				
Volatile Fatty Acids (VFA) by GC-N				Result 1				
Isobutyric acid	M23-My0021536	NCP	%	98		70-130	Pass	
Isovaleric acid	M23-My0021536	NCP	%	75		70-130	Pass	
Valeric acid	M23-My0021536	NCP	%	77		70-130	Pass	
4-Methylvaleric acid	M23-My0021536	NCP	%	86		70-130	Pass	
Hexanoic acid	M23-My0021536	NCP	%	77		70-130	Pass	
Heptanoic acid	M23-My0021536	NCP	%	80		70-130	Pass	
Total VFA as Acetic Acid Equivalents	M23-My0021536	NCP	%	87		70-130	Pass	
Spike - % Recovery								
				Result 1		1		
Chemical Oxygen Demand (COD)	B23-My0033030	NCP	%	100		70-130	Pass	
Nitrate (as N)	B23-My0035442	NCP	%	105		70-130	Pass	
Total Kjeldahl Nitrogen (as N)	M23-My0029197	NCP	%	107		70-130	Pass	
Spike - % Recovery								
Heavy Metals				Result 1				
Arsenic	M23-My0027553	NCP	%	94		75-125	Pass	
Cadmium	M23-My0027553	NCP	%	101		75-125	Pass	
	i			1	1			1
Chromium	M23-My0027553	NCP	%	94		75-125	Pass	



Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Lead	M23-My0027553	NCP	%	95			75-125	Pass	
Mercury	M23-My0027553	NCP	%	91			75-125	Pass	
Nickel	M23-My0027553	NCP	%	94			75-125	Pass	
Zinc	M23-My0027553	NCP	%	94			75-125	Pass	
Spike - % Recovery									
Alkali Metals				Result 1					
Calcium	M23-My0034670	NCP	%	98			75-125	Pass	
Magnesium	M23-My0034670	NCP	%	96			75-125	Pass	
Potassium	M23-My0034670	NCP	%	101			75-125	Pass	
Sodium	M23-My0034670	NCP	%	103			75-125	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Volatile Fatty Acids (VFA) by GC-N	IS			Result 1	Result 2	RPD			
Acetic Acid	M23-My0021535	NCP	mg/L	< 5	< 5	<1	30%	Pass	
Propionic acid	M23-My0021535	NCP	mg/L	< 5	< 5	<1	30%	Pass	
Isobutyric acid	M23-My0021535	NCP	mg/L	< 5	< 5	<1	30%	Pass	
Butyric acid	M23-My0021535	NCP	mg/L	< 5	< 5	<1	30%	Pass	
Isovaleric acid	M23-My0021535	NCP	mg/L	< 5	< 5	<1	30%	Pass	
Valeric acid	M23-My0021535	NCP	mg/L	< 5	< 5	<1	30%	Pass	
4-Methylvaleric acid	M23-My0021535	NCP	mg/L	< 5	< 5	<1	30%	Pass	
Hexanoic acid	M23-My0021535	NCP	mg/L	< 5	< 5	<1	30%	Pass	
Heptanoic acid	M23-My0021535	NCP	mg/L	< 5	< 5	<1	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
Ammonia (as N)	M23-My0031516	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
Chemical Oxygen Demand (COD)	B23-My0033031	NCP	mg/L	< 25	< 25	<1	30%	Pass	
Chloride	M23-My0032389	NCP	mg/L	1400	1400	<1	30%	Pass	
Nitrate (as N)	M23-My0031516	NCP	mg/L	0.06	0.06	3.8	30%	Pass	
Sulphate (as SO4)	M23-My0032389	NCP	mg/L	130	140	<1	30%	Pass	
Total Dissolved Solids Dried at 180 °C ± 2 °C	M23-My0027749	NCP	mg/L	180	190	3.9	30%	Pass	
Total Kieldahl Nitrogen (as N)	M23-My0034670	NCP	mg/L	1.0	0.3	110	30%	Fail	Q15
Total Organic Carbon	M23-My0027336	NCP	mg/L	< 5	< 5	<1	30%	Pass	
Duplicate	Í						•		
Alkalinity (speciated)				Result 1	Result 2	RPD			
Bicarbonate Alkalinity (as CaCO3)	M23-My0056925	NCP	mg/L	560	540	2.6	30%	Pass	
Carbonate Alkalinity (as CaCO3)	M23-My0056925	NCP	mg/L	< 10	< 10	<1	30%	Pass	
Hydroxide Alkalinity (as CaCO3)	M23-My0056925	NCP	mg/L	< 20	< 20	<1	30%	Pass	
Total Alkalinity (as CaCO3)	M23-My0056925	NCP	mg/L	560	540	2.6	30%	Pass	
Duplicate	j		Ŭ	•	,				
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	M23-My0027553	NCP	mg/L	0.014	0.014	1.1	30%	Pass	
Cadmium	M23-My0027553	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Chromium	M23-My0027553	NCP	mg/L	0.017	0.016	5.4	30%	Pass	
Copper	M23-My0027553	NCP	mg/L	0.003	0.003	2.1	30%	Pass	
Lead	M23-My0027553	NCP	mg/L	0.008	0.008	3.5	30%	Pass	
Mercury	M23-My0027553	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Nickel	M23-My0027553	NCP	mg/L	0.003	0.003	6.3	30%	Pass	
Zinc	M23-My0027553	NCP	mg/L	0.032	0.031	1.0	30%	Pass	
Duplicate	, , , , , , , , , , , , , , , , , , , ,								
Alkali Metals				Result 1	Result 2	RPD			
Calcium	M23-My0034670	NCP	mg/L	1.7	1.7	<1	30%	Pass	
Magnesium	M23-My0034670	NCP	mg/L	2.0	2.0	1.7	30%	Pass	
Potassium	M23-My0034670	NCP	mg/L	1.4	1.4	2.0	30%	Pass	
	, 000 1010		∌/ ⊏	<del></del>			2370	. 400	



#### Comments

### Sample Integrity

 Custody Seals Intact (if used)
 N/A

 Attempt to Chill was evident
 Yes

 Sample correctly preserved
 Yes

 Appropriate sample containers have been used
 Yes

 Sample containers for volatile analysis received with minimal headspace
 Yes

 Samples received within HoldingTime
 Yes

 Some samples have been subcontracted
 No

#### **Qualifier Codes/Comments**

Code Description

Q15 The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

#### Authorised by:

Catherine Wilson Analytical Services Manager
Caitlin Breeze Senior Analyst-Inorganic
Joseph Edouard Senior Analyst-Organic
Mary Makarios Senior Analyst-Inorganic
Mary Makarios Senior Analyst-Metal

Glenn Jackson Managing Director

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please  $\underline{\text{click here}}$ 

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.



# **CERTIFICATE OF ANALYSIS**

Work Order : **EM2308222** 

Client : VENTIA UTILITY SERVICES PTY LTD

Contact : LUCY EDWARDS

Address : 25-37 HUNTINGDALE ROAD

**BURWOOD VIC 3125** 

Telephone : ---

Project : Creswick Landfill 2 of 3

Order number : Project: Creswick Landfill 2 of 3

C-O-C number : ---Sampler : AC
Site : ----

Quote number : ME/793/19

No. of samples received : 4
No. of samples analysed : 4

Page : 1 of 6

Laboratory : Environmental Division Melbourne

Contact : Peter Ravlic

Address : 4 Westall Rd Springvale VIC Australia 3171

Telephone : +6138549 9645

Date Samples Received : 10-May-2023 10:10

Date Analysis Commenced : 11-May-2023

Date Analysis Commenced : 11-May-2023 Issue Date : 15-May-2023 22:03



This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

#### **Signatories**

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Arenie Vijayaratnam	Senior Inorganic Chemist	Melbourne Inorganics, Springvale, VIC
Dilani Fernando	Laboratory Coordinator	Melbourne Inorganics, Springvale, VIC
Eric Chau	Metals Team Leader	Melbourne Inorganics, Springvale, VIC
Nikki Stepniewski	Senior Inorganic Instrument Chemist	Melbourne Inorganics, Springvale, VIC

Page : 2 of 6 Work Order : EM2308222

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill 2 of 3

#### **General Comments**

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

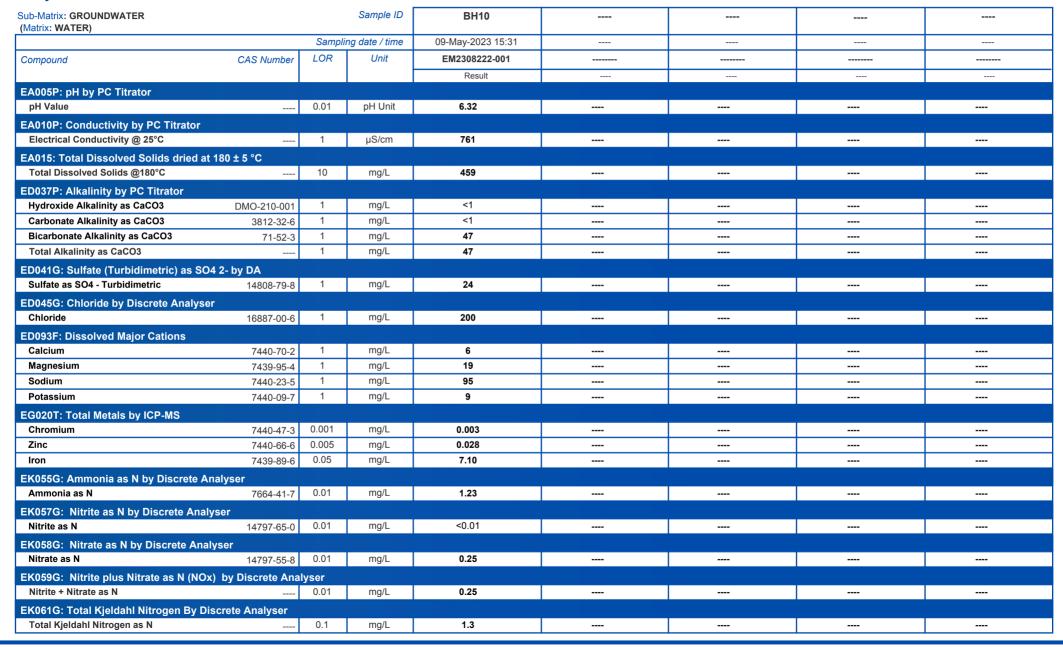
Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

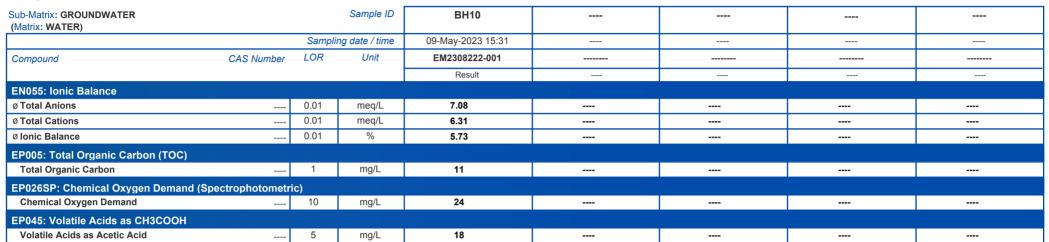

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- It is recognised that TKN is less than Ammonia as N for sample EM2308222 #2. However, the difference is within experimental variation of the methods.
- As per QWI EN55-3 Data Interpreting Procedures, Ionic balances are typically calculated using Major Anions Chloride, Alkalinity and Sulfate; and Major Cations Calcium, Magnesium, Potassium and Sodium. Where applicable and dependent upon sample matrix, the Ionic Balance may also include the additional contribution of Ammonia, Dissolved Metals by ICPMS and H+ to the Cations and Nitrate, SiO2 and Fluoride to the Anions.
- EA015H: EM2308222 #3: TDS by method EA-015 may bias high due to the presence of fine particulate matter, which may pass through the prescribed GF/C paper.
- lonic Balance out of acceptable limits for sample #1 due to analytes not quantified in this report.
- Ionic balances were calculated using: major anions chloride, alkalinity and sulfate; and major cations calcium, magnesium, potassium and sodium.
- Ionic balances were calculated using: major anions chloride, alkalinity and sulfate; and major cations calcium, magnesium, potassium, sodium and ammonia for sample #1 and #2.
- ED045G: The presence of Thiocyanate, Thiosulfate and Sulfite can positively contribute to the chloride result, thereby may bias results higher than expected. Results should be scrutinised accordingly.
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.



Page : 3 of 6 Work Order : EM2308222

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill 2 of 3

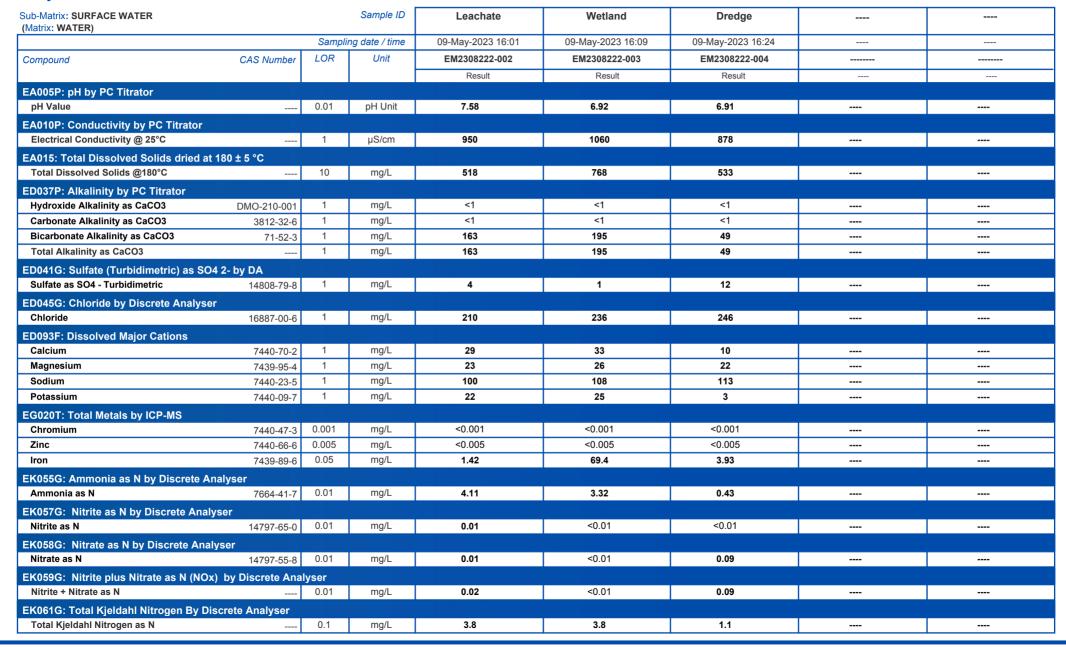





Page : 4 of 6 Work Order : EM2308222

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill 2 of 3






Page : 5 of 6 Work Order : EM2308222

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill 2 of 3





Page : 6 of 6 Work Order : EM2308222

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill 2 of 3







# **QUALITY CONTROL REPORT**

: 1 of 7

: +6138549 9645

: 15-May-2023

Work Order : EM2308222 Page

Client : VENTIA UTILITY SERVICES PTY LTD Laboratory : Environmental Division Melbourne

Contact : LUCY EDWARDS Contact : Peter Ravlic

Address : 25-37 HUNTINGDALE ROAD Address : 4 Westall Rd Springvale VIC Australia 3171

**BURWOOD VIC 3125** 

Telephone : ---- Telephone

Project : Creswick Landfill 2 of 3 Date Samples Received : 10-May-2023
Order number : Project: Creswick Landfill 2 of 3 Date Analysis Commenced : 11-May-2023

C-O-C number : ---Sampler : AC

Quote number : ME/793/19

No. of samples received : 4
No. of samples analysed : 4

Accredited for compliance with ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

Issue Date

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

## Signatories

Site

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Arenie Vijayaratnam	Senior Inorganic Chemist	Melbourne Inorganics, Springvale, VIC
Dilani Fernando	Laboratory Coordinator	Melbourne Inorganics, Springvale, VIC
Eric Chau	Metals Team Leader	Melbourne Inorganics, Springvale, VIC
Nikki Stepniewski	Senior Inorganic Instrument Chemist	Melbourne Inorganics, Springvale, VIC

Page : 2 of 7
Work Order : EM2308222

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill 2 of 3

# (ALS)

#### General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

# = Indicates failed QC

### Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: WATER						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EA005P: pH by PC	Titrator (QC Lot: 5041	<b>1782)</b>							
EM2308192-002	Anonymous	EA005-P: pH Value		0.01	pH Unit	1.52	1.48	2.7	0% - 20%
EM2308194-001	Anonymous	EA005-P: pH Value		0.01	pH Unit	7.69	7.74	0.6	0% - 20%
EA005P: pH by PC	Titrator (QC Lot: 5041	1784)							
EM2308232-013	Anonymous	EA005-P: pH Value		0.01	pH Unit	8.81	8.82	0.1	0% - 20%
EM2308222-004	Dredge	EA005-P: pH Value		0.01	pH Unit	6.91	7.03	1.7	0% - 20%
EA010P: Conductiv	ity by PC Titrator (QC	Lot: 5041783)							
EM2308194-001	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	7530	7470	0.8	0% - 20%
EM2308222-004	Dredge	EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	878	876	0.1	0% - 20%
EA015: Total Dissol	ved Solids dried at 18	30 ± 5 °C (QC Lot: 5044588)							
EM2308043-008	Anonymous	EA015H: Total Dissolved Solids @180°C		10	mg/L	205	192	6.4	0% - 20%
EM2308156-001	Anonymous	EA015H: Total Dissolved Solids @180°C		10	mg/L	1440	1420	1.1	0% - 20%
EM2308187-002	Anonymous	EA015H: Total Dissolved Solids @180°C		10	mg/L	6610	6710	1.5	0% - 20%
EM2307888-001	Anonymous	EA015H: Total Dissolved Solids @180°C		10	mg/L	1190	1130	4.7	0% - 20%
ED037P: Alkalinity I	by PC Titrator (QC Lo	ot: 5041780)							
EM2308176-003	Anonymous	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	288	290	8.0	0% - 20%
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	288	290	8.0	0% - 20%
EM2308222-004	Dredge	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	49	50	3.1	0% - 20%
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	49	50	3.1	0% - 20%

Page : 3 of 7
Work Order : EM2308222

Client : VENTIA UTILITY SERVICES PTY LTD



Sub-Matrix: WATER						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
ED041G: Sulfate (T	urbidimetric) as SO4	2- by DA (QC Lot: 5041671) - continued							
EM2308232-012	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	27	27	0.0	0% - 20%
EM2308226-001	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	572	575	0.6	0% - 20%
ED045G: Chloride I	y Discrete Analyser	(QC Lot: 5041674)							
EM2308232-012	Anonymous	ED045G: Chloride	16887-00-6	1	mg/L	473	467	1.4	0% - 20%
EM2308226-001	Anonymous	ED045G: Chloride	16887-00-6	1	mg/L	15	15	0.0	0% - 50%
ED093F: Dissolved	Major Cations (QC L	ot: 5043348)							
EM2308137-001	Anonymous	ED093F: Calcium	7440-70-2	1	mg/L	5	5	0.0	No Limit
		ED093F: Magnesium	7439-95-4	1	mg/L	1	1	0.0	No Limit
		ED093F: Sodium	7440-23-5	1	mg/L	6	6	0.0	No Limit
		ED093F: Potassium	7440-09-7	1	mg/L	<1	<1	0.0	No Limit
EM2308222-002	Leachate	ED093F: Calcium	7440-70-2	1	mg/L	29	29	0.0	0% - 20%
		ED093F: Magnesium	7439-95-4	1	mg/L	23	23	0.0	0% - 20%
		ED093F: Sodium	7440-23-5	1	mg/L	100	100	0.0	0% - 20%
		ED093F: Potassium	7440-09-7	1	mg/L	22	22	0.0	0% - 20%
EG020T: Total Meta	als by ICP-MS (QC Lo	ot: 5043249)							
EM2308182-001	Anonymous	EG020A-T: Chromium	7440-47-3	0.001	mg/L	0.109	0.095	13.4	0% - 20%
		EG020A-T: Zinc	7440-66-6	0.005	mg/L	0.160	0.143	11.2	0% - 20%
		EG020A-T: Iron	7439-89-6	0.05	mg/L	61.7	53.2	14.9	0% - 20%
EM2308122-002	Anonymous	EG020A-T: Chromium	7440-47-3	0.001	mg/L	0.004	0.006	24.0	No Limit
		EG020A-T: Zinc	7440-66-6	0.005	mg/L	<0.005	0.005	0.0	No Limit
		EG020A-T: Iron	7439-89-6	0.05	mg/L	3.15	3.24	2.8	0% - 20%
EK055G: Ammonia	as N by Discrete Ana	alyser (QC Lot: 5042232)							
EM2308222-001	BH10	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	1.23	1.24	1.0	0% - 20%
EM2308241-001	Anonymous	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	<0.01	<0.01	0.0	No Limit
EK057G: Nitrite as	N by Discrete Analys	ser (QC Lot: 5041672)							
EM2308232-012	Anonymous	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	0.11	0.11	0.0	0% - 50%
EM2308226-001	Anonymous	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	0.31	0.31	0.0	0% - 20%
EK059G: Nitrite plu	us Nitrate as N (NOx)	by Discrete Analyser (QC Lot: 5042233)							
EM2308222-001	BH10	EK059G: Nitrite + Nitrate as N		0.01	mg/L	0.25	0.25	0.0	0% - 20%
EM2308241-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	0.06	0.06	0.0	No Limit
EK061G: Total Kjel	dahl Nitrogen By Disc	crete Analyser (QC Lot: 5042266)							
EM2308194-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	0.2	0.3	0.0	No Limit
EM2308083-008	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	116	118	1.2	0% - 20%
EK061G: Total Kjel	dahl Nitrogen By Disc	crete Analyser (QC Lot: 5042267)							
EM2308254-003	Anonymous	EK061G: Total Kieldahl Nitrogen as N		0.1	mg/L	0.4	0.6	34.9	No Limit
EM2308240-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	0.2	0.2	0.0	No Limit
EP005: Total Organ	ic Carbon (TOC) (QC								
EM2307830-004	Anonymous	EP005: Total Organic Carbon		1	mg/L	45	46	0.0	0% - 20%
	,	El 000. Total Organic Odibon		•					2.12 20.0

Page : 4 of 7
Work Order : EM2308222

Client : VENTIA UTILITY SERVICES PTY LTD



Sub-Matrix: WATER				Laboratory Duplicate (DUP) Report									
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)				
EP005: Total Organic	Carbon (TOC) (QC Lot: 504	2790) - continued											
EM2308222-003	Wetland	EP005: Total Organic Carbon		1	mg/L	13	13	0.0	0% - 50%				
EP026SP: Chemical C	Oxygen Demand (Spectroph	otometric) (QC Lot: 5043003)											
EM2308222-001	BH10	EP026SP: Chemical Oxygen Demand		10	mg/L	24	24	0.0	No Limit				
EP045: Volatile Acids	as CH3COOH (QC Lot: 504	8079)											
EM2307797-004	Anonymous	EP045: Volatile Acids as Acetic Acid		5	mg/L	90	90	0.0	0% - 50%				
EM2307885-010	Anonymous	EP045: Volatile Acids as Acetic Acid		5	mg/L	93	93	0.0	0% - 50%				

Page : 5 of 7 Work Order : EM2308222

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill 2 of 3



# Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER			Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
			Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)
Method: Compound CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EA005P: pH by PC Titrator (QCLot: 5041782)							
EA005-P: pH Value		pH Unit		4 pH Unit	99.5	98.8	101
				7 pH Unit	100	99.3	101
EA005P: pH by PC Titrator (QCLot: 5041784)							
EA005-P: pH Value		pH Unit		7 pH Unit	100	98.8	101
				9 pH Unit	100	99.3	101
EA010P: Conductivity by PC Titrator (QCLot: 5041783)							
EA010-P: Electrical Conductivity @ 25°C	1	μS/cm	<1	1412 μS/cm	108	85.0	119
EA015: Total Dissolved Solids dried at 180 ± 5 °C (QCLot: 5044588)							
EA015H: Total Dissolved Solids @180°C	10	mg/L	<10	2000 mg/L	102	91.0	110
			<10	2440 mg/L	108	81.6	118
			<10	293 mg/L	109	91.0	110
ED037P: Alkalinity by PC Titrator (QCLot: 5041780)							
ED037-P: Total Alkalinity as CaCO3		mg/L		200 mg/L	97.3	85.0	116
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA (QCLot: 5041671)							
ED041G: Sulfate as SO4 - Turbidimetric 14808-79-8	1	mg/L	<1	25 mg/L	102	90.0	110
			<1	500 mg/L	104	90.0	110
ED045G: Chloride by Discrete Analyser (QCLot: 5041674)							
ED045G: Chloride 16887-00-6	1	mg/L	<1	10 mg/L	103	90.0	110
			<1	1000 mg/L	101	90.0	110
ED093F: Dissolved Major Cations (QCLot: 5043348)							
ED093F: Calcium 7440-70-2	1	mg/L	<1	50 mg/L	95.6	80.0	120
ED093F: Magnesium 7439-95-4	1	mg/L	<1	50 mg/L	96.6	80.0	120
ED093F: Sodium 7440-23-5	1	mg/L	<1	50 mg/L	108	80.0	120
ED093F: Potassium 7440-09-7	1	mg/L	<1	50 mg/L	92.8	80.0	120
EG020T: Total Metals by ICP-MS (QCLot: 5043249)							
EG020A-T: Chromium 7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	109	86.9	112
EG020A-T: Zinc 7440-66-6	0.005	mg/L	<0.005	0.1 mg/L	109	86.7	117
EG020A-T: Iron 7439-89-6	0.05	mg/L	<0.05	0.5 mg/L	109	92.8	118
EK055G: Ammonia as N by Discrete Analyser (QCLot: 5042232)							
EK055G: Ammonia as N by Discrete Affailyser (QCL01: 3042232)	0.01	mg/L	<0.01	1 mg/L	100	90.0	110
	1		-	, , , , , , , , , , , , , , , , , , ,	100	-	. 10

Page : 6 of 7
Work Order : EM2308222

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill 2 of 3



Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EK057G: Nitrite as N by Discrete Analyser (QCLot: 504	1672)							
EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	0.5 mg/L	107	90.0	110
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete An	alyser (QCLot: 50-	42233)						
EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	0.5 mg/L	100	90.0	110
EK061G: Total Kjeldahl Nitrogen By Discrete Analyser	(QCLot: 5042266)							
EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	<0.1	5 mg/L	75.5	70.0	117
EK061G: Total Kjeldahl Nitrogen By Discrete Analyser	(QCLot: 5042267)							
EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	<0.1	5 mg/L	79.6	70.0	117
EP005: Total Organic Carbon (TOC) (QCLot: 5042790)								
EP005: Total Organic Carbon		1	mg/L	<1	100 mg/L	99.9	81.2	110
EP026SP: Chemical Oxygen Demand (Spectrophotomet	tric) (QCLot: 50430	003)						
EP026SP: Chemical Oxygen Demand		10	mg/L	<10	500 mg/L	100	89.7	111
EP045: Volatile Acids as CH3COOH (QCLot: 5048079)								
EP045: Volatile Acids as Acetic Acid		5	mg/L	<5	175 mg/L	86.6	85.5	116

# Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER				Ma	trix Spike (MS) Report	t	
				Spike	SpikeRecovery(%)	Acceptable L	imits (%)
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
ED041G: Sulfate (	Furbidimetric) as SO4 2- by DA (QCLot: 5041671)						
EM2308222-001	BH10	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	100 mg/L	92.1	70.0	130
ED045G: Chloride	by Discrete Analyser (QCLot: 5041674)						
EM2308222-001	BH10	ED045G: Chloride	16887-00-6	400 mg/L	98.8	70.0	142
EG020T: Total Met	als by ICP-MS (QCLot: 5043249)						
EM2308100-001	Anonymous	EG020A-T: Chromium	7440-47-3	1 mg/L	103	78.9	119
		EG020A-T: Zinc	7440-66-6	1 mg/L	93.0	74.0	120
EK055G: Ammonia	a as N by Discrete Analyser (QCLot: 5042232)						
EM2308222-002	Leachate	EK055G: Ammonia as N	7664-41-7	1 mg/L	# Not	70.0	130
					Determined		
EK057G: Nitrite as	s N by Discrete Analyser (QCLot: 5041672)						
EM2308226-006	Anonymous	EK057G: Nitrite as N	14797-65-0	1 mg/L	101	80.0	114
EK059G: Nitrite p	us Nitrate as N (NOx) by Discrete Analyser (QCLot: 504	22233)					
EM2308222-002	Leachate	EK059G: Nitrite + Nitrate as N		0.5 mg/L	89.6	70.0	130

Page : 7 of 7
Work Order : EM2308222

Client : VENTIA UTILITY SERVICES PTY LTD



Sub-Matrix: WATER			Matrix Spike (MS) Report						
				Spike	SpikeRecovery(%)	Acceptable L	imits (%)		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High		
EK061G: Total Kjel	dahl Nitrogen By Discrete Analyser (QCLot: 5042266)								
EM2308083-011	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		5 mg/L	90.4	70.0	130		
EK061G: Total Kjel	dahl Nitrogen By Discrete Analyser (QCLot: 5042267)								
EM2308240-002	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		5 mg/L	91.8	70.0	130		
EP005: Total Organ	nic Carbon (TOC) (QCLot: 5042790)								
EM2307830-006	Anonymous	EP005: Total Organic Carbon -		100 mg/L	115	76.6	125		
EP026SP: Chemica	l Oxygen Demand (Spectrophotometric) (QCLot: 50430	03)							
EM2308222-002	Leachate	EP026SP: Chemical Oxygen Demand -		500 mg/L	108	70.0	130		



# QA/QC Compliance Assessment to assist with Quality Review

**Work Order** : **EM2308222** Page : 1 of 8

Client : VENTIA UTILITY SERVICES PTY LTD Laboratory : Environmental Division Melbourne

 Contact
 : LUCY EDWARDS
 Telephone
 : +6138549 9645

 Project
 : Creswick Landfill 2 of 3
 Date Samples Received
 : 10-May-2023

 Site
 : --- Issue Date
 : 15-May-2023

Sampler : AC No. of samples received : 4

Order number : Project: Creswick Landfill 2 of 3 No. of samples analysed : 4

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

# **Summary of Outliers**

## **Outliers: Quality Control Samples**

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- Matrix Spike outliers exist please see following pages for full details.
- For all regular sample matrices, NO surrogate recovery outliers occur.

# **Outliers: Analysis Holding Time Compliance**

• Analysis Holding Time Outliers exist - please see following pages for full details.

# **Outliers: Frequency of Quality Control Samples**

NO Quality Control Sample Frequency Outliers exist.

Page : 2 of 8 Work Order : EM2308222

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill 2 of 3

#### **Outliers: Quality Control Samples**

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

#### Matrix: WATER

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Matrix Spike (MS) Recoveries							
EK055G: Ammonia as N by Discrete Analyser	EM2308222002	Leachate	Ammonia as N	7664-41-7 Not			MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.

#### **Outliers: Analysis Holding Time Compliance**

#### Matrix: WATER

WOUNT WATER								
Method	Method		traction / Preparation		Analysis			
Container / Client Sample ID(s)		Date extracted	Due for extraction	Days	Date analysed	Due for analysis	Days	
				overdue			overdue	
EA005P: pH by PC Titrator								
Clear Plastic Bottle - Natural								
BH10,	Leachate,				12-May-2023	09-May-2023	3	
Wetland,	Dredge							

# **Analysis Holding Time Compliance**

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

## Matrix: WATER

Evaluation:	× = Holding	time breach: <	= Within holding time.
-------------	-------------	----------------	------------------------

Matrix. WATER					Lvaldation	Holding time	breach, • - with	ir noluling tim
Method		Sample Date	Extraction / Preparation			Analysis		
Container / Client Sample ID(s)	Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA005P: pH by PC Titrator								
Clear Plastic Bottle - Natural (EA005-F	9)							
BH10,	Leachate,	09-May-2023				12-May-2023	09-May-2023	JC .
Wetland,	Dredge							
EA010P: Conductivity by PC Titrator								
Clear Plastic Bottle - Natural (EA010-F	P)							
BH10,	Leachate,	09-May-2023				12-May-2023	06-Jun-2023	✓
Wetland,	Dredge							
EA015: Total Dissolved Solids dried a	at 180 ± 5 °C							
Clear Plastic Bottle - Natural (EA015H	l)							
BH10,	Leachate,	09-May-2023				12-May-2023	16-May-2023	<b>✓</b>
Wetland,	Dredge							

Page : 3 of 8
Work Order : EM2308222

Client : VENTIA UTILITY SERVICES PTY LTD



March   Sample   Sa	Matrix: <b>WATER</b> Evaluation: <b>×</b> = Holding time breach;							breach ; ✓ = Withi	n holding time.	
E00379-AMainthly by PC Titrator	Method			Sample Date	Ex	traction / Preparation			Analysis	
Clear Plastic Bottle - Natural (E0037-P)   Each cate (Drodge   Drodge   D	Container / Client Sample ID(s)				Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
Clear Plastic Bottle - Natural (E0037-P)   Eachatle, Directly	ED037P: Alkalinity by PC Titrator									
Metand	Clear Plastic Bottle - Natural (ED037-P)									
EDG4G : Sulfate (Turbidimatric) as 3042-by DA	BH10,	Leachate,		09-May-2023				12-May-2023	23-May-2023	✓
Clear Plastic Bottle - Natural (ED041G)   Leachate,   Dredge   De-May-2023   Clear Plastic Bottle - Natural (ED045G)   Plantage   Dredge   De-May-2023   Clear Plastic Bottle - Natural (ED045G)   Plantage   Dredge   De-May-2023   Clear Plastic Bottle - Natural (ED045G)   Plantage   Dredge	Wetland,	Dredge								
Clear Plastic Bottle - Natural (ED041G)   Leachate,   Dredge   De-May-2023   Clear Plastic Bottle - Natural (ED045G)   Plantage   Dredge   De-May-2023   Clear Plastic Bottle - Natural (ED045G)   Plantage   Dredge   De-May-2023   Clear Plastic Bottle - Natural (ED045G)   Plantage   Dredge	ED041G: Sulfate (Turbidimetric) as SO4 2- by DA									
Dredge										
Clear Plastic Bottle - Natural (E0045C)   Leachate, Dredge   Develope   Dev	BH10,	Leachate,		09-May-2023				11-May-2023	06-Jun-2023	✓
Clear Plastic Bottle - Natural (ED045G)   Hardward (ED045G)   Ha	Wetland,	Dredge								
BH10,	ED045G: Chloride by Discrete Analyser									
Deedge   Description   Description   Deedge   Description   Deedge   Description   Description   Description   Description   Descripti	Clear Plastic Bottle - Natural (ED045G)									
ED093F: Dissolved Major Cations   Clear Plastic Bottle - Natural (ED093F)   Leachate, Dredge   D9-May-2023       13-May-2023   16-May-2023       13-May-2023         13-May-2023         13-May-2023           13-May-2023	BH10,	Leachate,		09-May-2023				11-May-2023	06-Jun-2023	✓
Clear Plastic Bottle - Natural (E0093F)   Hay-2023	Wetland,	Dredge								
BH10,	ED093F: Dissolved Major Cations									
Wetland,   Dredge     Dredge     Dredge     Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   Dredge   D	Clear Plastic Bottle - Natural (ED093F)									
EG020T: Total Metals by ICP-MS  Clear Plastic Bottle - Nitric Acid; Unfiltered (EG020A-T) BH10,	BH10,	Leachate,		09-May-2023				13-May-2023	16-May-2023	✓
Clear Plastic Bottle - Nitric Acid (EK059G)   EK055G: Nitrite as N (NOx) by Discrete Analyser   Clear Plastic Bottle - Sulfuric Acid (EK059G)   H10,	Wetland,	Dredge								
BH10,	EG020T: Total Metals by ICP-MS									
Wetland,   Dredge	Clear Plastic Bottle - Nitric Acid; Unfiltered (EG020A-	Т)								
EK055G: Ammonia as N by Discrete Analyser Clear Plastic Bottle - Sulfuric Acid (EK055G) BH10, Leachate, Op-dage  EK057G: Nitrite as N by Discrete Analyser Clear Plastic Bottle - Natural (EK057G) BH10, Leachate, Op-May-2023 11-May-2023	BH10,	Leachate,		09-May-2023	11-May-2023	05-Nov-2023	✓	11-May-2023	05-Nov-2023	✓
Clear Plastic Bottle - Sulfuric Acid (EK055G)   BH10,	Wetland,	Dredge								
BH10, Leachate, Dredge	EK055G: Ammonia as N by Discrete Analyser									
Welland,   Dredge	Clear Plastic Bottle - Sulfuric Acid (EK055G)									
EK057G: Nitrite as N by Discrete Analyser  Clear Plastic Bottle - Natural (EK057G) BH10, Leachate, Wetland, Dredge  EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser  Clear Plastic Bottle - Sulfuric Acid (EK059G) BH10, Leachate, Dredge  EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser  Clear Plastic Bottle - Sulfuric Acid (EK059G) BH10, Leachate, Dredge  EK061G: Total Kjeldahl Nitrogen By Discrete Analyser  Clear Plastic Bottle - Sulfuric Acid (EK061G) BH10, Leachate, Dredge  EK061G: Total Kjeldahl Nitrogen By Discrete Analyser  Clear Plastic Bottle - Sulfuric Acid (EK061G) BH10, Leachate, Dredge  EF005: Total Organic Carbon (TOC)  Amber TOC Vial - Sulfuric Acid (EF005) BH10, Leachate, Dredge  EP005: Total Organic Carbon (TOC)  Amber TOC Vial - Sulfuric Acid (EF005) BH10, Leachate, Dredge  E09-May-2023	BH10,	Leachate,		09-May-2023				12-May-2023	06-Jun-2023	✓
Clear Plastic Bottle - Natural (EK057G)   BH10,	Wetland,	Dredge								
Clear Plastic Bottle - Natural (EK057G)   BH10,	EK057G: Nitrite as N by Discrete Analyser									
Wetland,         Dredge         Image: Clear Plastic Bottle - Sulfuric Acid (EK059G)         Dredge         O9-May-2023         Image: Clear Plastic Bottle - Sulfuric Acid (EK059G)         Image: Clear Plastic Bottle - Sulfuric Acid (EK059G)         Image: Clear Plastic Bottle - Sulfuric Acid (EK059G)         Image: Clear Plastic Bottle - Sulfuric Acid (EK061G)         Image: Clear Plastic Bottle - Sulfuric Bo										
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser  Clear Plastic Bottle - Sulfuric Acid (EK059G) BH10, Leachate, Dredge  EK061G: Total Kjeldahl Nitrogen By Discrete Analyser  Clear Plastic Bottle - Sulfuric Acid (EK061G) BH10, Leachate, Dredge  EK061G: Total Kjeldahl Nitrogen By Discrete Analyser  Clear Plastic Bottle - Sulfuric Acid (EK061G) BH10, Leachate, Dredge  EP005: Total Organic Carbon (TOC)  Amber TOC Vial - Sulfuric Acid (EP005) BH10, Leachate, O9-May-2023 12-May-2023 06-Jun-2023 ✓  Amber TOC Vial - Sulfuric Acid (EP005) BH10, Leachate, O9-May-2023 12-May-2023 06-Jun-2023 ✓	BH10,	Leachate,		09-May-2023				11-May-2023	11-May-2023	✓
Clear Plastic Bottle - Sulfuric Acid (EK059G)	Wetland,	Dredge								
Clear Plastic Bottle - Sulfuric Acid (EK059G)	EK059G: Nitrite plus Nitrate as N (NOx) by Discrete	Analyser								
Wetland, Dredge										
EK061G: Total Kjeldahl Nitrogen By Discrete Analyser  Clear Plastic Bottle - Sulfuric Acid (EK061G) BH10, Leachate, Dredge  EP005: Total Organic Carbon (TOC)  Amber TOC Vial - Sulfuric Acid (EP005) BH10, Leachate, Dredge  Deachate, Dredge  O9-May-2023 11-May-2023 06-Jun-2023   O6-Jun-2023 06-Jun-2023   O6-Jun-2023 06-Jun-2023   O6-Jun-2023   O6-Jun-2	BH10,	Leachate,		09-May-2023				12-May-2023	06-Jun-2023	✓
Clear Plastic Bottle - Sulfuric Acid (EK061G)         Leachate,         09-May-2023         11-May-2023         06-Jun-2023         ✓         13-May-2023         06-Jun-2023         ✓           Wetland,         Dredge         EP005: Total Organic Carbon (TOC)         Total Organic Carbon (EP005)         Total Organic Carbon (EP005)         Ueachate,         09-May-2023           12-May-2023         06-Jun-2023         ✓	Wetland,	Dredge								
Clear Plastic Bottle - Sulfuric Acid (EK061G)         Leachate,         09-May-2023         11-May-2023         06-Jun-2023         ✓         13-May-2023         06-Jun-2023         ✓           Wetland,         Dredge         EP005: Total Organic Carbon (TOC)         Total Organic Carbon (EP005)         Total Organic Carbon (EP005)         Ueachate,         09-May-2023           12-May-2023         06-Jun-2023         ✓	EK061G: Total Kjeldahl Nitrogen By Discrete Analyse	er								
Wetland,         Dredge         Image: Carbon (TOC)           EP005: Total Organic Carbon (TOC)           Amber TOC Vial - Sulfuric Acid (EP005) BH10,         Leachate,         09-May-2023           12-May-2023         06-Jun-2023         ✓										
EP005: Total Organic Carbon (TOC)  Amber TOC Vial - Sulfuric Acid (EP005)  BH10, Leachate, 09-May-2023 12-May-2023 06-Jun-2023 √	BH10,	Leachate,		09-May-2023	11-May-2023	06-Jun-2023	✓	13-May-2023	06-Jun-2023	✓
Amber TOC Vial - Sulfuric Acid (EP005)         D9-May-2023           12-May-2023         06-Jun-2023         ✓	Wetland,	Dredge								
Amber TOC Vial - Sulfuric Acid (EP005)         D9-May-2023           12-May-2023         06-Jun-2023         ✓	EP005: Total Organic Carbon (TOC)									
		-								
Wetland, Dredge	BH10,	Leachate,		09-May-2023				12-May-2023	06-Jun-2023	✓
· · · · · ·	Wetland,	Dredge								

Page : 4 of 8
Work Order : EM2308222

Client : VENTIA UTILITY SERVICES PTY LTD



Matrix: WATER			Evaluation: ▼ = Holding time breach ; ✓ = Within hold						
Method		Sample Date	Ex	traction / Preparation		Analysis			
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
EP026SP: Chemical Oxygen Demar	nd (Spectrophotometric)								
Clear Plastic Bottle - Sulfuric Acid (	(EP026SP)								
BH10,	Leachate,	09-May-2023				11-May-2023	06-Jun-2023	✓	
Wetland,	Dredge								
EP045: Volatile Acids as CH3COOH	·								
Clear Plastic Bottle - Natural (EP045	5)								
BH10,	Leachate,	09-May-2023				15-May-2023	23-May-2023	✓	
Wetland,	Dredge								

Page : 5 of 8 Work Order : EM2308222

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill 2 of 3



# **Quality Control Parameter Frequency Compliance**

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: WATER

Evaluation: × = Quality Control frequency not within specification; ✓ = Quality Control frequency within specification

Matrix: WATER						not within specification; ✓ = Quality Control frequency within specification	
Quality Control Sample Type			ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Alkalinity by Auto Titrator	ED037-P	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Ammonia as N by Discrete analyser	EK055G	2	18	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Chemical Oxygen Demand (COD) (Spectrophotometric)	EP026SP	1	8	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G	2	18	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Conductivity by Auto Titrator	EA010-P	2	18	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Major Cations - Dissolved	ED093F	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	18	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	2	17	11.76	10.00	✓	NEPM 2013 B3 & ALS QC Standard
pH by Auto Titrator	EA005-P	4	40	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	2	18	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Dissolved Solids (High Level)	EA015H	4	40	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	4	29	13.79	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Organic Carbon	EP005	2	17	11.76	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Volatile Acids as CH3COOH	EP045	2	16	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Alkalinity by Auto Titrator	ED037-P	1	20	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
Ammonia as N by Discrete analyser	EK055G	1	18	5.56	5.00	1	NEPM 2013 B3 & ALS QC Standard
Chemical Oxygen Demand (COD) (Spectrophotometric)	EP026SP	1	8	12.50	5.00	1	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G	2	18	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Conductivity by Auto Titrator	EA010-P	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Major Cations - Dissolved	ED093F	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard
pH by Auto Titrator	EA005-P	4	40	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	2	18	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Dissolved Solids (High Level)	EA015H	3	40	7.50	7.50	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	2	29	6.90	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	1	20	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
Total Organic Carbon	EP005	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Volatile Acids as CH3COOH	EP045	1	16	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Ammonia as N by Discrete analyser	EK055G	1	18	5.56	5.00	1	NEPM 2013 B3 & ALS QC Standard
Chemical Oxygen Demand (COD) (Spectrophotometric)	EP026SP	1	8	12.50	5.00	1	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G	1	18	5.56	5.00	<b>√</b>	NEPM 2013 B3 & ALS QC Standard
Conductivity by Auto Titrator	EA010-P	1	18	5.56	5.00	1	NEPM 2013 B3 & ALS QC Standard
	L, 10 10-1	*					

Page : 6 of 8
Work Order : EM2308222

Client : VENTIA UTILITY SERVICES PTY LTD



Matrix: WATER				Evaluation	n: × = Quality Co	ntrol frequency r	ot within specification; ✓ = Quality Control frequency within specification.
Quality Control Sample Type		Count			Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
Method Blanks (MB) - Continued							
Major Cations - Dissolved	ED093F	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Dissolved Solids (High Level)	EA015H	2	40	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	2	29	6.90	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Organic Carbon	EP005	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Volatile Acids as CH3COOH	EP045	1	16	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
Ammonia as N by Discrete analyser	EK055G	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Chemical Oxygen Demand (COD) (Spectrophotometric)	EP026SP	1	8	12.50	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	2	29	6.90	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Organic Carbon	EP005	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Page : 7 of 8 Work Order : EM2308222

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill 2 of 3

# **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
pH by Auto Titrator	EA005-P	WATER	In house: Referenced to APHA 4500 H+ B. This procedure determines pH of water samples by automated ISE.
			This method is compliant with NEPM Schedule B(3)
Conductivity by Auto Titrator	EA010-P	WATER	In house: Referenced to APHA 2510 B. This procedure determines conductivity by automated ISE. This method
			is compliant with NEPM Schedule B(3)
Total Dissolved Solids (High Level)	EA015H	WATER	In house: Referenced to APHA 2540C. A gravimetric procedure that determines the amount of `filterable` residue
			in an aqueous sample. A well-mixed sample is filtered through a glass fibre filter (1.2um). The filtrate is
			evaporated to dryness and dried to constant weight at 180+/-5C. This method is compliant with NEPM Schedule
			B(3)
Alkalinity by Auto Titrator	ED037-P	WATER	In house: Referenced to APHA 2320 B This procedure determines alkalinity by automated measurement (e.g. PC
			Titrate) on a settled supernatant aliquot of the sample using pH 4.5 for indicating the total alkalinity end-point.
			This method is compliant with NEPM Schedule B(3)
Sulfate (Turbidimetric) as SO4 2- by	ED041G	WATER	In house: Referenced to APHA 4500-SO4. Dissolved sulfate is determined in a 0.45um filtered sample. Sulfate
Discrete Analyser			ions are converted to a barium sulfate suspension in an acetic acid medium with barium chloride. Light
			absorbance of the BaSO4 suspension is measured by a photometer and the SO4-2 concentration is determined
			by comparison of the reading with a standard curve. This method is compliant with NEPM Schedule B(3)
Chloride by Discrete Analyser	ED045G	WATER	In house: Referenced to APHA 4500 CI - G.The thiocyanate ion is liberated from mercuric thiocyanate through
			sequestration of mercury by the chloride ion to form non-ionised mercuric chloride. In the presence of ferric ions
			the liberated thiocynate forms highly-coloured ferric thiocynate which is measured at 480 nm.
Major Cations - Dissolved	ED093F	WATER	In house: Referenced to APHA 3120 and 3125; USEPA SW 846 - 6010 and 6020; Cations are determined by
			either ICP-AES or ICP-MS techniques. This method is compliant with NEPM Schedule B(3) Sodium Adsorption
			Ratio is calculated from Ca, Mg and Na which determined by ALS in house method QWI-EN/ED093F. This
			method is compliant with NEPM Schedule B(3) Hardness parameters are calculated based on APHA 2340 B.
			This method is compliant with NEPM Schedule B(3)
Total Metals by ICP-MS - Suite A	EG020A-T	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. The ICPMS technique utilizes
			a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass
			spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their
		14/4-755	measurement by a discrete dynode ion detector.
Ammonia as N by Discrete analyser	EK055G	WATER	In house: Referenced to APHA 4500-NH3 G Ammonia is determined by direct colorimetry by Discrete Analyser.
NICE ALL DIVINE		\A/A TED	This method is compliant with NEPM Schedule B(3)
Nitrite as N by Discrete Analyser	EK057G	WATER	In house: Referenced to APHA 4500-NO2- B. Nitrite is determined by direct colourimetry by Discrete Analyser.
Nii A NI Bi A A		14/4-755	This method is compliant with NEPM Schedule B(3)
Nitrate as N by Discrete Analyser	EK058G	WATER	In house: Referenced to APHA 4500-NO3- F. Nitrate is reduced to nitrite by way of a chemical reduction followed
			by quantification by Discrete Analyser. Nitrite is determined seperately by direct colourimetry and result for Nitrate
	FIGERO	\A/A TEE	calculated as the difference between the two results. This method is compliant with NEPM Schedule B(3)
Nitrite and Nitrate as N (NOx) by Discrete	EK059G	WATER	In house: Referenced to APHA 4500-NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by
Analyser			Chemical Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM
			Schedule B(3)



Page : 8 of 8 Work Order : EM2308222

Client : VENTIA UTILITY SERVICES PTY LTD



Analytical Methods	Method	Matrix	Method Descriptions
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	WATER	In house: Referenced to APHA 4500-Norg D (In house). An aliquot of sample is digested using a high temperature Kjeldahl digestion to convert nitrogenous compounds to ammonia. Ammonia is determined colorimetrically by discrete analyser. This method is compliant with NEPM Schedule B(3)
Ionic Balance by PCT DA and Turbi SO4 DA	* EN055 - PG	WATER	In house: Referenced to APHA 1030F. This method is compliant with NEPM Schedule B(3)
Total Organic Carbon	EP005	WATER	In house: Referenced to APHA 5310 B, The automated TOC analyzer determines Total and Inorganic Carbon by IR cell. TOC is calculated as the difference. This method is compliant with NEPM Schedule B(3)
Chemical Oxygen Demand (COD) (Spectrophotometric)	EP026SP	WATER	In house: Referenced to APHA 5220 D. Samples are digested with a known excess of an acidic potassium dichromate solution using silver sulfate as a catalyst. The chromium is reduced from the Cr (VI) oxidation state to the Cr (III) state by the oxygen present in the organic material. Both of these chromium species are coloured and absorb in the visible region of (400nm & 600nm) the spectrum. The oxidisable organic matter can be calculated in terms of oxygen equivalents.
Volatile Acids as CH3COOH	EP045	WATER	In house: Referenced to APHA 5560 C. Steam distillable acids are captured in caustic solution and determined titremetrically. This method is compliant with NEPM Schedule B(3)
Preparation Methods	Method	Matrix	Method Descriptions
TKN/TP Digestion	EK061/EK067	WATER	In house: Referenced to APHA 4500 Norg - D; APHA 4500 P - H. This method is compliant with NEPM Schedule B(3)
Digestion for Total Recoverable Metals	EN25	WATER	In house: Referenced to USEPA SW846-3005. Method 3005 is a Nitric/Hydrochloric acid digestion procedure used to prepare surface and ground water samples for analysis by ICPAES or ICPMS. This method is compliant with NEPM Schedule B(3)



# **SAMPLE RECEIPT NOTIFICATION (SRN)**

Work Order : EM2308222

**BURWOOD VIC 3125** 

Client : VENTIA UTILITY SERVICES PTY LTD Laboratory : Environmental Division Melbourne

Contact : LUCY EDWARDS Contact : Peter Raylic

Address : 25-37 HUNTINGDALE ROAD Address : 4 Westall Rd Springvale VIC Australia

3171

 Telephone
 : -- Telephone
 : +6138549 9645

 Facsimile
 : -- Facsimile
 : +61-3-8549 9626

Project : Creswick Landfill 2 of 3 Page : 1 of 3

Site : ---Sampler : AC

**Dates** 

Date

**Delivery Details** 

 Mode of Delivery
 : Carrier
 Security Seal
 : Not Available

 No. of coolers/boxes
 : 1
 Temperature
 : 2.4°C - Ice present

Receipt Detail : No. of samples received / analysed : 4 / 4

#### General Comments

• This report contains the following information:

- Sample Container(s)/Preservation Non-Compliances
- Summary of Sample(s) and Requested Analysis
- Proactive Holding Time Report
- Requested Deliverables
- Please direct any queries related to sample condition / numbering / breakages to Client Services.
- Sample Disposal Aqueous (3 weeks), Solid (2 months) from receipt of samples.
- Analytical work for this work order will be conducted at ALS Springvale.
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The laboratory will process these samples unless instructions are received from you indicating you do not wish to proceed. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.

: 10-May-2023 Issue Date

Page

: 2 of 3 : EM2308222 Amendment 0 Work Order

Client : VENTIA UTILITY SERVICES PTY LTD



# Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exists.

# Summary of Sample(s) and Requested Analysis

process necessatasks. Packages as the determintasks, that are inclif no sampling default 00:00 on	may contain ad ation of moisture uded in the package. time is provided, the date of samplin sampling date wi	Il be assumed by the ckets without a time	WATER - EA005P  PH (Auto Titrator)	WATER - EA010P Electrical Conductivity (Auto Titrator)	WATER - EK055G Ammonia as N By Discrete Analyser	WATER - EK058G Nitrate as N by Discrete Analyser	WATER - EK061G  Total Kjeldahl Nitrogen as N (TKN) By Discrete	WATER - EP005 Total Organic Carbon (TOC)	WATER - EP045 Volatile Acids as CH3COOH
EM2308222-002	09-May-2023 16:01	Leachate	✓	✓	✓	✓	✓	✓	✓
EM2308222-003	09-May-2023 16:09	Wetland	✓	✓	✓	✓	✓	✓	✓
EM2308222-004	09-May-2023 16:24	Dredge	✓	✓	✓	✓	✓	✓	✓
Matrix: <b>WATER</b> Laboratory sample ID  EM2308222-001  EM2308222-002  EM2308222-003  EM2308222-004	Sampling date / time  09-May-2023 15:31  09-May-2023 16:01  09-May-2023 16:09  09-May-2023 16:24	Sample ID  BH10  Leachate  Wetland  Dredge	MATER - EA015H  Total Dissolved Solids - Standard Level	A A Total Metals by ICP/MS (including digestion)	A A WATER - EP026SP Chemical Oxygen Demand (COD)	✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓         ✓			

# Proactive Holding Time Report

The following table summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory.

Matrix: WATER

Evaluation: **x** = Holding time breach; ✓ = Within holding time

Evaluation Trotally time broads, - Wallin Holding										
Method		Due for	Due for	Samples Ro	eceived	Instructions Received				
Client Sample ID(s)	Container	extraction	analysis	Date	Evaluation	Date	Evaluation			
EA005-P: pH by Au	to Titrator									
BH10	Clear Plastic Bottle - Natural		09-May-2023	10-May-2023	×					
Dredge	Clear Plastic Bottle - Natural		09-May-2023	10-May-2023	×					
Leachate	Clear Plastic Bottle - Natural		09-May-2023	10-May-2023	)£					
Wetland	Clear Plastic Bottle - Natural		09-May-2023	10-May-2023	3c					

Issue Date : 10-May-2023

Page Work Order 3 of 3 EM2308222 Amendment 0

Client : VENTIA UTILITY SERVICES PTY LTD



# Requested Deliverables

ACCOUNTS PAYABLE - VIC ONLY		
- A4 - AU Tax Invoice (INV)	Email	Nicole.Robins@ventia.com
<ul> <li>Purchase Order Request Letter (PO_Request)</li> </ul>	Email	Nicole.Robins@ventia.com
LUCY EDWARDS		
<ul> <li>*AU Certificate of Analysis - NATA (COA)</li> </ul>	Email	Lucy.Edwards@ventia.com
<ul> <li>*AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)</li> </ul>	Email	Lucy.Edwards@ventia.com
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	Lucy.Edwards@ventia.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	Lucy.Edwards@ventia.com
- A4 - AU Tax Invoice (INV)	Email	Lucy.Edwards@ventia.com
- Chain of Custody (CoC) (COC)	Email	Lucy.Edwards@ventia.com
- EDI Format - ENMRG (ENMRG)	Email	Lucy.Edwards@ventia.com
- EDI Format - ESDAT (ESDAT)	Email	Lucy.Edwards@ventia.com
<ul> <li>Purchase Order Request Letter (PO_Request)</li> </ul>	Email	Lucy.Edwards@ventia.com
Ping Yao		
<ul> <li>*AU Certificate of Analysis - NATA (COA)</li> </ul>	Email	ping.yao@ventia.com
<ul> <li>*AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)</li> </ul>	Email	ping.yao@ventia.com
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	ping.yao@ventia.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	ping.yao@ventia.com
- Chain of Custody (CoC) (COC)	Email	ping.yao@ventia.com
- EDI Format - ENMRG (ENMRG)	Email	ping.yao@ventia.com
- EDI Format - ESDAT (ESDAT)	Email	ping.yao@ventia.com
ROBERT CALLANDER		
<ul> <li>*AU Certificate of Analysis - NATA (COA)</li> </ul>	Email	robert.callander@ventia.com
<ul> <li>*AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)</li> </ul>	Email	robert.callander@ventia.com
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	robert.callander@ventia.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	robert.callander@ventia.com
- Chain of Custody (CoC) (COC)	Email	robert.callander@ventia.com
- EDI Format - ENMRG (ENMRG)	Email	robert.callander@ventia.com
- EDI Format - ESDAT (ESDAT)	Email	robert.callander@ventia.com



Client:			Ventia				Job	Ref:	Creswick Landfill 2 of 3								
Contact:		Ro	Robert Callander							ESTS REQUIRED AS PER QUOTE ME/412/							
Address:		25-37 Hunting	1	LSI	O KLG	COINL	DAS	FLRG	2001	L MIL/4	12/10						
Pho	Phone: 0427529051		Fax:	,	,												
Email: lucy.edwards@ventia.c		A. (435.3A)										- 1					
		ping.yao@ventia.com										- 1					
		robert.callander@ventia.com															
P/O	No.:											- 1					
		i i	No.:													- 1	
T/A T	ime:		T													- 4	
Sample ID		Sample Description	No of Container s	Date Sample d	Time sample d		ЬН	EC	DO	TEMP	ORP	SWL					
BH10	Grou	ndwater bore		9/6/23	1521	W	5.57	645	0.26	15.24	90.5	2-44					
BH13	I3 Groundwater bore			1:0/00	1-7-51	-	3 3 7	0 1		13 - 1	10 3						
														Covince	soutel Di		
LB1 Leachate bore													Environm Melbourn		VISION		
LB2	Leachate bore													Work O	der Refere		
LB3	Leac	hate bore						NC	SAMI	PLE -	SWL		ad-	EM:	2308	222	
							ONLY		1								
DIIND	DI:		344		NI.											¢ 📕 📗	
BLIND		dup (analysed by ALS)															
RINSAT	Rinsa	ate blank				,											
_													_	Telephone: +	61-3-8549 980	mar (11.1	
	Sn	ecial Please email Invo	ices to Nic	cole robine	@ventio	com							_		0. 5 50-10 500		
Ins	tructi			JOIG.I UDII IS	wventia.	COIII											
				Time:		Rece	ceived By:		Company:			Date	: Т	ime:			
A Callander Ventia				15/23	170		1	Wann.			(Aw)			10/3		-00	
This form is for recording of sample data after prior consultation with an analyst regarding sampling procedures not over-ride pricing agreements, OHS requirements and our terms and conditions.							and does	loes				Samples re		[Yes/No]			
As an Occupational Health and Safety consideration, it is a requirement of Ecowise Environmental (Victoria), that													thin recon	mended hold	ling times:	[Yes/No]	
samples received be undamaged and prior advice given in writing of any potential health risks.  'es transported at appropriate temperate description of the prior advice given in writing of any potential health risks.  'es transported at appropriate temperate description of the prior advice given in writing of any potential health risks.  'es transported at appropriate temperate description of the prior advice given in writing of any potential health risks.										mperature	[Yes/No]						



CI	lient: Ventia Jo							loh	Pof:	Ref: Creswick Landfill								
		Volitie							300	Creswick Landfill								
Contact: R			obert (	Callar	nder				TEST	SREC	JUIRE	DAS	PER C	QUOTE	ME/	112/	16	
Address:		25-37 Huntingdale Road, Burwood, 3125																
Ph	one:	0427529051			ax:		<del></del>											F:
Email:		: lucy.edwards@ventia.com														21		-
		ping.yao@ventia.com																
P/O	No.:	rober	t.callander@ventia		0.				_									
			Q	uote No.:			,											
T/A T	ime:	. ****						T				0						
Sample ID		Sample Description			of ainers	Date Sampled	Time sampled		표	EC	00	TEMP	ORP	SWL				
U/S BH3	Creek	Sam	ple									9						
@ BH3	@ BH3 Creek Sample																	
D/S BH3	13 Creek Sample																-	
								,										
Leachate	Surfa	ce wa	ter sample	5		9/5/23	1601	U	6.84	900	3.57	12.32	46.3	<u> </u>				
Wetland	Surfa	ce wa	ter sample	5		9/5/23		U	6.94		0.32		10	- Commont				
Dredge	Surfa	ce wat	ter sample	5	1	9/5/23	1626	W	6.63			11.86		_				747
						113/03	1000	~	0.0.)	010	4.03	11.50	3, \$					
							8											
		cial	Please email Invo			le.robins@	ventia.c	om			1							, i
	tructio	8 55553	Lucy.edwards@v	entia.c														
Relinquished					D	Date: Time:		Time:		Received B		: Company:		Date:			Time:	
A Callanoer Ventia			9/5	123	170	00		n	Land	h	An			60/	5	10-10		
This form is for recording of sample data after prior consultation with an analyst regarding sampling procedures and does not over-ride pricing agreements, OHS requirements and our terms and conditions.									LABL	ISE ONLY	S	ample cond	litions:				ged [Yes/No]	
As an Occupational Health and Safety consideration, it is a requirement of Ecowise Environmental (Victoria), that all samples received be undamaged and prior advice given in writing of any potential health risks.									Samples adequately preserved [Y Samples within recommended holding times: [Y						es: [Yes/No]			
received be undurinaged and prior advice given in writing or any potential field. fisks.												Sa	imples tran	sported at ap	propriate t	emperat	ure [Yes/No]	



# **CERTIFICATE OF ANALYSIS**

Work Order : EM2308315

Client : VENTIA UTILITY SERVICES PTY LTD

Contact : ROBERT CALLANDER

Address : 25-37 HUNTINGDALE ROAD

**BURWOOD VIC 3125** 

Telephone : ---

Project : Creswick Landfill 1 of 3

Order number : Creswick Landfill 1 of 3

C-O-C number : ---Sampler : AC
Site : ----

Quote number · ME/793/19

No. of samples received : 8
No. of samples analysed : 8

Page : 1 of 6

Laboratory : Environmental Division Melbourne

Contact : Peter Ravlic

Address : 4 Westall Rd Springvale VIC Australia 3171

Telephone : +6138549 9645

Date Samples Received : 11-May-2023 10:10

Date Analysis Commenced : 12-May-2023

Issue Date : 18-May-2023 22:12



This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

#### Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Arenie Vijayaratnam Senior Inorganic Chemist Melbourne Inorganics, Springvale, VIC

Dilani Fernando Laboratory Coordinator Melbourne External Subcontracting, Springvale, VIC

Dilani Fernando Laboratory Coordinator Melbourne Inorganics, Springvale, VIC

Page : 2 of 6 Work Order : EM2308315

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill 1 of 3

#### **General Comments**

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

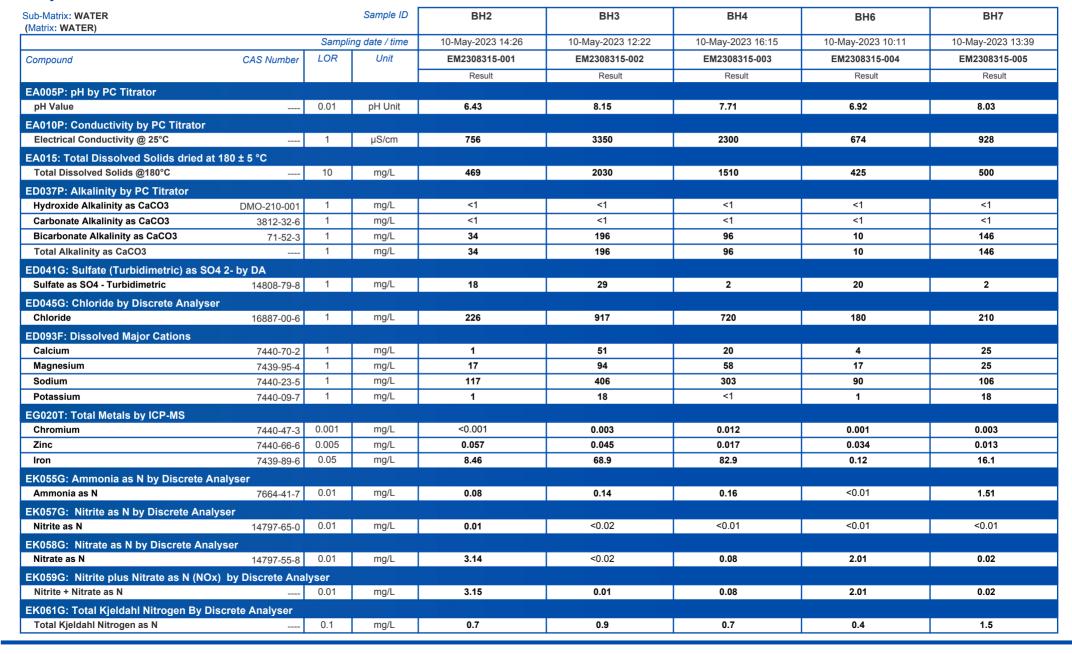
Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

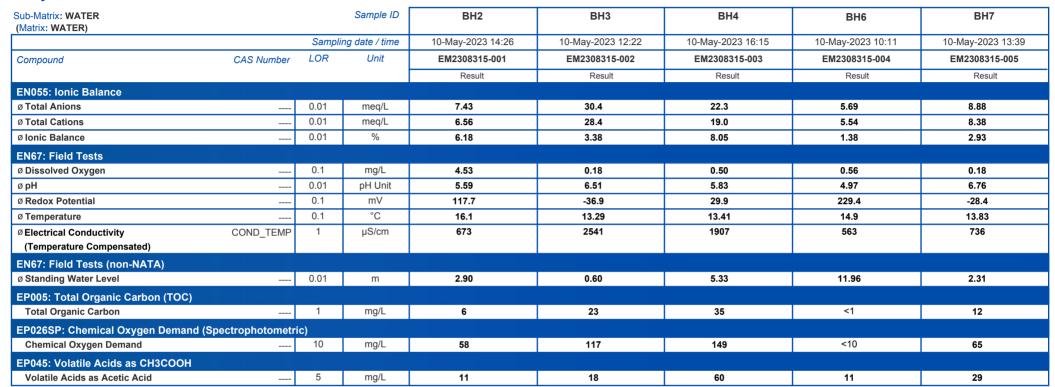

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- As per QWI EN55-3 Data Interpreting Procedures, Ionic balances are typically calculated using Major Anions Chloride, Alkalinity and Sulfate; and Major Cations Calcium, Magnesium, Potassium and Sodium. Where applicable and dependent upon sample matrix, the Ionic Balance may also include the additional contribution of Ammonia, Dissolved Metals by ICPMS and H+ to the Cations and Nitrate, SiO2 and Fluoride to the Anions.
- It is recognised that TKN is less than ammonia for sample #5. However, the difference is within experimental variation of the methods.
- EK057G: EM2308315 #2 Sample required dilution for Nitrite as N prior to analysis due to sample matrix. LOR has been raised accordingly.
- ED041G, ED045G: EM2308315 #2 and 5 has been confirmed by re-prep and reanalysis.
- lonic balances were calculated using: major anions chloride, alkalinity and sulfate; and major cations calcium, magnesium, potassium and sodium.
- ED045G: The presence of Thiocyanate, Thiosulfate and Sulfite can positively contribute to the chloride result, thereby may bias results higher than expected. Results should be scrutinised accordingly.
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.



Page : 3 of 6 Work Order : EM2308315

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill 1 of 3



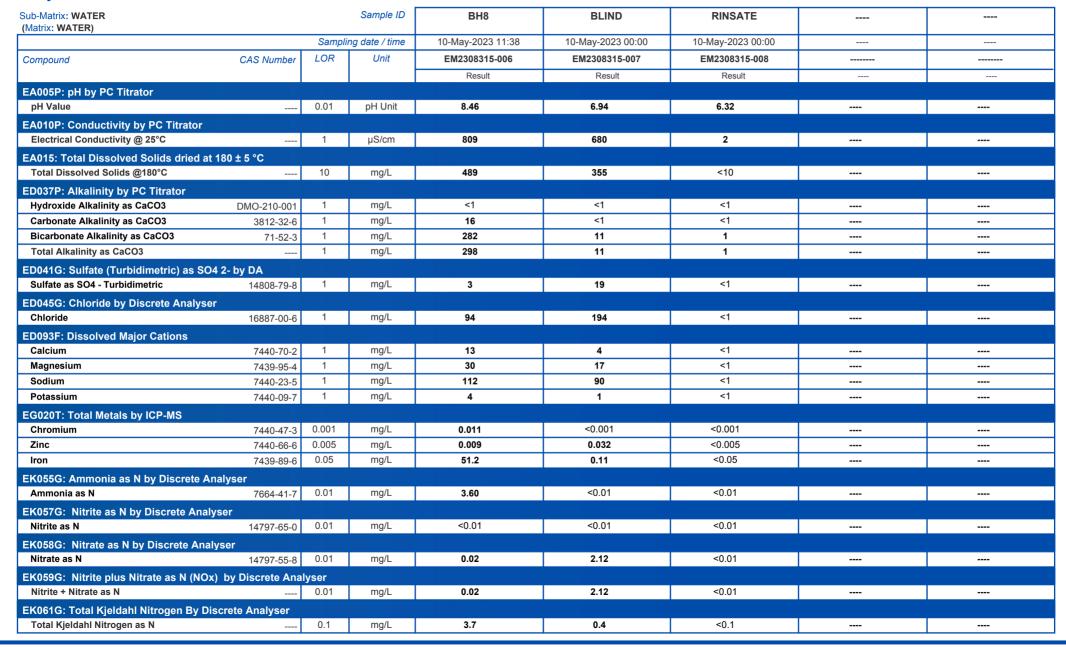



Page : 4 of 6 Work Order : EM2308315

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill 1 of 3





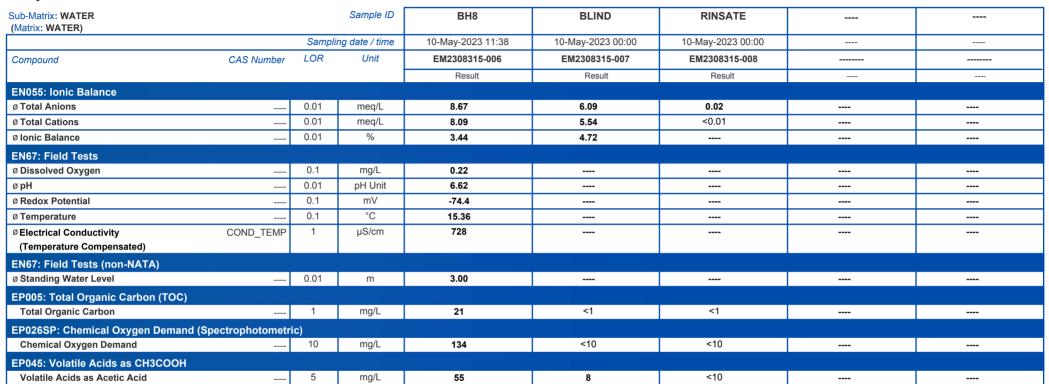

Page : 5 of 6 Work Order : EM2308315

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill 1 of 3

#### **Analytical Results**






Page : 6 of 6 Work Order : EM2308315

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill 1 of 3

### **Analytical Results**







# **QUALITY CONTROL REPORT**

Telephone

: 1 of 7

: +6138549 9645

Accreditation No. 825

Accredited for compliance with

Work Order : EM2308315 Page

Client : VENTIA UTILITY SERVICES PTY LTD Laboratory : Environmental Division Melbourne

Contact : ROBERT CALLANDER Contact : Peter Ravlic

Address : 25-37 HUNTINGDALE ROAD Address : 4 Westall Rd Springvale VIC Australia 3171

BURWOOD VIC 3125

Telephone : ----

Project : Creswick Landfill 1 of 3 Date Samples Received : 11-May-2023
Order number : Creswick Landfill 1 of 3 Date Analysis Commenced : 12-May-2023

C-O-C number : ---- Issue Date : 18-May-2023

Sampler : AC

No. of samples analysed : 8

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall

not be reproduced, except in full.

This Quality Control Report contains the following information:

: 8

Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits

Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits

Matrix Spike (MS) Report; Recovery and Acceptance Limits

: ME/793/19

Signatories

No. of samples received

Site
Quote number

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Arenie Vijayaratnam Senior Inorganic Chemist Melbourne Inorganics, Springvale, VIC

Dilani Fernando Laboratory Coordinator Melbourne External Subcontracting, Springvale, VIC

Dilani Fernando Laboratory Coordinator Melbourne Inorganics, Springvale, VIC

Page : 2 of 7
Work Order : EM2308315

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill 1 of 3

# General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

# = Indicates failed QC

#### Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Laboratami Dunlinata (DUD) Danart

Sub-Matrix: WATER						Laboratory D	Ouplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EA005P: pH by PC Ti	trator (QC Lot: 5044577)								
EM2308330-003	Anonymous	EA005-P: pH Value		0.01	pH Unit	8.20	8.25	0.6	0% - 20%
EM2308264-020	Anonymous	EA005-P: pH Value		0.01	pH Unit	6.45	6.44	0.2	0% - 20%
EA010P: Conductivity	y by PC Titrator (QC Lot:	5044579)							
EM2308283-012	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	39	39	0.0	0% - 20%
EM2308264-020	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	728	728	0.0	0% - 20%
EA015: Total Dissolve	ed Solids dried at 180 ± 5	°C (QC Lot: 5050879)							
EM2308312-003	Anonymous	EA015H: Total Dissolved Solids @180°C		10	mg/L	6430	6520	1.4	0% - 20%
EM2308313-009	Anonymous	EA015H: Total Dissolved Solids @180°C		10	mg/L	7810	7870	0.7	0% - 20%
EM2308313-019	Anonymous	EA015H: Total Dissolved Solids @180°C		10	mg/L	6390	6740	5.3	0% - 20%
EM2308315-008	RINSATE	EA015H: Total Dissolved Solids @180°C		10	mg/L	<10	<10	0.0	No Limit
ED037P: Alkalinity by	PC Titrator (QC Lot: 504	44581)							
EM2308283-012	Anonymous	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	2	2	0.0	No Limit
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	2	2	0.0	No Limit
EM2308330-003	Anonymous	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	144	146	0.9	0% - 20%
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	144	146	0.9	0% - 20%
ED041G: Sulfate (Tur	bidimetric) as SO4 2- by	DA (QC Lot: 5044937)							
EM2308312-004	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	226	223	1.0	0% - 20%
EM2308296-002	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	228	231	1.7	0% - 20%
ED041G: Sulfate (Tur	bidimetric) as SO4 2- by	DA (QC Lot: 5045362)							

Page : 3 of 7
Work Order : EM2308315

Client : VENTIA UTILITY SERVICES PTY LTD



Sub-Matrix: WATER						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
ED041G: Sulfate (	Turbidimetric) as SO4 2	- by DA (QC Lot: 5045362) - continued							
EM2308309-003	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	230	229	0.0	0% - 20%
EM2308245-001	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	862	864	0.1	0% - 20%
ED045G: Chloride	by Discrete Analyser (	QC Lot: 5044938)							
EM2308312-003	Anonymous	ED045G: Chloride	16887-00-6	1	mg/L	3660	3640	0.5	0% - 20%
EM2308296-002	Anonymous	ED045G: Chloride	16887-00-6	1	mg/L	1960	1960	0.2	0% - 20%
ED045G: Chloride	by Discrete Analyser (	QC Lot: 5045363)							
EM2308309-002	Anonymous	ED045G: Chloride	16887-00-6	1	mg/L	4550	4350	4.6	0% - 20%
EM2308245-001	Anonymous	ED045G: Chloride	16887-00-6	1	mg/L	648	647	0.0	0% - 20%
ED093F: Dissolve	d Major Cations (QC Lo	ot: 5046643)							
EM2308305-002	Anonymous	ED093F: Calcium	7440-70-2	1	mg/L	<1	<1	0.0	No Limit
		ED093F: Magnesium	7439-95-4	1	mg/L	<1	<1	0.0	No Limit
		ED093F: Sodium	7440-23-5	1	mg/L	<1	<1	0.0	No Limit
		ED093F: Potassium	7440-09-7	1	mg/L	<1	<1	0.0	No Limit
EM2308307-008	Anonymous	ED093F: Calcium	7440-70-2	1	mg/L	120	121	0.0	0% - 20%
		ED093F: Magnesium	7439-95-4	1	mg/L	17	17	0.0	0% - 50%
		ED093F: Sodium	7440-23-5	1	mg/L	106	107	0.0	0% - 20%
		ED093F: Potassium	7440-09-7	1	mg/L	9	9	0.0	No Limit
ED093F: Dissolve	d Major Cations (QC Lo	ot: 5046644)							
EM2308315-003	BH4	ED093F: Calcium	7440-70-2	1	mg/L	20	20	0.0	0% - 20%
		ED093F: Magnesium	7439-95-4	1	mg/L	58	58	0.0	0% - 20%
		ED093F: Sodium	7440-23-5	1	mg/L	303	304	0.0	0% - 20%
		ED093F: Potassium	7440-09-7	1	mg/L	<1	1	0.0	No Limit
EM2308322-001	Anonymous	ED093F: Calcium	7440-70-2	1	mg/L	342	343	0.4	0% - 20%
		ED093F: Magnesium	7439-95-4	1	mg/L	6	5	0.0	No Limit
		ED093F: Sodium	7440-23-5	1	mg/L	63	64	0.0	0% - 20%
		ED093F: Potassium	7440-09-7	1	mg/L	2	2	0.0	No Limit
EG020T: Total Me	tals by ICP-MS (QC Lot	:: 5047472)							
EM2308214-001	Anonymous	EG020A-T: Chromium	7440-47-3	0.001	mg/L	0.005	0.004	0.0	No Limit
		EG020A-T: Zinc	7440-66-6	0.005	mg/L	0.259	0.251	3.0	0% - 20%
		EG020A-T: Iron	7439-89-6	0.05	mg/L	12.5	12.0	4.6	0% - 20%
EM2308238-004	Anonymous	EG020A-T: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Zinc	7440-66-6	0.005	mg/L	1.05	1.06	0.5	0% - 20%
		EG020A-T: Iron	7439-89-6	0.05	mg/L	<0.05	<0.05	0.0	No Limit
EK055G: Ammoni	a as N by Discrete Anal	yser (QC Lot: 5045178)							
EM2308213-004	Anonymous	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	3.19	3.17	0.6	0% - 20%
EM2308309-009	Anonymous	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	<0.01	<0.01	0.0	No Limit
EK055G: Ammoni	a as N by Discrete Anal	yser (QC Lot: 5045181)							
EM2308315-006	BH8	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	3.60	3.72	3.1	0% - 20%
			* * * * * * * * * * * * * * * * * * * *	-					1

Page : 4 of 7
Work Order : EM2308315

Client : VENTIA UTILITY SERVICES PTY LTD



Sub-Matrix: WATER						Laboratory I	Ouplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EK057G: Nitrite as	N by Discrete Analyser(	QC Lot: 5044935)							
EM2308205-007	Anonymous	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	0.44	0.44	0.0	0% - 20%
EM2308297-002	Anonymous	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.02	<0.05	85.7	No Limit
EK057G: Nitrite as	N by Discrete Analyser (	QC Lot: 5044939)							
EM2308315-006	BH8	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	0.0	No Limit
EK057G: Nitrite as	N by Discrete Analyser(	QC Lot: 5045361)							
EM2308217-005	Anonymous	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	0.0	No Limit
EM2308309-002	Anonymous	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	0.0	No Limit
EK057G: Nitrite as	N by Discrete Analyser (	QC Lot: 5045364)							
EM2308315-008	RINSATE	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	0.0	No Limit
EK059G: Nitrite plu	s Nitrate as N (NOx) by I	Discrete Analyser (QC Lot: 5045179)							
EM2308213-004	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	6.92	6.88	0.5	0% - 20%
EM2308309-009	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	0.07	0.07	0.0	No Limit
EK059G: Nitrite plu	s Nitrate as N (NOx) by I	Discrete Analyser (QC Lot: 5045180)							
EM2308315-006	BH8	EK059G: Nitrite + Nitrate as N		0.01	mg/L	0.02	0.06	120	No Limit
EK061G: Total Kjelo	lahl Nitrogen By Discrete	Analyser (QC Lot: 5050937)	1 1						
EM2308309-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	0.7	0.3	85.8	No Limit
EM2308309-010	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	0.3	0.2	0.0	No Limit
EP005: Total Organi	ic Carbon (TOC) (QC Lot	: 5046294)	1 1						
EM2308309-004	Anonymous	EP005: Total Organic Carbon		1	mg/L	31	29	6.7	0% - 20%
EM2308315-003	BH4	EP005: Total Organic Carbon		1	mg/L	35	36	4.1	0% - 20%
EP026SP: Chemical	Oxygen Demand (Spect	rophotometric) (QC Lot: 5052136)	1 1						
EM2308208-001	Anonymous	EP026SP: Chemical Oxygen Demand		10	mg/L	25	23	8.8	No Limit
EM2308309-009	Anonymous	EP026SP: Chemical Oxygen Demand		10	mg/L	15	12	21.9	No Limit
EP045: Volatile Acid	ds as CH3COOH (QC Lot	: 5053496)							
EM2308315-001	BH2	EP045: Volatile Acids as Acetic Acid		5	mg/L	11	11	0.0	No Limit

Page : 5 of 7 Work Order : EM2308315

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill 1 of 3



### Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LC	S) Report		
				Report	Spike	100 98.8 101 100 99.3 101 94.9 85.0 119 106 91.0 110 88.0 81.6 118			
Method: Compound CAS Nu	ımber	LOR	Unit	Result	Concentration	LCS	Low	High	
EA005P: pH by PC Titrator (QCLot: 5044577)									
EA005-P: pH Value			pH Unit		4 pH Unit	100	98.8	101	
					7 pH Unit	100	99.3	101	
EA010P: Conductivity by PC Titrator (QCLot: 5044579)									
EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	<1	1412 μS/cm	94.9	85.0	119	
EA015: Total Dissolved Solids dried at 180 ± 5 °C (QCLot: 5050879)									
EA015H: Total Dissolved Solids @180°C		10	mg/L	<10	2000 mg/L	106	91.0	110	
				<10	2440 mg/L	88.0	81.6	118	
				<10	293 mg/L	106	91.0	110	
ED037P: Alkalinity by PC Titrator (QCLot: 5044581)									
ED037-P: Total Alkalinity as CaCO3			mg/L		200 mg/L	103	85.0	116	
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA (QCLot: 5044937)									
ED041G: Sulfate as SO4 - Turbidimetric 14808-	79-8	1	mg/L	<1	25 mg/L	103	90.0	110	
				<1	500 mg/L	105	90.0	110	
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA (QCLot: 5045362)									
ED041G: Sulfate as SO4 - Turbidimetric 14808-		1	mg/L	<1	25 mg/L	104	90.0	110	
				<1	500 mg/L	109	90.0	110	
ED045G: Chloride by Discrete Analyser (QCLot: 5044938)									
ED045G: Chloride 16887-	00-6	1	mg/L	<1	10 mg/L	109	90.0	110	
				<1	1000 mg/L	105	90.0	110	
ED045G: Chloride by Discrete Analyser (QCLot: 5045363)									
ED045G: Chloride 16887-	00-6	1	mg/L	<1	10 mg/L	97.9	90.0	110	
				<1	1000 mg/L	108	90.0	110	
ED093F: Dissolved Major Cations (QCLot: 5046643)									
ED093F: Calcium 7440-	70-2	1	mg/L	<1	50 mg/L	104	80.0	120	
ED093F: Magnesium 7439-	95-4	1	mg/L	<1	50 mg/L	103	80.0	120	
ED093F: Sodium 7440-	23-5	1	mg/L	<1	50 mg/L	105	80.0	120	
ED093F: Potassium 7440-	09-7	1	mg/L	<1	50 mg/L	96.0	80.0	120	
ED093F: Dissolved Major Cations (QCLot: 5046644)									
ED093F: Calcium 7440-	70-2	1	mg/L	<1	50 mg/L	88.8	80.0	120	
ED093F: Magnesium 7439-	95-4	1	mg/L	<1	50 mg/L	88.4	80.0	120	
			-						

Page : 6 of 7
Work Order : EM2308315

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill 1 of 3



Sub-Matrix: WATER			Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
			Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)
Method: Compound CAS No.	umber LOR	Unit	Result	Concentration	LCS	Low	High
ED093F: Dissolved Major Cations (QCLot: 5046644) - continued							
ED093F: Sodium 7440-	23-5 1	mg/L	<1	50 mg/L	89.2	80.0	120
ED093F: Potassium 7440-	09-7 1	mg/L	<1	50 mg/L	82.9	80.0	120
EG020T: Total Metals by ICP-MS (QCLot: 5047472)							
EG020A-T: Chromium 7440-	47-3 0.001	mg/L	<0.001	0.1 mg/L	101	86.9	112
EG020A-T: Zinc 7440-	66-6 0.005	mg/L	<0.005	0.1 mg/L	106	86.7	117
EG020A-T: Iron 7439-	89-6 0.05	mg/L	<0.05	0.5 mg/L	105	92.8	118
EK055G: Ammonia as N by Discrete Analyser (QCLot: 5045178)							
EK055G: Ammonia as N 7664-	41-7 0.01	mg/L	<0.01	1 mg/L	97.0	90.0	110
EK055G: Ammonia as N by Discrete Analyser (QCLot: 5045181)							
EK055G: Ammonia as N 7664-	41-7 0.01	mg/L	<0.01	1 mg/L	92.2	90.0	110
EK057G: Nitrite as N by Discrete Analyser (QCLot: 5044935)							
EK057G: Nitrite as N 14797-	65-0 0.01	mg/L	<0.01	0.5 mg/L	107	90.0	110
EK057G: Nitrite as N by Discrete Analyser (QCLot: 5044939)							
EK057G: Nitrite as N 14797-	65-0 0.01	mg/L	<0.01	0.5 mg/L	106	90.0	110
EK057G: Nitrite as N by Discrete Analyser (QCLot: 5045361)							
EK057G: Nitrite as N 14797-	65-0 0.01	mg/L	<0.01	0.5 mg/L	108	90.0	110
EK057G: Nitrite as N by Discrete Analyser (QCLot: 5045364)							
EK057G: Nitrite as N 14797-	65-0 0.01	mg/L	<0.01	0.5 mg/L	108	90.0	110
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser (QC	Lot: 5045179)						
EK059G: Nitrite + Nitrate as N	0.01	mg/L	<0.01	0.5 mg/L	100	90.0	110
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser (QC	Lot: 5045180)						
EK059G: Nitrite + Nitrate as N	0.01	mg/L	<0.01	0.5 mg/L	102	90.0	110
EK061G: Total Kjeldahl Nitrogen By Discrete Analyser (QCLot: 505	(0937)						
EK061G: Total Kjeldahl Nitrogen as N	0.1	mg/L	<0.1	5 mg/L	90.9	70.0	117
EP005: Total Organic Carbon (TOC) (QCLot: 5046294)							
EP005: Total Organic Carbon	1	mg/L	<1	100 mg/L	101	81.2	110
EP026SP: Chemical Oxygen Demand (Spectrophotometric) (QCLor	t: 5052136)						
EP026SP: Chemical Oxygen Demand	10	mg/L	<10	25 mg/L	98.8	89.7	111
EP045: Volatile Acids as CH3COOH (QCLot: 5053496)				<u> </u>			
EP045: Volatile Acids as Acetic Acid	5	mg/L	<5	182 mg/L	97.6	85.5	116
				ı			

# Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Page : 7 of 7
Work Order : EM2308315

Client : VENTIA UTILITY SERVICES PTY LTD



Sub-Matrix: WATER				Ма	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Acceptable I	Limits (%)
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
ED041G: Sulfate (1	Furbidimetric) as SO4 2- by DA (QCLot: 5044937)						
EM2308296-003	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	100 mg/L	96.7	70.0	130
ED041G: Sulfate (1	Turbidimetric) as SO4 2- by DA (QCLot: 5045362)						
EM2308245-002	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	200 mg/L	72.4	70.0	130
ED045G: Chloride	by Discrete Analyser (QCLot: 5044938)						
EM2308296-003	Anonymous	ED045G: Chloride	16887-00-6	400 mg/L	102	70.0	142
EG020T: Total Met	als by ICP-MS (QCLot: 5047472)						
EM2308214-001	Anonymous	EG020A-T: Chromium	7440-47-3	1 mg/L	94.2	78.9	119
		EG020A-T: Zinc	7440-66-6	1 mg/L	99.7	74.0	120
EK055G: Ammonia	as N by Discrete Analyser (QCLot: 5045178)						
EM2308309-001	Anonymous	EK055G: Ammonia as N	7664-41-7	2 mg/L	130	70.0	130
EK055G: Ammonia	as N by Discrete Analyser (QCLot: 5045181)						
EM2308315-007	BLIND	EK055G: Ammonia as N	7664-41-7	1 mg/L	130	70.0	130
EK057G: Nitrite as	N by Discrete Analyser (QCLot: 5044935)						
EM2308205-008	Anonymous	EK057G: Nitrite as N	14797-65-0	0.5 mg/L	# Not	80.0	114
					Determined		
EK057G: Nitrite as	N by Discrete Analyser (QCLot: 5044939)						
EM2308363-001	Anonymous	EK057G: Nitrite as N	14797-65-0	0.5 mg/L	102	80.0	114
EK057G: Nitrite as	N by Discrete Analyser (QCLot: 5045361)						
EM2308297-005	Anonymous	EK057G: Nitrite as N	14797-65-0	0.5 mg/L	95.1	80.0	114
EK057G: Nitrite as	N by Discrete Analyser (QCLot: 5045364)						
EM2308331-001	Anonymous	EK057G: Nitrite as N	14797-65-0	0.5 mg/L	103	80.0	114
EK059G: Nitrite pl	us Nitrate as N (NOx) by Discrete Analyser (QCLot: 50	45179)					
EM2308309-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.5 mg/L	74.7	70.0	130
EK059G: Nitrite pl	us Nitrate as N (NOx) by Discrete Analyser (QCLot: 50	45180)					
EM2308315-007	BLIND	EK059G: Nitrite + Nitrate as N		0.5 mg/L	# Not	70.0	130
					Determined		
EK061G: Total Kje	Idahl Nitrogen By Discrete Analyser (QCLot: 5050937)						
EM2308309-002	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		5 mg/L	105	70.0	130
EP005: Total Orga	nic Carbon (TOC) (QCLot: 5046294)						
EM2308309-005	Anonymous	EP005: Total Organic Carbon		100 mg/L	118	76.6	125
EP026SP: Chemica	al Oxygen Demand (Spectrophotometric) (QCLot: 50521	136)					
EM2308309-001	Anonymous	EP026SP: Chemical Oxygen Demand		2500 mg/L	112	70.0	130



# QA/QC Compliance Assessment to assist with Quality Review

**Work Order** : **EM2308315** Page : 1 of 9

Client : VENTIA UTILITY SERVICES PTY LTD Laboratory : Environmental Division Melbourne

 Contact
 : ROBERT CALLANDER
 Telephone
 : +6138549 9645

 Project
 : Creswick Landfill 1 of 3
 Date Samples Received
 : 11-May-2023

 Site
 : --- Issue Date
 : 18-May-2023

Sampler : AC No. of samples received : 8

Order number : Creswick Landfill 1 of 3 No. of samples analysed : 8

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

### **Summary of Outliers**

#### **Outliers: Quality Control Samples**

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- Matrix Spike outliers exist please see following pages for full details.
- For all regular sample matrices, NO surrogate recovery outliers occur.

### **Outliers: Analysis Holding Time Compliance**

• Analysis Holding Time Outliers exist - please see following pages for full details.

### **Outliers: Frequency of Quality Control Samples**

Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Page : 2 of 9
Work Order : EM2308315

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill 1 of 3

#### **Outliers: Quality Control Samples**

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

#### Matrix: WATER

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Matrix Spike (MS) Recoveries							
EK057G: Nitrite as N by Discrete Analyser	EM2308205008	Anonymous	Nitrite as N	14797-65-0	Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Ar	EM2308315007	BLIND	Nitrite + Nitrate as N		Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.

#### **Outliers: Analysis Holding Time Compliance**

#### Matrix: WATER

Matrix: WATER							
Method		E	xtraction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Days	Date analysed	Due for analysis	Days
				overdue			overdue
EA005P: pH by PC Titrator							
Clear Plastic Bottle - Natural							
BH2,	BH3,				16-May-2023	10-May-2023	6
BH4,	BH6,						
BH7,	BH8,						
BLIND,	RINSATE						

#### **Outliers: Frequency of Quality Control Samples**

#### Matrix: WATER

WOUNT THE C					
Quality Control Sample Type	Co	unt	Rate	: (%)	Quality Control Specification
Method	QC	Regular	Actual	Expected	
	1				
Matrix Spikes (MS)					
Chloride by Discrete Analyser	1	36	2.78	5.00	NEPM 2013 B3 & ALS QC Standard

# **Analysis Holding Time Compliance**

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

#### Matrix: WATER

Evaluation: >	= Holding	time breach	: ✓ =	Within	holding	time
---------------	-----------	-------------	-------	--------	---------	------

Method	Sample Date	Ex	Extraction / Preparation		Analysis		
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation

Page : 3 of 9
Work Order : EM2308315

Client : VENTIA UTILITY SERVICES PTY LTD



Matrix: WATER					Evaluation	: × = Holding time	breach; ✓ = Withi	n holding time.
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA005P: pH by PC Titrator								
Clear Plastic Bottle - Natural (EA005-P)								
BH2,	BH3,	10-May-2023				16-May-2023	10-May-2023	x
BH4,	BH6,							
BH7,	BH8,							
BLIND,	RINSATE							
EA010P: Conductivity by PC Titrator								
Clear Plastic Bottle - Natural (EA010-P)								
BH2,	BH3,	10-May-2023				16-May-2023	07-Jun-2023	✓
BH4,	BH6,							
BH7,	BH8,							
BLIND,	RINSATE							
EA015: Total Dissolved Solids dried at 180 ± 5 °C								
Clear Plastic Bottle - Natural (EA015H)								
BH2,	BH3,	10-May-2023				16-May-2023	17-May-2023	✓
BH4,	BH6,							
BH7,	BH8,							
BLIND,	RINSATE							
ED037P: Alkalinity by PC Titrator								
Clear Plastic Bottle - Natural (ED037-P)		1						
BH2,	BH3,	10-May-2023				16-May-2023	24-May-2023	✓
BH4,	BH6,							·
BH7,	BH8,							
BLIND,	•							
·	RINSATE							
FD0/1G: Sulfate (Turbidimetric) as SO/ 2- by DA	RINSATE							
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA	RINSATE							
Clear Plastic Bottle - Natural (ED041G)		10-May-2023				12-May-2023	07-Jun-2023	<i></i>
Clear Plastic Bottle - Natural (ED041G) BH2,	внз,	10-May-2023				12-May-2023	07-Jun-2023	<b>√</b>
Clear Plastic Bottle - Natural (ED041G) BH2, BH6,		10-May-2023				12-May-2023	07-Jun-2023	<b>√</b>
Clear Plastic Bottle - Natural (ED041G) BH2, BH6, BH8	внз,	10-May-2023				12-May-2023	07-Jun-2023	<b>✓</b>
Clear Plastic Bottle - Natural (ED041G) BH2, BH6, BH8 Clear Plastic Bottle - Natural (ED041G)	BH3, BH7,	-				_		·
Clear Plastic Bottle - Natural (ED041G) BH2, BH6, BH8  Clear Plastic Bottle - Natural (ED041G) BH4,	внз,	10-May-2023 10-May-2023				12-May-2023 15-May-2023	07-Jun-2023 07-Jun-2023	✓ ✓
Clear Plastic Bottle - Natural (ED041G) BH2, BH6, BH8  Clear Plastic Bottle - Natural (ED041G) BH4, RINSATE	BH3, BH7,	-				_		·
Clear Plastic Bottle - Natural (ED041G) BH2, BH6, BH8  Clear Plastic Bottle - Natural (ED041G) BH4, RINSATE  ED045G: Chloride by Discrete Analyser	BH3, BH7,	-				_		·
Clear Plastic Bottle - Natural (ED041G) BH2, BH6, BH8  Clear Plastic Bottle - Natural (ED041G) BH4, RINSATE  ED045G: Chloride by Discrete Analyser  Clear Plastic Bottle - Natural (ED045G)	BH3, BH7, BLIND,	10-May-2023				15-May-2023		<b>√</b>
Clear Plastic Bottle - Natural (ED041G) BH2, BH6, BH8  Clear Plastic Bottle - Natural (ED041G) BH4, RINSATE  ED045G: Chloride by Discrete Analyser  Clear Plastic Bottle - Natural (ED045G) BH2,	BH3, BH7, BLIND,	-				_	07-Jun-2023	·
Clear Plastic Bottle - Natural (ED041G) BH2, BH6, BH8  Clear Plastic Bottle - Natural (ED041G) BH4, RINSATE  ED045G: Chloride by Discrete Analyser  Clear Plastic Bottle - Natural (ED045G) BH2, BH6,	BH3, BH7, BLIND,	10-May-2023				15-May-2023	07-Jun-2023	<b>√</b>
Clear Plastic Bottle - Natural (ED041G) BH2, BH6, BH8  Clear Plastic Bottle - Natural (ED041G) BH4, RINSATE  ED045G: Chloride by Discrete Analyser  Clear Plastic Bottle - Natural (ED045G) BH2, BH6, BH8	BH3, BH7, BLIND,	10-May-2023				15-May-2023	07-Jun-2023	<b>√</b>
Clear Plastic Bottle - Natural (ED041G) BH2, BH6, BH8  Clear Plastic Bottle - Natural (ED041G) BH4, RINSATE  ED045G: Chloride by Discrete Analyser  Clear Plastic Bottle - Natural (ED045G) BH2, BH6, BH8  Clear Plastic Bottle - Natural (ED045G)	BH3, BH7, BLIND, BH3, BH7,	10-May-2023 10-May-2023				15-May-2023 12-May-2023	07-Jun-2023 07-Jun-2023	✓
Clear Plastic Bottle - Natural (ED041G) BH2, BH6, BH8  Clear Plastic Bottle - Natural (ED041G) BH4, RINSATE  ED045G: Chloride by Discrete Analyser  Clear Plastic Bottle - Natural (ED045G) BH2, BH6, BH8	BH3, BH7, BLIND,	10-May-2023				15-May-2023	07-Jun-2023	<b>√</b>

Page : 4 of 9
Work Order : EM2308315

Client : VENTIA UTILITY SERVICES PTY LTD



Matrix: WATER					Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time.
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
ED093F: Dissolved Major Cations								
Clear Plastic Bottle - Natural (ED093F)								
BH2,	BH3,	10-May-2023				17-May-2023	17-May-2023	✓
BH4,	BH6,							
ВН7,	BH8,							
BLIND,	RINSATE							
EG020T: Total Metals by ICP-MS								
Clear Plastic Bottle - Nitric Acid; Unfiltered (EG020A-	Γ)							
BH2,	BH3,	10-May-2023	13-May-2023	06-Nov-2023	1	15-May-2023	06-Nov-2023	✓
BH4,	BH6,							
BH7,	BH8,							
BLIND,	RINSATE							
EK055G: Ammonia as N by Discrete Analyser								
Clear Plastic Bottle - Sulfuric Acid (EK055G)								
BH6,	BLIND,	10-May-2023				12-May-2023	07-Jun-2023	✓
RINSATE								
Clear Plastic Bottle - Sulfuric Acid (EK055G)								
BH2,	BH3,	10-May-2023				13-May-2023	07-Jun-2023	✓
BH4,	BH7,							
BH8								
EK057G: Nitrite as N by Discrete Analyser								
Clear Plastic Bottle - Natural (EK057G)								
BH2,	BH3,	10-May-2023				12-May-2023	12-May-2023	✓
BH4,	BH6,							
BH7,	BH8,							
BLIND,	RINSATE							
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete	Analyser							
Clear Plastic Bottle - Sulfuric Acid (EK059G)								
BH2,	BH3,	10-May-2023				13-May-2023	07-Jun-2023	✓
BH4,	BH6,							, i
BH7,	BH8,							
BLIND,	RINSATE							
EK061G: Total Kjeldahl Nitrogen By Discrete Analyse								
Clear Plastic Bottle - Sulfuric Acid (EK061G)								
BH2,	BH3,	10-May-2023	17-May-2023	07-Jun-2023	1	18-May-2023	07-Jun-2023	✓
BH4,	BH6,							·
ВН7,	BH8,							
BLIND,	RINSATE							
-,		-						

Page : 5 of 9
Work Order : EM2308315

Client : VENTIA UTILITY SERVICES PTY LTD



Matrix: WATER					Evaluation	ı: 🗴 = Holding time	breach ; ✓ = Withi	n holding time	
Method		Sample Date	E)	traction / Preparation		Analysis			
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
EP005: Total Organic Carbon (TOC)									
Amber TOC Vial - Sulfuric Acid (EP00	5)								
BH2,	BH3,	10-May-2023				15-May-2023	07-Jun-2023	✓	
BH4,	BH6,								
BH7,	BH8,								
BLIND,	RINSATE								
EP026SP: Chemical Oxygen Demand	(Spectrophotometric)								
Clear Plastic Bottle - Sulfuric Acid (EF	P026SP)								
BH2,	BH3,	10-May-2023				16-May-2023	07-Jun-2023	✓	
BH4,	BH6,								
ВН7,	BH8,								
BLIND,	RINSATE								
EP045: Volatile Acids as CH3COOH									
Clear Plastic Bottle - Natural (EP045)									
BH2,	BH3,	10-May-2023				17-May-2023	24-May-2023	✓	
BH4,	BH6,								
BH7,	BH8,								
BLIND,	RINSATE								

Page : 6 of 9
Work Order : EM2308315

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill 1 of 3



# **Quality Control Parameter Frequency Compliance**

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: WATER

Evaluation: × = Quality Control frequency not within specification: ✓ = Quality Control frequency within specification

Quality Control Sample Type		С	ount	Rate (%)			Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	- Carrier operation
_aboratory Duplicates (DUP)				1			
Alkalinity by Auto Titrator	ED037-P	2	13	15.38	10.00	1	NEPM 2013 B3 & ALS QC Standard
Ammonia as N by Discrete analyser	EK055G	3	22	13.64	10.00	1	NEPM 2013 B3 & ALS QC Standard
Chemical Oxygen Demand (COD) (Spectrophotometric)	EP026SP	2	18	11.11	10.00	1	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G	4	36	11.11	10.00	1	NEPM 2013 B3 & ALS QC Standard
Conductivity by Auto Titrator	EA010-P	2	20	10.00	10.00	1	NEPM 2013 B3 & ALS QC Standard
Major Cations - Dissolved	ED093F	4	38	10.53	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	3	24	12.50	10.00	1	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	6	44	13.64	10.00	1	NEPM 2013 B3 & ALS QC Standard
pH by Auto Titrator	EA005-P	2	17	11.76	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	4	36	11.11	10.00	1	NEPM 2013 B3 & ALS QC Standard
Total Dissolved Solids (High Level)	EA015H	4	40	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Fotal Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	2	18	11.11	10.00	1	NEPM 2013 B3 & ALS QC Standard
Fotal Metals by ICP-MS - Suite A	EG020A-T	2	20	10.00	10.00	1	NEPM 2013 B3 & ALS QC Standard
Total Organic Carbon	EP005	2	15	13.33	10.00	1	NEPM 2013 B3 & ALS QC Standard
/olatile Acids as CH3COOH	EP045	1	9	11.11	10.00	1	NEPM 2013 B3 & ALS QC Standard
aboratory Control Samples (LCS)				1			
Alkalinity by Auto Titrator	ED037-P	1	13	7.69	5.00	1	NEPM 2013 B3 & ALS QC Standard
Ammonia as N by Discrete analyser	EK055G	2	22	9.09	5.00	1	NEPM 2013 B3 & ALS QC Standard
Chemical Oxygen Demand (COD) (Spectrophotometric)	EP026SP	1	18	5.56	5.00	1	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G	4	36	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Conductivity by Auto Titrator	EA010-P	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Major Cations - Dissolved	ED093F	2	38	5.26	5.00	1	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	24	8.33	5.00	1	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	4	44	9.09	5.00	1	NEPM 2013 B3 & ALS QC Standard
pH by Auto Titrator	EA005-P	2	17	11.76	10.00	1	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	4	36	11.11	10.00	1	NEPM 2013 B3 & ALS QC Standard
Total Dissolved Solids (High Level)	EA015H	3	40	7.50	7.50	1	NEPM 2013 B3 & ALS QC Standard
Fotal Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	18	5.56	5.00	1	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Organic Carbon	EP005	1	15	6.67	5.00	1	NEPM 2013 B3 & ALS QC Standard
/olatile Acids as CH3COOH	EP045	1	9	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							·
Ammonia as N by Discrete analyser	EK055G	2	22	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Chemical Oxygen Demand (COD) (Spectrophotometric)	EP026SP	1	18	5.56	5.00	<b>√</b>	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G	2	36	5.56	5.00	<b>√</b>	NEPM 2013 B3 & ALS QC Standard
Conductivity by Auto Titrator	EA010-P	1	20	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard

Page : 7 of 9
Work Order : EM2308315

Client : VENTIA UTILITY SERVICES PTY LTD



Matrix: WATER				Evaluation	n: × = Quality Co	ntrol frequency r	not within specification; ✓ = Quality Control frequency within specification
Quality Control Sample Type		Co	unt	Rate (%)			Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
Method Blanks (MB) - Continued							
Major Cations - Dissolved	ED093F	2	38	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	24	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	4	44	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	2	36	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Dissolved Solids (High Level)	EA015H	2	40	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Organic Carbon	EP005	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Volatile Acids as CH3COOH	EP045	1	9	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
Ammonia as N by Discrete analyser	EK055G	2	22	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Chemical Oxygen Demand (COD) (Spectrophotometric)	EP026SP	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G	1	36	2.78	5.00	)£	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	24	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	4	44	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	2	36	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Organic Carbon	EP005	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Page : 8 of 9
Work Order : EM2308315

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill 1 of 3

# **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
pH by Auto Titrator	EA005-P	WATER	In house: Referenced to APHA 4500 H+ B. This procedure determines pH of water samples by automated ISE.
			This method is compliant with NEPM Schedule B(3)
Conductivity by Auto Titrator	EA010-P	WATER	In house: Referenced to APHA 2510 B. This procedure determines conductivity by automated ISE. This method
			is compliant with NEPM Schedule B(3)
Total Dissolved Solids (High Level)	EA015H	WATER	In house: Referenced to APHA 2540C. A gravimetric procedure that determines the amount of `filterable` residue
			in an aqueous sample. A well-mixed sample is filtered through a glass fibre filter (1.2um). The filtrate is
			evaporated to dryness and dried to constant weight at 180+/-5C. This method is compliant with NEPM Schedule
			B(3)
Alkalinity by Auto Titrator	ED037-P	WATER	In house: Referenced to APHA 2320 B This procedure determines alkalinity by automated measurement (e.g. PC
			Titrate) on a settled supernatant aliquot of the sample using pH 4.5 for indicating the total alkalinity end-point.
			This method is compliant with NEPM Schedule B(3)
Sulfate (Turbidimetric) as SO4 2- by	ED041G	WATER	In house: Referenced to APHA 4500-SO4. Dissolved sulfate is determined in a 0.45um filtered sample. Sulfate
Discrete Analyser			ions are converted to a barium sulfate suspension in an acetic acid medium with barium chloride. Light
			absorbance of the BaSO4 suspension is measured by a photometer and the SO4-2 concentration is determined
			by comparison of the reading with a standard curve. This method is compliant with NEPM Schedule B(3)
Chloride by Discrete Analyser	ED045G	WATER	In house: Referenced to APHA 4500 CI - G.The thiocyanate ion is liberated from mercuric thiocyanate through
			sequestration of mercury by the chloride ion to form non-ionised mercuric chloride. In the presence of ferric ions
			the liberated thiocynate forms highly-coloured ferric thiocynate which is measured at 480 nm.
Major Cations - Dissolved	ED093F	WATER	In house: Referenced to APHA 3120 and 3125; USEPA SW 846 - 6010 and 6020; Cations are determined by
			either ICP-AES or ICP-MS techniques. This method is compliant with NEPM Schedule B(3) Sodium Adsorption
			Ratio is calculated from Ca, Mg and Na which determined by ALS in house method QWI-EN/ED093F. This
			method is compliant with NEPM Schedule B(3) Hardness parameters are calculated based on APHA 2340 B.
			This method is compliant with NEPM Schedule B(3)
Total Metals by ICP-MS - Suite A	EG020A-T	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. The ICPMS technique utilizes
			a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass
			spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their
		14/4-755	measurement by a discrete dynode ion detector.
Ammonia as N by Discrete analyser	EK055G	WATER	In house: Referenced to APHA 4500-NH3 G Ammonia is determined by direct colorimetry by Discrete Analyser.
NICE ALL DIVINE		\A/A TED	This method is compliant with NEPM Schedule B(3)
Nitrite as N by Discrete Analyser	EK057G	WATER	In house: Referenced to APHA 4500-NO2- B. Nitrite is determined by direct colourimetry by Discrete Analyser.
Nii A NI Bi A A		14/4-7-5-5	This method is compliant with NEPM Schedule B(3)
Nitrate as N by Discrete Analyser	EK058G	WATER	In house: Referenced to APHA 4500-NO3- F. Nitrate is reduced to nitrite by way of a chemical reduction followed
			by quantification by Discrete Analyser. Nitrite is determined seperately by direct colourimetry and result for Nitrate
	FIGERO	\A/A TEE	calculated as the difference between the two results. This method is compliant with NEPM Schedule B(3)
Nitrite and Nitrate as N (NOx) by Discrete	EK059G	WATER	In house: Referenced to APHA 4500-NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by
Analyser			Chemical Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM
			Schedule B(3)



Page : 9 of 9
Work Order : EM2308315

Client : VENTIA UTILITY SERVICES PTY LTD



Analytical Methods	Method	Matrix	Method Descriptions
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	WATER	In house: Referenced to APHA 4500-Norg D (In house). An aliquot of sample is digested using a high temperature Kjeldahl digestion to convert nitrogenous compounds to ammonia. Ammonia is determined colorimetrically by discrete analyser. This method is compliant with NEPM Schedule B(3)
Ionic Balance by PCT DA and Turbi SO4 DA	* EN055 - PG	WATER	In house: Referenced to APHA 1030F. This method is compliant with NEPM Schedule B(3)
Field Tests (performed by external sampler)	* EN67-B02	WATER	Field determinations as per methods described in APHA or supplied by client. The analysis is performed in the field by non-ALS samplers. ALS NATA accreditation does not apply for this service.
Total Organic Carbon	EP005	WATER	In house: Referenced to APHA 5310 B, The automated TOC analyzer determines Total and Inorganic Carbon by IR cell. TOC is calculated as the difference. This method is compliant with NEPM Schedule B(3)
Chemical Oxygen Demand (COD) (Spectrophotometric)	EP026SP	WATER	In house: Referenced to APHA 5220 D. Samples are digested with a known excess of an acidic potassium dichromate solution using silver sulfate as a catalyst. The chromium is reduced from the Cr (VI) oxidation state to the Cr (III) state by the oxygen present in the organic material. Both of these chromium species are coloured and absorb in the visible region of (400nm & 600nm) the spectrum. The oxidisable organic matter can be calculated in terms of oxygen equivalents.
Volatile Acids as CH3COOH	EP045	WATER	In house: Referenced to APHA 5560 C. Steam distillable acids are captured in caustic solution and determined titremetrically. This method is compliant with NEPM Schedule B(3)
Preparation Methods	Method	Matrix	Method Descriptions
TKN/TP Digestion	EK061/EK067	WATER	In house: Referenced to APHA 4500 Norg - D; APHA 4500 P - H. This method is compliant with NEPM Schedule B(3)
Digestion for Total Recoverable Metals	EN25	WATER	In house: Referenced to USEPA SW846-3005. Method 3005 is a Nitric/Hydrochloric acid digestion procedure used to prepare surface and ground water samples for analysis by ICPAES or ICPMS. This method is compliant with NEPM Schedule B(3)



# **SAMPLE RECEIPT NOTIFICATION (SRN)**

Work Order : EM2308315

**BURWOOD VIC 3125** 

Client : VENTIA UTILITY SERVICES PTY LTD Laboratory : Environmental Division Melbourne

Contact : ROBERT CALLANDER Contact : Peter Ravlic

Address : 25-37 HUNTINGDALE ROAD Address : 4 Westall Rd Springvale VIC Australia

3171

 Telephone
 : -- Telephone
 : +6138549 9645

 Facsimile
 : -- Facsimile
 : +61-3-8549 9626

Project : Creswick Landfill 1 of 3 Page : 1 of 3

 Order number
 : --- Quote number
 : EM2016THISER0010 (ME/793/19)

 C-O-C number
 : --- QC Level
 : NEPM 2013 B3 & ALS QC Standard

Site : ----Sampler : AC

**Dates** 

Date

**Delivery Details** 

Mode of Delivery : Carrier Security Seal : Intact.

No. of coolers/boxes : 2 Temperature : 5.2°C - Ice present

Receipt Detail : No. of samples received / analysed : 8 / 8

#### General Comments

This report contains the following information:

- Sample Container(s)/Preservation Non-Compliances
- Summary of Sample(s) and Requested Analysis
- Proactive Holding Time Report
- Requested Deliverables
- Please direct any queries related to sample condition / numbering / breakages to Client Services.
- Sample Disposal Aqueous (3 weeks), Solid (2 months) from receipt of samples.
- Analytical work for this work order will be conducted at ALS Springvale.
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The laboratory will process these samples unless instructions are received from you indicating you do not wish to proceed. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.

: 11-May-2023 Issue Date

Page

: 2 of 3 : EM2308315 Amendment 0 Work Order

Client : VENTIA UTILITY SERVICES PTY LTD



### Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exists.

## Summary of Sample(s) and Requested Analysis

process necessatasks. Packages as the determintasks, that are inclif no sampling default 00:00 on	may contain ad ation of moisture uded in the package. time is provided, the date of sampling sampling date wi	Il be assumed by the ckets without a time	WATER - EA005P pH (Auto Titrator)	WATER - EA010P Electrical Conductivity (Auto Titrator)	WATER - EK055G Ammonia as N By Discrete Analyser	WATER - EK058G Nitrate as N by Discrete Analyser	WATER - EK061G Total Kjeldahl Nitrogen as N (TKN) By Discrete	WATER - EP005 Total Organic Carbon (TOC)	WATER - EP045 Volatile Acids as CH3COOH
EM2308315-001	10-May-2023 14:26	BH2	✓	✓	✓	✓	✓	✓	✓
EM2308315-002	10-May-2023 12:22	внз	✓	✓	✓	✓	✓	✓	✓
EM2308315-003	10-May-2023 16:15	BH4	✓	✓	✓	✓	✓	✓	✓
EM2308315-004	10-May-2023 10:11	BH6	✓	✓	✓	✓	✓	✓	✓
EM2308315-005	10-May-2023 13:39	BH7	✓	✓	✓	✓	✓	✓	✓
EM2308315-006	10-May-2023 11:38	BH8	✓	✓	✓	✓	✓	✓	✓
EM2308315-007	10-May-2023 00:00	BLIND	✓	✓	✓	✓	✓	✓	✓
EM2308315-008	10-May-2023 00:00	RINSATE	✓	✓	✓	✓	✓	✓	✓
Matrix: WATER  Laboratory sample ID	Sampling date / time	Sample ID	WATER - EA015H Total Dissolved Solids - Standard Level	WATER - EG020T Total Metals by ICP/MS (including digestion)	WATER - EN67-B02 Field Tests (performed by external sampler)	WATER - EP026SP Chemical Oxygen Demand (COD)	WATER - NT-01 & 02 Ca, Mg, Na, K, Cl, SO4, Alkalinity		
	l								
EM2308315-001	10-May-2023 14:26	BH2	✓	✓	✓	✓	✓		
EM2308315-001 EM2308315-002		BH2 BH3	<b>√</b>	<b>√</b>	1	<b>√</b>	<b>√</b>		
	10-May-2023 14:26								
EM2308315-002	10-May-2023 14:26 10-May-2023 12:22	ВН3	✓	✓	1	✓	✓		
EM2308315-002 EM2308315-003	10-May-2023 14:26 10-May-2023 12:22 10-May-2023 16:15	BH3 BH4	1	<b>√</b>	<b>√</b>	<b>√</b>	<b>√</b>		
EM2308315-002 EM2308315-003 EM2308315-004	10-May-2023 14:26 10-May-2023 12:22 10-May-2023 16:15 10-May-2023 10:11	BH3 BH4 BH6	✓ ✓	√ √	√ √	√ √	√ √		
EM2308315-002 EM2308315-003 EM2308315-004 EM2308315-005	10-May-2023 14:26 10-May-2023 12:22 10-May-2023 16:15 10-May-2023 10:11 10-May-2023 13:39	BH3 BH4 BH6 BH7	✓ ✓ ✓	✓ ✓ ✓	✓ ✓ ✓	✓ ✓ ✓	✓ ✓ ✓		

### Proactive Holding Time Report

The following table summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory.

Matrix: WATER

#### Evaluation: **x** = Holding time breach ; ✓ = Within holding time

- TOTALER					dang amo bi		lolding time.	
Method		Due for	Due for	Samples R	eceived	Instructions Received		
Client Sample ID(s)	Container	extraction	analysis	Date	Evaluation	Date	Evaluation	
EA005-P: pH by Aut	o Titrator							

Issue Date : 11-May-2023

Page

3 of 3 EM2308315 Amendment 0 Work Order

Client : VENTIA UTILITY SERVICES PTY LTD



BH2	Clear Plastic Bottle - Natural	 10-May-2023	11-May-2023	×	 
ВН3	Clear Plastic Bottle - Natural	 10-May-2023	11-May-2023	×	 
BH4	Clear Plastic Bottle - Natural	 10-May-2023	11-May-2023	×	 
BH6	Clear Plastic Bottle - Natural	 10-May-2023	11-May-2023	×	 
BH7	Clear Plastic Bottle - Natural	 10-May-2023	11-May-2023	x	 
BH8	Clear Plastic Bottle - Natural	 10-May-2023	11-May-2023	x	 
BLIND	Clear Plastic Bottle - Natural	 10-May-2023	11-May-2023	x	 
RINSATE	Clear Plastic Bottle - Natural	 10-May-2023	11-May-2023	x	 

## Requested Deliverables

### LUCY EDWARDS

LOGI EDWARDO		
- *AU Certificate of Analysis - NATA (COA)	Email	Lucy.Edwards@ventia.com
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	Lucy.Edwards@ventia.com
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	Lucy.Edwards@ventia.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	Lucy.Edwards@ventia.com
- A4 - AU Tax Invoice (INV)	Email	Lucy.Edwards@ventia.com
- Chain of Custody (CoC) (COC)	Email	Lucy.Edwards@ventia.com
- EDI Format - ENMRG (ENMRG)	Email	Lucy.Edwards@ventia.com
- EDI Format - ESDAT (ESDAT)	Email	Lucy.Edwards@ventia.com
<ul> <li>Purchase Order Request Letter (PO_Request)</li> </ul>	Email	Lucy.Edwards@ventia.com
NICOLE ROBINS		
- A4 - AU Tax Invoice (INV)	Email	nicole.robins@ventia.com
Ping Yao		
- *AU Certificate of Analysis - NATA (COA)	Email	ping.yao@ventia.com
<ul> <li>*AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)</li> </ul>	Email	ping.yao@ventia.com
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	ping.yao@ventia.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	ping.yao@ventia.com
- Chain of Custody (CoC) (COC)	Email	ping.yao@ventia.com
- EDI Format - ENMRG (ENMRG)	Email	ping.yao@ventia.com
- EDI Format - ESDAT (ESDAT)	Email	ping.yao@ventia.com

# - EDI Format - ESDAT (ESDAT)

ROBERT CALLANDER		
- *AU Certificate of Analysis - NATA (COA)	Email	robert.callander@ventia.com
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	robert.callander@ventia.com
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	robert.callander@ventia.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	robert.callander@ventia.com
- A4 - AU Tax Invoice (INV)	Email	robert.callander@ventia.com
- Chain of Custody (CoC) (COC)	Email	robert.callander@ventia.com
- EDI Format - ENMRG (ENMRG)	Email	robert.callander@ventia.com
- EDI Format - ESDAT (ESDAT)	Email	robert.callander@ventia.com
- Purchase Order Request Letter (PO_Request)	Email	robert.callander@ventia.com



	Client:			Ven	ntia				Job	Ref:			Cres	wick La	ndfill 1 d	of 3	
Co	ntact:			Robert C	allan	nder				TEST	SREC	UIRE	DAS	PER C	UOTE	ME/412/	16
Ad	dress:	:	25-37 Hunti	ingdale R	oad,	Burwood	l, 3125										
F	hone:	04275290	051	Fax	x:	The state of the s											
Email: lucy.edwards@ventia.co ping.yao@ventia.com robert.callander@venti			<u>1</u>								£.		×				
		Quote No	).: N	/IE/412/16													
T/A	Time:			18		To the state of th									11		
Sample ID		Sample Description		No Contai	ENGLISH STREET	Date Sampled	Time sampled	Matrix	Н	EC	00	TEMP	ORP	SWL			
BH1	Groun	idwater Bore		0		10/5/23		_	b	ore	45	= 108	f no	San	pole	)	
BH2	Groun	dwater Bo	re	5		10/5/23		W	5.59		4.53		117.7	290	spie		
ВН3	Groun	dwater Bo	re	5	147	10/5/23		V	6.51	2541		13-29		0.60			
ВН4	Groun	dwater Bo	re	5		10/5/23		W	5.83	1907		13.41		5.33			
ВН6	Groun	dwater Bo	re	6		10/5/23		W	497		-	149	229.4		-	Environmenta Melbourne	al Division
ВН7	Groun	dwater Bo	re	5		10/5/23		ω	6.76	736	0.18	13.83	,			Work Order F	
BH8	Groun	dwater Bo	re	3		10/5/23		W	6.62		0.22	15.36				EIVIZ3	00313
ВН9	Groun	dwater Boi	1 2/3		(-1)/23			0.0									
1	Sp nstruct		ase email li cy.edwards(			le.robins@	ventia.c	<u>om</u>		1						Telephone : + 61-3-85	49 9600
Reli	nquishe		Company	y:		ate:		Time:		Rece	eived By	:	Co	mpany:		Date.	ıme.
AC	alland	er Ver	ntia		1950	10/5/23	170	00		n	Boun	~	An	0		uls 1	0-00
over-ride pri	icing agreer pational He	ments, OHS req	ata after prior con uirements and ou consideration, it ce given in writin	ir terms and co	ondition	ns. owise Environ				LABU	ISE ONLY	5	Sample con	Samples v	Sample: vithin recom	es received undam s adequately prese mended holding ti ppropriate temper	erved [Yes/No] mes: [Yes/No]

Document: OF002 i1



С	lient:			Ventia			200	Job	Ref:			Cres	wick Lan	dfill 2 o	f 3		
Cor	ntact:		Ro	bert Calla	nder				TECT	CDE	OLUD!	ED AC	DED	LIOTE	B	4014	_
Add	ress:	25-37		dale Road		d, 3125			IESI	SKE	QUIKI	ED AS	PER Q	MOLE	WE/4	12/1	5
PI	none:	0427529051		Fax:							T				T		
E	mail:	ping.yao@ven lucy.edwards@ robert.callande	ventia.c					5.7									4
P/C	P/O No.: Quote No.:																
T/A	Γime:																
Sample ID	7 10 10	Sample Descript	ion	No of Container s	Date Sample d	Time sample d		H	EC	00	TEMP	ORP	SWL				i
BH10	Grou	ndwater bore		*				00			+ -	+	0,				
BH13	Grou	ndwater bore														*	
LB1	Leac	hate bore		0	10/5/23				01		N /		13.33				
LB2	Leac	hate bore		0	10/5/23	2	1301	25	3100	Kec)	Nos	Sample	14.17				
LB3	Leac	hate bore		0	10/5/23			ONLY	NO	SAN	IPLE -	SWL	10.70				:
BLIND	Bljnd	dup (analysed I	by ALS)	5	10/5/23					-							
RINSAT E	Rinsa	ite blank		5	10/5/23												;
	structi	ons:		pices to Nice	ole.robins(	@ventia.	com						F				****
	quished		mpany:	D	ate:		Time:		Rec	eived By	<b>/</b> :	Co	mpany:		Date:	1 7	Time:
A Ca	llere	Ventia		10/6	5/23	170	00			Was	or a		m		4/5		0-10
not over-nae	pricing ag	g of sample data after reements, OHS require	ments and or	ur terms and cor	iditions.					LAB USE	ONLY	Sam	ple condition		Samples red		[Yes/No]
samples recei	ved be un	Ith and Safety conside damaged and prior adv	rice given in	requirement of E writing of any po	cowise Enviro tential health r	nmental (Vic isks.	toria), that	all					Samples with es transpo	in recomme orted at app	ended holdi	ng times:	[Yes/No]



## **CERTIFICATE OF ANALYSIS**

Work Order : EM2308446

Client : VENTIA UTILITY SERVICES PTY LTD

Contact : ROBERT CALLANDER

Address : 25-37 HUNTINGDALE ROAD

**BURWOOD VIC 3125** 

Telephone : ----

Project : Creswick Landfill 2 of 3

Order number : Creswick Landfill

C-O-C number : ---Sampler : ---Site : ----

Quote number : ME/793/19

No. of samples received : 4
No. of samples analysed : 4

Page : 1 of 4

Laboratory : Environmental Division Melbourne

Contact : Peter Ravlic

Address : 4 Westall Rd Springvale VIC Australia 3171

Telephone : +6138549 9645

Date Samples Received : 12-May-2023 09:45

Date Analysis Commenced : 13-May-2023

Issue Date : 19-May-2023 23:12



This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

#### **Signatories**

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Arenie Vijayaratnam	Senior Inorganic Chemist	Melbourne External Subcontracting, Springvale, VIC
Arenie Vijayaratnam	Senior Inorganic Chemist	Melbourne Inorganics, Springvale, VIC
Dilani Fernando	Laboratory Coordinator	Melbourne Inorganics, Springvale, VIC
Eric Chau	Metals Team Leader	Melbourne Inorganics, Springvale, VIC

Page : 2 of 4 Work Order : EM2308446

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill 2 of 3

#### **General Comments**

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

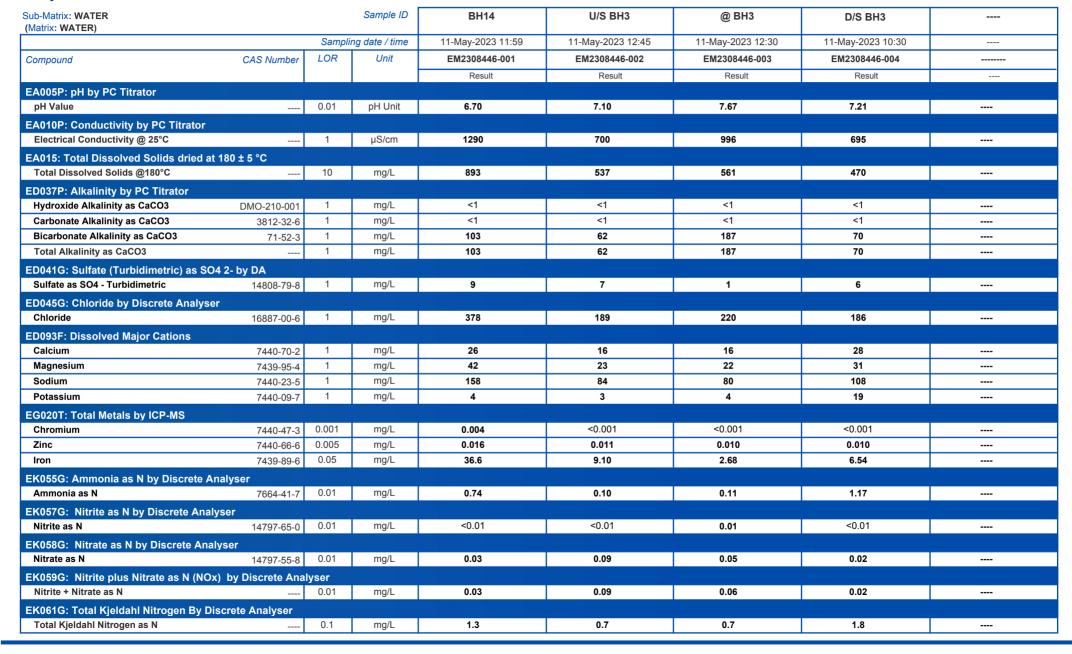
When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- As per QWI EN55-3 Data Interpreting Procedures, Ionic balances are typically calculated using Major Anions Chloride, Alkalinity and Sulfate; and Major Cations Calcium, Magnesium, Potassium and Sodium. Where applicable and dependent upon sample matrix, the Ionic Balance may also include the additional contribution of Ammonia, Dissolved Metals by ICPMS and H+ to the Cations and Nitrate, SiO2 and Fluoride to the Anions.
- ED093F: EM2308446 #3 and #4 results for dissolved cations have been confirmed by re-preparation and re-analysis.
- EA015H: EM2308446 #2: TDS by method EA-015 may bias high due to the presence of fine particulate matter, which may pass through the prescribed GF/C paper.
- Ionic Balance out of acceptable limits for sample #3 and 4 due to analytes not quantified in this report. Major cations have been confirmed by re-prep and reanalysis.
- lonic balances were calculated using: major anions chloride, alkalinity and sulfate; and major cations calcium, magnesium, potassium and sodium.
- ED045G: The presence of Thiocyanate, Thiosulfate and Sulfite can positively contribute to the chloride result, thereby may bias results higher than expected. Results should be scrutinised accordingly.
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.



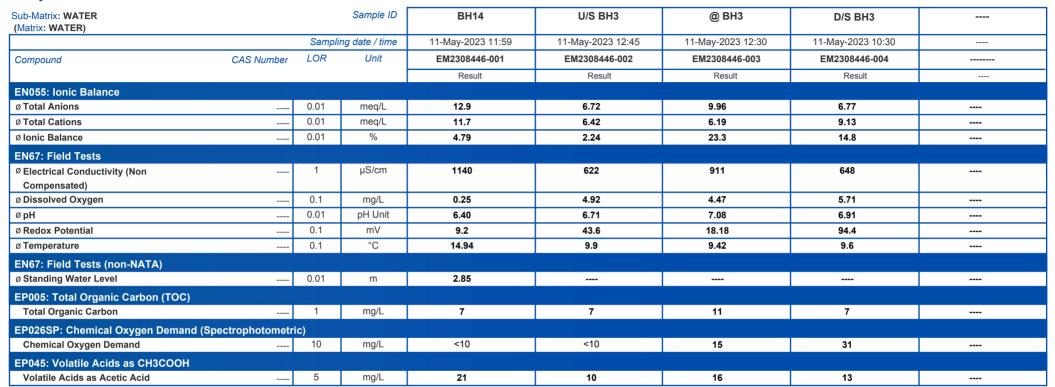

Page : 3 of 4 Work Order : EM2308446

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill 2 of 3

#### **Analytical Results**






Page : 4 of 4 Work Order : EM2308446

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill 2 of 3

### **Analytical Results**







# **QUALITY CONTROL REPORT**

: 1 of 7

Work Order : EM2308446 Page

Client : VENTIA UTILITY SERVICES PTY LTD Laboratory : Environmental Division Melbourne

Contact : ROBERT CALLANDER Contact : Peter Ravlic

Address : 25-37 HUNTINGDALE ROAD Address : 4 Westall Rd Springvale VIC Australia 3171

BURWOOD VIC 3125

Telephone : ---- Telephone : +6138549 9645

Project : Creswick Landfill 2 of 3 Date Samples Received : 12-May-2023
Order number : Creswick Landfill Date Analysis Commenced : 13-May-2023

C-O-C number : ---- | Issue Date : 19-May-2023

Sampler : ---Site : ----

Quote number : ME/793/19

No. of samples received : 4

No. of samples analysed : 4

Accreditation No. 825
Accredited for compliance with ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

#### **Signatories**

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Arenie Vijayaratnam	Senior Inorganic Chemist	Melbourne External Subcontracting, Springvale, VIC
Arenie Vijayaratnam	Senior Inorganic Chemist	Melbourne Inorganics, Springvale, VIC
Dilani Fernando	Laboratory Coordinator	Melbourne Inorganics, Springvale, VIC
Eric Chau	Metals Team Leader	Melbourne Inorganics, Springvale, VIC

Page : 2 of 7
Work Order : EM2308446

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill 2 of 3

## General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

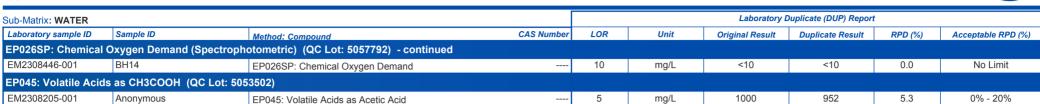
# = Indicates failed QC

#### Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: WATER						Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)				
EA005P: pH by PC	Titrator (QC Lot: 5048	3372)											
EM2308375-002	Anonymous	EA005-P: pH Value		0.01	pH Unit	7.55	7.51	0.5	0% - 20%				
EM2308440-004	Anonymous	EA005-P: pH Value		0.01	pH Unit	7.30	7.30	0.0	0% - 20%				
EA010P: Conductiv	ity by PC Titrator (QC	C Lot: 5048369)											
EM2308375-002	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	3460	3580	3.4	0% - 20%				
EM2308440-004	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	10400	10600	2.7	0% - 20%				
EA010P: Conductiv	ity by PC Titrator (QC	Lot: 5048375)											
EM2308492-002	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	14900	15100	1.0	0% - 20%				
EM2308454-005	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	3900	3950	1.2	0% - 20%				
EA015: Total Dissol	ved Solids dried at 18	30 ± 5 °C (QC Lot: 5056244)											
EM2308361-007	Anonymous	EA015H: Total Dissolved Solids @180°C		10	mg/L	5200	5270	1.2	0% - 20%				
EM2308443-002	Anonymous	EA015H: Total Dissolved Solids @180°C		10	mg/L	3340	3600	7.6	0% - 20%				
EM2308443-012	Anonymous	EA015H: Total Dissolved Solids @180°C		10	mg/L	722	736	1.9	0% - 20%				
EM2308446-001	BH14	EA015H: Total Dissolved Solids @180°C		10	mg/L	893	824	8.0	0% - 20%				
ED037P: Alkalinity I	by PC Titrator (QC Lo	ot: 5048374)											
EM2308443-010	Anonymous	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.0	No Limit				
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.0	No Limit				
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	561	562	0.3	0% - 20%				
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	561	562	0.3	0% - 20%				
EM2308443-020	Anonymous	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.0	No Limit				
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.0	No Limit				
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	393	394	0.0	0% - 20%				
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	393	394	0.0	0% - 20%				

Page : 3 of 7
Work Order : EM2308446


Client : VENTIA UTILITY SERVICES PTY LTD



Sub-Matrix: WATER				Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)	
ED041G: Sulfate (T	urbidimetric) as SO4 2-	by DA (QC Lot: 5046997) - continued								
EM2308443-021	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	<1	<1	0.0	No Limit	
EM2308468-002	Anonymous	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	<1	<5	133	No Limit	
ED045G: Chloride b	by Discrete Analyser (Q	C Lot: 5046996)								
EM2308443-021	Anonymous	ED045G: Chloride	16887-00-6	1	mg/L	<1	<1	0.0	No Limit	
EM2308468-002	Anonymous	ED045G: Chloride	16887-00-6	1	mg/L	1360	1360	0.3	0% - 20%	
ED093F: Dissolved	Major Cations (QC Lot:	: 5052535)								
EM2308443-002	Anonymous	ED093F: Calcium	7440-70-2	1	mg/L	113	113	0.0	0% - 20%	
		ED093F: Magnesium	7439-95-4	1	mg/L	174	175	0.0	0% - 20%	
		ED093F: Sodium	7440-23-5	1	mg/L	638	642	0.7	0% - 20%	
		ED093F: Potassium	7440-09-7	1	mg/L	163	164	0.7	0% - 20%	
EM2308465-006	Anonymous	ED093F: Calcium	7440-70-2	1	mg/L	<1	<1	0.0	No Limit	
		ED093F: Magnesium	7439-95-4	1	mg/L	<1	<1	0.0	No Limit	
		ED093F: Sodium	7440-23-5	1	mg/L	<1	<1	0.0	No Limit	
		ED093F: Potassium	7440-09-7	1	mg/L	<1	<1	0.0	No Limit	
EG020T: Total Meta	als by ICP-MS (QC Lot:	5056399)								
EM2308443-019	Anonymous	EG020A-T: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.0	No Limit	
		EG020A-T: Zinc	7440-66-6	0.005	mg/L	0.185	0.184	0.0	0% - 20%	
		EG020A-T: Iron	7439-89-6	0.05	mg/L	0.12	0.12	0.0	No Limit	
EM2308562-001	Anonymous	EG020A-T: Chromium	7440-47-3	0.001	mg/L	0.017	0.018	0.0	0% - 50%	
		EG020A-T: Zinc	7440-66-6	0.005	mg/L	0.123	0.125	1.8	0% - 20%	
		EG020A-T: Iron	7439-89-6	0.05	mg/L	9.74	10.2	4.2	0% - 20%	
EK055G: Ammonia	as N by Discrete Analys	ser (QC Lot: 5051021)								
EM2308443-016	Anonymous	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	4.26	4.29	8.0	0% - 20%	
EM2308446-004	D/S BH3	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	1.17	1.16	0.0	0% - 20%	
EK057G: Nitrite as	N by Discrete Analyser	(QC Lot: 5046995)								
EM2308443-021	Anonymous	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	0.0	No Limit	
EM2308468-002	Anonymous	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	0.0	No Limit	
EK059G: Nitrite plu	us Nitrate as N (NOx) by	Discrete Analyser (QC Lot: 5051022)								
EM2308443-016	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	0.02	0.02	0.0	No Limit	
EM2308446-004	D/S BH3	EK059G: Nitrite + Nitrate as N		0.01	mg/L	0.02	0.01	0.0	No Limit	
EK061G: Total Kjel	dahl Nitrogen By Discre	te Analyser (QC Lot: 5057280)								
EM2308521-002	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	1.2	1.3	0.0	No Limit	
EM2308299-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	2.0	1.9	5.6	No Limit	
EP005: Total Organ	nic Carbon (TOC) (QC Lo	ot: 5053700)								
EM2308083-001	Anonymous	EP005: Total Organic Carbon		1	mg/L	9	5	50.1	No Limit	
EM2308446-003	@ BH3	EP005: Total Organic Carbon		1	mg/L	11	12	0.0	0% - 50%	
EP026SP: Chemica	I Oxygen Demand (Spec	ctrophotometric) (QC Lot: 5057792)								
EM2308443-013	Anonymous	EP026SP: Chemical Oxygen Demand		10	mg/L	18	14	23.5	No Limit	

Page : 4 of 7
Work Order : EM2308446

Client : VENTIA UTILITY SERVICES PTY LTD





Page : 5 of 7 Work Order : EM2308446

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill 2 of 3



### Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER					Laboratory Control Spike (LC		
			Report	Spike	Spike Recovery (%)	Acceptable	e Limits (%)
Method: Compound CAS Nur	iber LOR	Unit	Result	Concentration	LCS	Low	High
EA005P: pH by PC Titrator (QCLot: 5048372)							
EA005-P: pH Value		pH Unit		7 pH Unit	100	98.8	101
				9 pH Unit	100	99.3	101
EA010P: Conductivity by PC Titrator (QCLot: 5048369)							
EA010-P: Electrical Conductivity @ 25°C	1	μS/cm	<1	1412 μS/cm	99.9	85.0	119
EA010P: Conductivity by PC Titrator (QCLot: 5048375)							
EA010-P: Electrical Conductivity @ 25°C	1	μS/cm	<1	1412 μS/cm	98.7	85.0	119
EA015: Total Dissolved Solids dried at 180 ± 5 °C (QCLot: 5056244)							
EA015H: Total Dissolved Solids @180°C	10	mg/L	<10	2000 mg/L	98.8	91.0	110
_			<10	2440 mg/L	101	81.6	118
			<10	293 mg/L	95.9	91.0	110
ED037P: Alkalinity by PC Titrator (QCLot: 5048374)							
		mg/L		200 mg/L	100.0	85.0	116
ED041G: Sulfate (Turbidimetric) as SO4 2- by DA (QCLot: 5046997)							
ED041G: Sulfate as SO4 - Turbidimetric 14808-7	9-8 1	mg/L	<1	25 mg/L	104	90.0	110
			<1	500 mg/L	103	90.0	110
ED045G: Chloride by Discrete Analyser (QCLot: 5046996)							
ED045G: Chloride 16887-0	)-6 1	mg/L	<1	10 mg/L	105	90.0	110
			<1	1000 mg/L	100.0	90.0	110
ED093F: Dissolved Major Cations (QCLot: 5052535)							
ED093F: Calcium 7440-7	)-2 1	mg/L	<1	50 mg/L	104	80.0	120
ED093F: Magnesium 7439-9	5-4 1	mg/L	<1	50 mg/L	104	80.0	120
ED093F: Sodium 7440-2	3-5 1	mg/L	<1	50 mg/L	106	80.0	120
ED093F: Potassium 7440-0	9-7 1	mg/L	<1	50 mg/L	96.8	80.0	120
EG020T: Total Metals by ICP-MS (QCLot: 5056399)					20.0		.25
EG020A-T: Chromium 7440-4	7-3 0.001	mg/L	<0.001	0.1 mg/L	102	86.9	112
EG020A-T: Zinc 7440-6		mg/L	<0.005	0.1 mg/L	105	86.7	117
EG020A-T: Iron 7439-8		mg/L	<0.05	0.5 mg/L	103	92.8	118
20020717111011		9. –			100	32.0	110
EK055G: Ammonia as N by Discrete Analyser (QCLot: 5051021)  EK055G: Ammonia as N 7664-4	1-7 0.01	mg/L	<0.01	1 mg/L	94.5	90.0	110
EK057G: Nitrite as N by Discrete Analyser (QCLot: 5046995)	0.01	9, =	.0.01	1 1119/2	84.0	33.3	110

Page : 6 of 7 Work Order : EM2308446

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill 2 of 3



Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report					
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)		
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High		
EK057G: Nitrite as N by Discrete Analyser (QCLot: 50469	95) - continued	d								
EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	0.5 mg/L	107	90.0	110		
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analy	ser (QCLot: 50	51022)								
EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	0.5 mg/L	103	90.0	110		
EK061G: Total Kjeldahl Nitrogen By Discrete Analyser (QC	CLot: 5057280)									
EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	<0.1	5 mg/L	102	70.0	117		
EP005: Total Organic Carbon (TOC) (QCLot: 5053700)										
EP005: Total Organic Carbon		1	mg/L	<1	100 mg/L	103	81.2	110		
EP026SP: Chemical Oxygen Demand (Spectrophotometric	) (QCLot: 5057	792)								
EP026SP: Chemical Oxygen Demand		10	mg/L	<10	25 mg/L	107	89.7	111		
EP045: Volatile Acids as CH3COOH (QCLot: 5053502)										
EP045: Volatile Acids as Acetic Acid		5	mg/L	<5	182 mg/L	97.6	85.5	116		

## Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER			Matrix Spike (MS) Report					
				Spike	SpikeRecovery(%)	Acceptable l	Limits (%)	
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High	
ED041G: Sulfate	Turbidimetric) as SO4 2- by DA (QCLot: 5046997)							
EM2308446-001	BH14	ED041G: Sulfate as SO4 - Turbidimetric	14808-79-8	100 mg/L	99.4	70.0	130	
ED045G: Chloride	by Discrete Analyser (QCLot: 5046996)							
EM2308446-001	BH14	ED045G: Chloride	16887-00-6	400 mg/L	95.0	70.0	142	
EG020T: Total Me	tals by ICP-MS (QCLot: 5056399)							
EM2308443-019	Anonymous	EG020A-T: Chromium	7440-47-3	1 mg/L	93.8	78.9	119	
		EG020A-T: Zinc	7440-66-6	1 mg/L	93.8	74.0	120	
EK055G: Ammon	a as N by Discrete Analyser (QCLot: 5051021)							
EM2308443-017	Anonymous	EK055G: Ammonia as N	7664-41-7	10 mg/L	113	70.0	130	
EK057G: Nitrite a	s N by Discrete Analyser (QCLot: 5046995)							
EM2308446-001	BH14	EK057G: Nitrite as N	14797-65-0	0.5 mg/L	101	80.0	114	
EK059G: Nitrite p	olus Nitrate as N (NOx) by Discrete Analyser (QCLot: 50	51022)						
EM2308443-017	Anonymous	EK059G: Nitrite + Nitrate as N		0.5 mg/L	96.3	70.0	130	
EK061G: Total Kj	eldahl Nitrogen By Discrete Analyser (QCLot: 5057280)							
EM2308299-002	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		5 mg/L	108	70.0	130	

Page : 7 of 7 EM2308446 Work Order

: VENTIA UTILITY SERVICES PTY LTD Client



Sub-Matrix: WATER			Matrix Spike (MS) Report									
			Spike	SpikeRecovery(%)	Acceptable L	imits (%)						
Laboratory sample ID	Sample ID	Method: Compound CA	AS Number	Concentration	MS	Low	High					
EP005: Total Orga	nic Carbon (TOC) (QCLot: 5053700)											
EM2308083-002	Anonymous	EP005: Total Organic Carbon		100 mg/L	121	76.6	125					
EP026SP: Chemic	EP026SP: Chemical Oxygen Demand (Spectrophotometric) (QCLot: 5057792)											
EM2308443-014	Anonymous	EP026SP: Chemical Oxygen Demand		500 mg/L	109	70.0	130					



# QA/QC Compliance Assessment to assist with Quality Review

**Work Order** : **EM2308446** Page : 1 of 7

Client : VENTIA UTILITY SERVICES PTY LTD Laboratory : Environmental Division Melbourne

 Contact
 : ROBERT CALLANDER
 Telephone
 : +6138549 9645

 Project
 : Creswick Landfill 2 of 3
 Date Samples Received
 : 12-May-2023

 Site
 : --- Issue Date
 : 19-May-2023

Sampler : ---- No. of samples received : 4
Order number : Creswick Landfill No. of samples analysed : 4

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated

reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

## **Summary of Outliers**

### **Outliers: Quality Control Samples**

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

### **Outliers: Analysis Holding Time Compliance**

• Analysis Holding Time Outliers exist - please see following pages for full details.

### **Outliers : Frequency of Quality Control Samples**

• NO Quality Control Sample Frequency Outliers exist.

Page : 2 of 7
Work Order : EM2308446

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill 2 of 3

#### **Outliers: Analysis Holding Time Compliance**

Matrix: WATER

THOUGHT TO THE STATE OF THE STA								
Method			Exti	raction / Preparation			Analysis	
Container / Client Sample ID(s)		Date	te extracted	Due for extraction	Days	Date analysed	Due for analysis	Days
					overdue			overdue
EA005P: pH by PC Titrator								
Clear Plastic Bottle - Natural								
BH14,	U/S BH3,					17-May-2023	11-May-2023	6
@ BH3,	D/S BH3							

## **Analysis Holding Time Compliance**

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: WATER

Evaluation: **x** = Holding time breach; ✓ = Within holding time.

Method		Sample Date	e E	xtraction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA005P: pH by PC Titrator								
Clear Plastic Bottle - Natural (EA005-P)								
BH14,	U/S BH3,	11-May-202	3			17-May-2023	11-May-2023	<b>≯c</b>
@ BH3,	D/S BH3							
EA010P: Conductivity by PC Titrator								
Clear Plastic Bottle - Natural (EA010-P)								
BH14,	U/S BH3,	11-May-202	3			17-May-2023	08-Jun-2023	✓
@ BH3,	D/S BH3							
EA015: Total Dissolved Solids dried at 180 ± 5 °	°C							
Clear Plastic Bottle - Natural (EA015H)								
BH14,	U/S BH3,	11-May-202	3			18-May-2023	18-May-2023	✓
@ BH3,	D/S BH3							
ED037P: Alkalinity by PC Titrator								
Clear Plastic Bottle - Natural (ED037-P)								
BH14,	U/S BH3,	11-May-202	3			17-May-2023	25-May-2023	✓
@ BH3,	D/S BH3							
ED041G: Sulfate (Turbidimetric) as SO4 2- by D	A							
Clear Plastic Bottle - Natural (ED041G)								
BH14,	U/S BH3,	11-May-202	3			16-May-2023	08-Jun-2023	✓
@ BH3,	D/S BH3							

Page : 3 of 7
Work Order : EM2308446

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill 2 of 3



Matrix: WATER					Evaluation	: x = Holding time	breach ; ✓ = Withi	n holding time.
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
ED045G: Chloride by Discrete Analyser								
Clear Plastic Bottle - Natural (ED045G)								
BH14,	U/S BH3,	11-May-2023				16-May-2023	08-Jun-2023	✓
@ BH3,	D/S BH3							
ED093F: Dissolved Major Cations								
Clear Plastic Bottle - Natural (ED093F)								
BH14,	U/S BH3,	11-May-2023				17-May-2023	18-May-2023	✓
@ BH3,	D/S BH3							
EG020T: Total Metals by ICP-MS								
Clear Plastic Bottle - Nitric Acid; Unfiltered (EG020	•							
BH14,	U/S BH3,	11-May-2023	18-May-2023	07-Nov-2023	✓	18-May-2023	07-Nov-2023	✓
@ BH3,	D/S BH3							
EK055G: Ammonia as N by Discrete Analyser								
Clear Plastic Bottle - Sulfuric Acid (EK055G)								
BH14,	U/S BH3,	11-May-2023				17-May-2023	08-Jun-2023	✓
@ BH3,	D/S BH3							
EK057G: Nitrite as N by Discrete Analyser								
Clear Plastic Bottle - Natural (EK057G)								
BH14,	U/S BH3,	11-May-2023				13-May-2023	13-May-2023	✓
@ BH3,	D/S BH3							
EK059G: Nitrite plus Nitrate as N (NOx) by Discre	ete Analyser							
Clear Plastic Bottle - Sulfuric Acid (EK059G)								
BH14,	U/S BH3,	11-May-2023				17-May-2023	08-Jun-2023	✓
@ BH3,	D/S BH3							
EK061G: Total Kjeldahl Nitrogen By Discrete Anal	lyser							
Clear Plastic Bottle - Sulfuric Acid (EK061G)								
BH14,	U/S BH3,	11-May-2023	19-May-2023	08-Jun-2023	✓	19-May-2023	08-Jun-2023	✓
@ BH3,	D/S BH3							
EP005: Total Organic Carbon (TOC)								
Amber TOC Vial - Sulfuric Acid (EP005)								
BH14,	U/S BH3,	11-May-2023				18-May-2023	08-Jun-2023	✓
@ BH3,	D/S BH3							
EP026SP: Chemical Oxygen Demand (Spectropho	otometric)							
Clear Plastic Bottle - Sulfuric Acid (EP026SP)								
BH14,	U/S BH3,	11-May-2023				18-May-2023	08-Jun-2023	✓
@ BH3,	D/S BH3							
EP045: Volatile Acids as CH3COOH								
Clear Plastic Bottle - Natural (EP045)								
BH14,	U/S BH3,	11-May-2023				17-May-2023	25-May-2023	✓
@ BH3,	D/S BH3							

Page : 4 of 7 Work Order EM2308446

Client VENTIA UTILITY SERVICES PTY LTD

Creswick Landfill 2 of 3 **Project** 



## **Quality Control Parameter Frequency Compliance**

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Quality Control Sample Type		Cr	ount		Rate (%)		not within specification; ✓ = Quality Control frequency within specification  Quality Control Specification
Analytical Methods	Method	QC	Regular	Actual	Expected	Evaluation	Quality Control Specification
Laboratory Duplicates (DUP)			, todaiai	710000			
Alkalinity by Auto Titrator	ED037-P	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Ammonia as N by Discrete analyser	EK055G	2	10	20.00	10.00	<u> </u>	NEPM 2013 B3 & ALS QC Standard
Chemical Oxygen Demand (COD) (Spectrophotometric)	EP026SP	2	14	14.29	10.00	<u>√</u>	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G	2	17	11.76	10.00	<u>√</u>	NEPM 2013 B3 & ALS QC Standard
Conductivity by Auto Titrator	EA010-P	4	33	12.12	10.00	<b>√</b>	NEPM 2013 B3 & ALS QC Standard
Major Cations - Dissolved	ED093F	2	14	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	11	18.18	10.00	<b>√</b>	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
pH by Auto Titrator	EA005-P	2	17	11.76	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Dissolved Solids (High Level)	EA015H	4	40	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	2	15	13.33	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Organic Carbon	EP005	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Volatile Acids as CH3COOH	EP045	1	10	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Alkalinity by Auto Titrator	ED037-P	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Ammonia as N by Discrete analyser	EK055G	1	10	10.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Chemical Oxygen Demand (COD) (Spectrophotometric)	EP026SP	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G	2	17	11.76	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Conductivity by Auto Titrator	EA010-P	2	33	6.06	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Major Cations - Dissolved	ED093F	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	11	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
pH by Auto Titrator	EA005-P	2	17	11.76	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Dissolved Solids (High Level)	EA015H	3	40	7.50	7.50	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Organic Carbon	EP005	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Volatile Acids as CH3COOH	EP045	1	10	10.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Ammonia as N by Discrete analyser	EK055G	1	10	10.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Chemical Oxygen Demand (COD) (Spectrophotometric)	EP026SP	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Conductivity by Auto Titrator	EA010-P	2	33	6.06	5.00	<b>√</b>	NEPM 2013 B3 & ALS QC Standard

Page : 5 of 7
Work Order : EM2308446

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill 2 of 3



Matrix: WATER				Evaluatio	n: × = Quality Co	ntrol frequency r	not within specification ; ✓ = Quality Control frequency within specification
Quality Control Sample Type		C	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Regular	Actual	Expected	Evaluation	
Method Blanks (MB) - Continued							
Major Cations - Dissolved	ED093F	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	11	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Dissolved Solids (High Level)	EA015H	2	40	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Organic Carbon	EP005	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Volatile Acids as CH3COOH	EP045	1	10	10.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
Ammonia as N by Discrete analyser	EK055G	1	10	10.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Chemical Oxygen Demand (COD) (Spectrophotometric)	EP026SP	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	11	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Organic Carbon	EP005	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Page : 6 of 7 Work Order EM2308446

· VENTIA UTILITY SERVICES PTY LTD Client

Creswick Landfill 2 of 3 Project

#### **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
pH by Auto Titrator	EA005-P	WATER	In house: Referenced to APHA 4500 H+ B. This procedure determines pH of water samples by automated ISE.  This method is compliant with NEPM Schedule B(3)
Conductivity by Auto Titrator	EA010-P	WATER	In house: Referenced to APHA 2510 B. This procedure determines conductivity by automated ISE. This method is compliant with NEPM Schedule B(3)
Total Dissolved Solids (High Level)	EA015H	WATER	In house: Referenced to APHA 2540C. A gravimetric procedure that determines the amount of `filterable` residue in an aqueous sample. A well-mixed sample is filtered through a glass fibre filter (1.2um). The filtrate is evaporated to dryness and dried to constant weight at 180+/-5C. This method is compliant with NEPM Schedule B(3)
Alkalinity by Auto Titrator	ED037-P	WATER	In house: Referenced to APHA 2320 B This procedure determines alkalinity by automated measurement (e.g. PC Titrate) on a settled supernatant aliquot of the sample using pH 4.5 for indicating the total alkalinity end-point.  This method is compliant with NEPM Schedule B(3)
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	WATER	In house: Referenced to APHA 4500-SO4. Dissolved sulfate is determined in a 0.45um filtered sample. Sulfate ions are converted to a barium sulfate suspension in an acetic acid medium with barium chloride. Light absorbance of the BaSO4 suspension is measured by a photometer and the SO4-2 concentration is determined by comparison of the reading with a standard curve. This method is compliant with NEPM Schedule B(3)
Chloride by Discrete Analyser	ED045G	WATER	In house: Referenced to APHA 4500 CI - G.The thiocyanate ion is liberated from mercuric thiocyanate through sequestration of mercury by the chloride ion to form non-ionised mercuric chloride. In the presence of ferric ions the liberated thiocynate forms highly-coloured ferric thiocynate which is measured at 480 nm.
Major Cations - Dissolved	ED093F	WATER	In house: Referenced to APHA 3120 and 3125; USEPA SW 846 - 6010 and 6020; Cations are determined by either ICP-AES or ICP-MS techniques. This method is compliant with NEPM Schedule B(3) Sodium Adsorption Ratio is calculated from Ca, Mg and Na which determined by ALS in house method QWI-EN/ED093F. This method is compliant with NEPM Schedule B(3) Hardness parameters are calculated based on APHA 2340 B. This method is compliant with NEPM Schedule B(3)
Total Metals by ICP-MS - Suite A	EG020A-T	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Ammonia as N by Discrete analyser	EK055G	WATER	In house: Referenced to APHA 4500-NH3 G Ammonia is determined by direct colorimetry by Discrete Analyser.  This method is compliant with NEPM Schedule B(3)
Nitrite as N by Discrete Analyser	EK057G	WATER	In house: Referenced to APHA 4500-NO2- B. Nitrite is determined by direct colourimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)
Nitrate as N by Discrete Analyser	EK058G	WATER	In house: Referenced to APHA 4500-NO3- F. Nitrate is reduced to nitrite by way of a chemical reduction followed by quantification by Discrete Analyser. Nitrite is determined seperately by direct colourimetry and result for Nitrate calculated as the difference between the two results. This method is compliant with NEPM Schedule B(3)
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	WATER	In house: Referenced to APHA 4500-NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by Chemical Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)



Page : 7 of 7
Work Order : EM2308446

Client : VENTIA UTILITY SERVICES PTY LTD

Project : Creswick Landfill 2 of 3



Analytical Methods	Method	Matrix	Method Descriptions
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	WATER	In house: Referenced to APHA 4500-Norg D (In house). An aliquot of sample is digested using a high temperature Kjeldahl digestion to convert nitrogenous compounds to ammonia. Ammonia is determined colorimetrically by discrete analyser. This method is compliant with NEPM Schedule B(3)
Ionic Balance by PCT DA and Turbi SO4 DA	* EN055 - PG	WATER	In house: Referenced to APHA 1030F. This method is compliant with NEPM Schedule B(3)
Field Tests (performed by external sampler)	* EN67-B02	WATER	Field determinations as per methods described in APHA or supplied by client. The analysis is performed in the field by non-ALS samplers. ALS NATA accreditation does not apply for this service.
Total Organic Carbon	EP005	WATER	In house: Referenced to APHA 5310 B, The automated TOC analyzer determines Total and Inorganic Carbon by IR cell. TOC is calculated as the difference. This method is compliant with NEPM Schedule B(3)
Chemical Oxygen Demand (COD) (Spectrophotometric)	EP026SP	WATER	In house: Referenced to APHA 5220 D. Samples are digested with a known excess of an acidic potassium dichromate solution using silver sulfate as a catalyst. The chromium is reduced from the Cr (VI) oxidation state to the Cr (III) state by the oxygen present in the organic material. Both of these chromium species are coloured and absorb in the visible region of (400nm & 600nm) the spectrum. The oxidisable organic matter can be calculated in terms of oxygen equivalents.
Volatile Acids as CH3COOH	EP045	WATER	In house: Referenced to APHA 5560 C. Steam distillable acids are captured in caustic solution and determined titremetrically. This method is compliant with NEPM Schedule B(3)
Preparation Methods	Method	Matrix	Method Descriptions
TKN/TP Digestion	EK061/EK067	WATER	In house: Referenced to APHA 4500 Norg - D; APHA 4500 P - H. This method is compliant with NEPM Schedule B(3)
Digestion for Total Recoverable Metals	EN25	WATER	In house: Referenced to USEPA SW846-3005. Method 3005 is a Nitric/Hydrochloric acid digestion procedure used to prepare surface and ground water samples for analysis by ICPAES or ICPMS. This method is compliant with NEPM Schedule B(3)



## **SAMPLE RECEIPT NOTIFICATION (SRN)**

Work Order : EM2308446

Client : VENTIA UTILITY SERVICES PTY LTD Laboratory : Environmental Division Melbourne

Contact : ROBERT CALLANDER Contact : Peter Raylic

Address : 25-37 HUNTINGDALE ROAD Address : 4 Westall Rd Springvale VIC Australia

3171

 Telephone
 : --- Telephone
 : +6138549 9645

 Facsimile
 : --- Facsimile
 : +61-3-8549 9626

Project : Creswick Landfill 2 of 3 Page : 1 of 3

Order number : Creswick Landfill Quote number : EM2016THISER0010 (ME/793/19)
C-O-C number : ---- QC Level : NEPM 2013 B3 & ALS QC Standard

Site : ---Sampler :

**Dates** 

Date

**BURWOOD VIC 3125** 

**Delivery Details** 

 Mode of Delivery
 : Carrier
 Security Seal
 : Not Available

 No. of coolers/boxes
 : 1
 Temperature
 : 3.8°C - Ice present

Receipt Detail : No. of samples received / analysed : 4 / 4

#### General Comments

• This report contains the following information:

- Sample Container(s)/Preservation Non-Compliances
- Summary of Sample(s) and Requested Analysis
- Proactive Holding Time Report
- Requested Deliverables
- Please direct any queries related to sample condition / numbering / breakages to Client Services.
- Sample Disposal Aqueous (3 weeks), Solid (2 months) from receipt of samples.
- Analytical work for this work order will be conducted at ALS Springvale.
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The laboratory will process these samples unless instructions are received from you indicating you do not wish to proceed. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.

: 12-May-2023 Issue Date

Page

: 2 of 3 : EM2308446 Amendment 0 Work Order

Client : VENTIA UTILITY SERVICES PTY LTD



#### Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exists.

## Summary of Sample(s) and Requested Analysis

process necessatasks. Packages as the determin tasks, that are incl. If no sampling default 00:00 on is provided, the laboratory and component.  Matrix: WATER  Laboratory sample ID	may contain ad ation of moisture uded in the package. time is provided, the date of samplin sampling date widisplayed in bra	the sampling time will ag. If no sampling date assumed by the ckets without a time	WATER - EA005P  pH (Auto Titrator)	WATER - EA010P  Electrical Conductivity (Auto Titrator)	WATER - EK055G Ammonia as N By Discrete Analyser	WATER - EK058G Nitrate as N by Discrete Analyser	WATER - EK061G  Total Kjeldahl Nitrogen as N (TKN) By Discrete	WATER - EP005 Total Organic Carbon (TOC)	WATER - EP045 Volatile Acids as CH3COOH
EM2308446-001	11-May-2023 11:59	BH14	✓	<b>√</b>	✓	<b>√</b>	<b>√</b>	<b>√</b>	<b>√</b>
EM2308446-002	11-May-2023 12:45	U/S BH3	✓	✓	✓	✓	✓	✓	✓
EM2308446-003	11-May-2023 12:30	@ BH3	✓	✓	✓	✓	✓	✓	✓
EM2308446-004	11-May-2023 10:30	D/S BH3	✓	✓	✓	✓	✓	✓	✓
Matrix: WATER  Laboratory sample ID  EM2308446-001	Sampling date / time 11-May-2023 11:59	Sample ID	WATER - EA015H Total Dissolved Solids - Standard Level	WATER - EG020T Total Metals by ICP/MS (including digestion)	WATER - EN67-B02 Field Tests (performed by external sampler)	WATER - EP026SP Chemical Oxygen Demand (COD)	WATER - NT-01 & 02 Ca, Mg, Na, K, Cl, SO4, Alkalinity		
Laboratory sample	time 11-May-2023 11:59		WATER - EA015H  Total Dissolved Solids -				WATER - NT-01 & 02 Ca, Mg, Na, K, CI, SO4,		
Laboratory sample ID EM2308446-001	time	BH14	WATER - EA015H Total Dissolved Solids -	✓	✓	✓	WATER - NT-01 & 02 Ca, Mg, Na, K, Cl, SO4,		
Laboratory sample ID EM2308446-001 EM2308446-002	time 11-May-2023 11:59 11-May-2023 12:45	BH14 U/S BH3	WATER - EA015H Total Dissolved Solids -	<b>√</b>	<b>√</b>	<b>√</b>	WATER - NT-01 & 02 Ca, Mg, Na, K, Cl, SO4,		

## Proactive Holding Time Report

The following table summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory.

Matrix: WATER

Evaluation: **x** = Holding time breach; ✓ = Within holding time

Watther That I are				Evaluation. Tio	iding time bi	odon, vitami	nording time.
Method		Due for	Due for	Samples R	eceived	Instructions I	Received
Client Sample ID(s)	Container	extraction	analysis	Date	Evaluation	Date	Evaluation
EA005-P: pH by Au	to Titrator						
@ BH3	Clear Plastic Bottle - Natural		11-May-2023	12-May-2023	x		
BH14	Clear Plastic Bottle - Natural		11-May-2023	12-May-2023	æ		
D/S BH3	Clear Plastic Bottle - Natural		11-May-2023	12-May-2023	JC .		
U/S BH3	Clear Plastic Bottle - Natural		11-May-2023	12-May-2023	3c		

: 12-May-2023 Issue Date

Page

3 of 3 EM2308446 Amendment 0 Work Order

Client : VENTIA UTILITY SERVICES PTY LTD



## Requested Deliverables

,		
NICOLE ROBINS		
- A4 - AU Tax Invoice (INV)	Email	nicole.robins@ventia.com
Ping Yao		
<ul> <li>*AU Certificate of Analysis - NATA (COA)</li> </ul>	Email	ping.yao@ventia.com
<ul> <li>*AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)</li> </ul>	Email	ping.yao@ventia.com
<ul> <li>*AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)</li> </ul>	Email	ping.yao@ventia.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	ping.yao@ventia.com
- Chain of Custody (CoC) (COC)	Email	ping.yao@ventia.com
- EDI Format - ENMRG (ENMRG)	Email	ping.yao@ventia.com
- EDI Format - ESDAT (ESDAT)	Email	ping.yao@ventia.com
ROBERT CALLANDER		
<ul> <li>*AU Certificate of Analysis - NATA (COA)</li> </ul>	Email	robert.callander@ventia.com
<ul> <li>*AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)</li> </ul>	Email	robert.callander@ventia.com
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	robert.callander@ventia.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	robert.callander@ventia.com
- A4 - AU Tax Invoice (INV)	Email	robert.callander@ventia.com
- Chain of Custody (CoC) (COC)	Email	robert.callander@ventia.com
- EDI Format - ENMRG (ENMRG)	Email	robert.callander@ventia.com
- EDI Format - ESDAT (ESDAT)	Email	robert.callander@ventia.com



CI	lient:		40	Ventia				Job	Ref:	No. 11 Section 1		Cres	wick La	andfill 2 of 3	11
															/793/19
	tact:			bert Calla				1	TEST	SREC	QUIRE	DAS	PER	QUOTE ME	412/16
Addı	ress:		25-37 Hunting	dale Road,	Burwood	1, 3125								_	
Ph	one:	0427	529051	Fax:											
Eı	mail:		yao@ventia.com					-		20					
	-		edwards@ventia.co												
		rober	t.callander@ventia	a.com											
P/O	No.:			Quote No.:			9								
T/A T	ime:														
Sample ID		Samp	le Description	No of Container	Date Sample d	Time sample d		PH	<u></u>	0	TEMP	ORP	SWL		
BH10	Grou	ndwat	er bore	COMPANY CONTRACTOR CONTRACTOR	100000000000000000000000000000000000000			10*							
BH184	Grou	ndwat	er bore	5	11/5/23	1159	W	6.40	1141	0.25	14.94	9.2	2.85	+- '	
				)	1113/63	1131		6.40	1141	, 0.2)	14.14	1. 2	2.83		mental Division
LB1	Leac	hate b	ore											Melbou	<b>rne</b> Order Reference
LB2	Leac	hate b	ore		-										12308446
LB3	Leac	hate b	ore					ONLY	NO	SAM	PLE -	SWL			
BLIND	Diad	dere /													
		373	analysed by ALS)												G (NOTA)
RINSAT	Rinsa	ate bla	ink												() ( ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (
														alephone :	± 61-3-8549 9600
Ins	Spe	ecial	Please email Invo	ices to Nice	ole.robins(	@ventia.d	com	*							
Reling	uished	By:	Company:	D	ate:		Time:		Rece	eived By	:	Co	mpany:	Da	te: Time:
A Call	ande	/	Ventia	11/5	123	170	00			onh			47		5 9.40
This form is fo not over-ride p	r recordir oricing ag	ng of san	nple data after prior consult s, OHS requirements and ou	ur terms and cor	iditions.	sampling pr	ocedures			LAB USE	ONLY	San	ple conditi		received undamaged [Yes/No] ly preserved [Yes/No]
As an Occupat samples receive	tional Hea ved be un	alth and s damage	Safety consideration, it is a d and prior advice given in v	requirement of E	Ecowise Enviro	nmental (Vict	oria), that	all						within recommended hosported at appropriate	olding times: [Yes/No]
Document:				у , , , ,									es u all	sported at appropriate	temperature [ res/NO]



									en/amatrice	thorac series								The second
CI	lient:			Ve	entia				Job	Ref:			Cresv	vick La	ndfill 3 c	of 3		
Con	tact:			Robert	Callar	nder				TEST	SREC	UIRE	DAS	PER (	QUOTE	ME/4	12/1	6
Addı	ress:		25-37 Hun	tingdale	Road,	Burwood	l, 3125											
Ph	one:	0427	529051	· F	ах:										3			T
Eı	mail:	lucy.e	yao@ventia.co edwards@vent t.callander@ve	ia.com														
P/O	No.:									2								
T/A T	ime:		3-						w.									
Sample ID		Samp	le Description		o of ainers	Date Sampled	Time sampled		H.	EC	00	TEMP	ORP	SWL				
U/S BH3	Creel	k Samı	ole	5	-	11/5/23	1245	U	6.71	622	4.92	9.9	43.6	_				
@ BH3	Creel	k Samı	ole	5	4	11/5/23		W			4.47		18.18	_				
D/S BH3	Creel	k Sam	ole	5		11/5/23		$\omega$	6.91	648	5.71	106	94.4	_				
						.,, ,,				040		9.6	1,1,4					
Leachate	Surfa	ace wat	ter sample															
Wetland	Surfa	ace wat	ter sample															
Dredge	Surfa	ace wat	ter sample															
										23								
								p 2'										
Ins	Spo structi	ecial ions:	Please email	Invoices t	o <u>Nico</u>	le.robins@	ventia.c	<u>om</u>		3								
Relino	quished	d By:	Compar	ıy:	D	ate:		Time:			eived By		Coi	mpany:		Date:		Time:
A DOMESTA WILL BOUNDAY, IS	ella.	and the state of the state of the	Ventia		property for State (1993)	13		00		N	rom		A	n		orl	-2	ares
This form is fo over-ride pricir	r recordin	ng of sam nents, OH	ple data after prior co	nsultation wit	h an anal	lyst regarding s	sampling prod	cedures an	d does not	LABU	ISE ONLY		Sample cond	litions:		s received ur		ged [Yes/No]
As an Occupat	ional Hea	alth and S	afety consideration, i r advice given in writi	t is a requiren	ent of Ed	owise Environ	mental (Victo	ria), that a	I samples				Sa		vithin recomi	mended hold	ing tin	res: [Yes/No] rure [Yes/No]



## **Environment Testing**

www.eurofins.com.au

EnviroSales@eurofins.com

#### **Eurofins Environment Testing Australia Pty Ltd**

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 Tel: +61 3 8564 5000 Geelong 19/8 Lewalan Street Grovedale VIC 3216 Tel: +61 3 8564 5000 **Sydney** 179 Magowar Road Girraween NSW 2145 Tel: +61 2 9900 8400

Unit 1.2 Dacre Street Mitchell ACT 2911 Tel: +61 2 6113 8091

Canberra

1/21 Smallwood Place Murarrie QLD 4172 Tel: +61 7 3902 4600

Brisbane

Newcastle 1/2 Frost Drive Mayfield West NSW 2304 Tel: +61 2 4968 8448 NATA# 1261 Site# 1254 NATA# 1261 Site# 25403 NATA# 1261 Site# 25403 NATA# 1261 Site# 25466 NATA# 1261 Site# 25466 NATA# 1261 Site# 2579 & 25289

ABN: 91 05 0159 898

Perth 46-48 Banksia Road Welshpool WA 6106 Tel: +61 8 6253 4444 NATA# 2377 Site# 2370

NZBN: 9429046024954

Auckland

IANZ# 1327

Penrose,

Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Auckland 1061 Christchurch 7675 Tel: +64 9 526 4551 IANZ# 1290

#### Sample Receipt Advice

Company name:

Ventia Utility Services P/L (Burwood)

Contact name:

Robert Callander **CRESWICK LANDFILL** 

Project name: Project ID:

Not provided

Turnaround time: Date/Time received 5 Day May 12, 2023 9:25 AM

**Eurofins reference** 

989018

#### Sample Information

A detailed list of analytes logged into our LIMS, is included in the attached summary table.

All samples have been received as described on the above COC.

COC has been completed correctly.

Attempt to chill was evident.

Appropriately preserved sample containers have been used.

All samples were received in good condition.

Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.

Appropriate sample containers have been used.

Sample containers for volatile analysis received with zero headspace.

Split sample sent to requested external lab.

Some samples have been subcontracted.

N/A Custody Seals intact (if used).

#### **Notes**

#### Contact

If you have any questions with respect to these samples, please contact your Analytical Services Manager:

Savini Suduweli on phone: or by email: SaviniSuduweli@eurofins.com

Results will be delivered electronically via email to Robert Callander - Robert.callander@ventia.com.au.

Note: A copy of these results will also be delivered to the general Ventia Utility Services P/L (Burwood) email address.





web: www.eurofins.com.au email: EnviroSales@eurofins.com

#### **Eurofins Environment Testing Australia Pty Ltd**

ABN: 50 005 085 521

Melbourne Geelong 6 Monterey Road 19/8 Lewalan Street Dandenong South Grovedale VIC 3175 VIC 3216 Tel: +61 3 8564 5000 Tel: +61 3 8564 5000

Sydney 179 Magowar Road Girraween NSW 2145 Tel: +61 2 9900 8400 Brisbane 1/21 Smallwood Place Murarrie QLD 4172

Newcastle 1/2 Frost Drive Tel: +61 2 4968 8448 Tel: +61 7 3902 4600

Mayfield West NSW 2304 NATA# 1261 NATA# 1261 Site# 1254 NATA# 1261 Site# 25403 NATA# 1261 Site# 18217 NATA# 1261 Site# 25466 NATA# 1261 Site# 20794 Site# 25079 & 25289

Welshpool WA 6106 Tel: +61 8 6253 4444 NATA# 2377 Site# 2370

**Contact Name:** 

Perth

Received:

**Priority:** 

Due:

ABN: 91 05 0159 898

46-48 Banksia Road

Penrose, Auckland 1061 Tel: +64 9 526 4551 IANZ# 1327

May 19, 2023

Robert Callander

Auckland

35 O'Rorke Road

NZBN: 9429046024954

May 12, 2023 9:25 AM

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Tel: +64 3 343 5201 IANZ# 1290

**Company Name:** 

**Project Name:** 

Address:

Ventia Utility Services P/L (Burwood)

Unit 11, 25-37 Huntingdale Rd

Burwood

VIC 3125

**CRESWICK LANDFILL** 

Order No.: Report #:

Fax:

Canberra

Mitchell

ACT 2911

Unit 1,2 Dacre Street

Tel: +61 2 6113 8091

989018

Phone: 03 9861 8169

03 9861 8101

Eurofins Analytical Services Manager: Savini Suduweli

5 Day

		Sa	mple Detail			Chemical Oxygen Demand (COD)	Nitrate (as N)	Total Organic Carbon	Metals M8	Organic Nitrogen Set (as N)	Eurofins Suite B11E: Cl/SO4/Alkalinity	Eurofins Suite B11C: Na/K/Ca/Mg	Total Dissolved Solids Dried at 180 °C ± 2 °C	Volatile Fatty Acids (VFA) by GC-MS
Melb	ourne Laborato	ory - NATA # 12	61 Site # 12	54		Χ	Х	Х	Х	Х	Х	Х	Χ	Х
Exte	rnal Laboratory													
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID									
1	CRESWICK SPLIT	May 10, 2023		Water	M23-My0031166	Χ	х	Х	Х	Х	Х	Х	х	х
Test	Counts					1	1	1	1	1	1	1	1	1

# 2022/2023 ANNUAL MONITORING REPORT – CRESWICK LANDFILL APPENDIX E - ALL HISTORICAL RECORDS



SAMPLE NO.	SAMPLE DATE	LAB REPORT NO.	SWL	TDS	Chromium	Iron	Zinc	Calcium	Potassium	Magnesium	Sodium	Bicarbonate	Carbonate	Hydroxide	Total Alkalinity	Sulphate	Ammonia	Nitrate	Total Kjeldahl Nitrogen	Total Nitrogen	Total Phosphate	рН	Total Organic Carbon	Chemical Oxygen Demand	Chloride	EC	Volatile Fatty Acids (as Acetic Acid)
			m BGL	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg CaCO3/L	mg CaCO3/L	mg CaCO3/L	mg CaCO3/L	mg/L	mg N / L	mg N / L	mg N / L	mg N / L	mg P / L	Units	mg/L	mg/L	mg/L	uS/cm	mg/L
BH1 BH1	31-Oct-2003	619301 648473	2.3	90	<0.01	0.4	<0.01	1.3	0.5	1.1	28	-	-	-	20	6.2	<0.1	0.03	3.4	-	-	5.9 5.6	<1	25	22	130	-
BH1	29-Jan-2004 07-Apr-2004	673235	3.22	100 530	<0.01 <0.01	0.27	<0.01	<0.05	1.2 <0.1	2.6	13 20	-	-	-	12 8	<10 <1.0	<0.1 0.1	0.07	16 0.7	-	-	5.6	3	3	23	150 140	-
BH1	21-Jul-2004	707745	2.34	420	<0.01	<0.05	0.06	0.16	4.9	3.4	30	-	-	-	16	14	0.2	0.03	1.1	-	-	8	5	12	24	150	-
BH1	26-Oct-2004	743326	2.41	140	<0.01	2.9	<0.01	<0.05	3.7	2.9	34	-	-	-	14	21	0.2	0.03	1.8	-	-	5.3	4	16	40	140	-
BH1	20-Jan-2005	775529	2.74	190	<0.01	0.37	<0.01	1.8	4.5	8.9	31	-	-	-	13	12	0.6	0.05	<0.3	-	-	5.7	6	7	35	150	-
BH1 BH1	13-Apr-2005	804580	2.86	150	<0.01	21	0.06	1.4	0.7	8.6	30	-	-	-	8	15	0.2	<0.01	0.3	-	-	5.8	4	16	25	170	-
BH1	28-Jul-2005 31-Oct-2005	841923 872629	2.84	120 140	<0.01 <0.01	9.5	0.05	<1.0 1.5	<1.0 0.5	<1.0 7.7	<1.0 30	-	-	-	10 14	14 29	<0.1 0.2	0.09	1.7 0.5	-	-	5.2 5.5	6 7	17 13	30	140 180	-
BH1	30-Jan-2006	903878	2.77	250	<0.00	0.28	<0.01	1.3	0.5	7.4	32	-	-	-	16	27	<0.1	0.19	1	-	-	6.6	5	5	32	160	-
BH1	20-Apr-2006	933443	3.1	380	<0.01	0.48	<0.01	0.59	<0.1	2.8	31	-	-	-	16	10	<0.1	<0.01	<0.3	-	-	5.8	8	3	32	170	-
BH1	25-Jul-2006	965726	2.89	140	<0.01	1.6	0.13	0.7	<0.5	3.5	33	-	-	-	32	8	<0.1	<0.01	<0.3	-	-	6	4	13	32	190	-
BH1	24-Oct-2006	993112	3	110	<0.01	2.2	<0.01	0.74	0.7	3.6	30	-	-	-	55	15	<0.1	0.02	<0.3	-	-	5.8	4	5	31	170	-
BH1 BH1	24-Jan-2007 17-Apr-2007	1108115 1150661	3.2	450 300	<0.01 <0.01	1.6	0.02 <0.01	<0.05	2.6 4.5	2.6	32 30	-	-	-	12 40	21 13	<0.1	0.08 <0.01	0.4 <0.1	-	-	5.6 5.7	12 7	25 40	46 30	190 160	-
BH1	25-Jul-2007	1219303	2.42	160	<0.01	3.0	<0.02	1.0	2.4	4.0	28	-	-	-	29	12	<0.1	<0.01	<0.1	-	-	6.4	5	6	33	190	-
BH1	22-Oct-2007	1297214	2.85	170	<0.01	<0.2	<0.02	0.27	1.3	0.24	27	-	-	-	16	14	0.1	0.02	0.2	-	-	6.6	6	150	33	170	-
BH1	22-Jan-2008	1375491	3.15	350	<0.01	0.8	0.01	1.0	4.3	2.2	27	-	-	-	17	12	<0.1	1.3	0.6	-	-	6.4	4	20	32	180	-
BH1 BH1	22-Apr-2008 22-Jul-2008	1458428 1539821	3.425 2.81	200 170	<0.01 <0.01	9.6	0.15	<0.5 0.58	3.3	3.4 2.9	40 30	-	-	-	32 33	14 52	<0.1 0.1	0.02	0.5	-	-	6.15 6.36	12 19	18 <2	45 29	260 230	-
BH1	21-Oct-2008	1620239	2.74	150	<0.01	4.9	0.01	0.54	2.5	2.9	34	-	-	-	25	14	<0.1	0.01	0.5	-	-	5.31	4	13	36	220	-
BH1	28-Apr-2009	1791390	3.02	290	<0.01	15	0.15	5.2	4.9	7.4	69	-	-	-	53	18	0.8	0.15	3.6	-	-	6.3	39	70	61	340	-
BH1	29-Jul-2009	-	2.96	190	<0.01	12	0.11	<1	3	6	42	-	-	-	44	18	0.5	0.075	1.0	-	-	6.4	6	19	39	280	-
BH1	29-Oct-2009	1976818	2.52	170	< 0.01	15	0.19	2	2	6	40	57	< 2	< 2	57	19	0.3	< 0.01	0.4	-	-	5.8	9	< 5	33	260	-
BH1 BH1	28-Jan-2010 28-Jul-2011	2070255 2688215	2.81 1.39	150 220	< 0.001	0.92 16	0.006	3.2 1.8	5.4 2.1	9.1 4.1	57 60	84 30	< 2	< 2	84 30	16 14	0.3	< 0.01	0.5 0.5	-	-	6 5.7	12 7	23 33	36 85	310 350	-
BH1	18-Oct-2011	2784843	1.59	220	< 0.034	1.7	0.022	2.7	2.1	4.7	59	37	< 2	< 2	37	16	0.4	0.25	0.5	-	-	5.8	-	15	84	350	-
BH1	19-Jan-2012	2895496	1.97	200	0.03	13	0.02	1	3	2	48	38	< 2	< 2	38	19	0.2	< 0.01	0.5	-	-	5.9	9	10	63	330	-
BH1	09-Aug-2012	3137525	1.36	230	0.01	22	0.02	2.2	2.2	6	49	39	< 2	< 2	39	15	0.4	0.21	0.8	-	-	5.8	9	5	63	310	-
BH1	28-Nov-2012	3274903	1.64	580	0.03	15	0.03	2.9	16	16	65	24	< 2	< 2	24	21	0.2	< 0.01	1.4	-	-	5.6	40	110	84	380	-
BH1 BH1	27-Feb-2013 16-May-2013	3383769 3478280	2.29	410 170	< 0.01	4.1 74	< 0.01	0.4 2.5	2.6 3.2	0.7 6.6	61 49	14 28	< 2	< 2	14 28	24 14	0.5	0.79	2.6 0.9	-	-	5.9 5.8	34 10	42 8	90	400 290	-
BH1	28-Aug-2013	3598479	1.65	260	< 0.01	10	< 0.03	2.3	1.8	4.8	51	39	< 2	< 2	39	14	0.3	0.52	0.6	-	-	6	6	5	67	330	-
BH1	26-Nov-2013	3705702	1.82	190	< 0.01	2	0.02	3.1	2	3.2	41	32	< 2	< 2	32	16	0.2	1.8	0.5	-	-	5.9	6	< 5	73	350	-
BH1	25-Feb-2014	3807898	2.43	200	< 0.01	32	0.11	5.4	4.2	12	60	9	< 2	< 2	9	16	0.6	0.18	0.8	-	-	5.5	9	< 5	79	300	-
BH1	28-May-2014	3917832	2.49	230	< 0.01	4.5	0.02	3	3	6	48	34 15	< 2	< 2	34 15	18	0.4	0.02	1.1	-	0.87	5.9	16	10	82 67	380	-
BH1 BH1	26-Aug-2014 27-Nov-2014	4022966 4134768	1.9 2.21	150 280	< 0.01 < 0.01	< 0.2	0.02	0.8	1.8	2.9	45 48	15 16	< 2	< 2	15 16	22 18	0.2 < 0.1	0.08	0.3	-	0.21	5.8 6	6 3	< 5 < 5	67 64	300 280	-
BH1	25-Feb-2015	4243098	2.46	280	<0.01	0.5	0.02	2.2	5.3	3.5	38	20	<2	<2	20	17	<0.1	2.1	0.15	-	1	5.7	8.2	23	56	280	-
BH1	27-Aug-2015	4455817	2.31	260	0.031	15	0.047	1.1	3.1	3.8	53	22	< 2	< 2	22	16	< 0.1	0.57	0.8	-	-	6.1	6.8	17	65	280	-
BH1	16-Jan-2017	-	-	402	<0.001	0.1	0.052	4	4	9	112	38	<1	<1	38	38	0.02	2.8	1.2	-	-	6.21	7	21	183	684	11
BH1 BH1	21-Mar-2017	-	2.81	564	0.003 0.002	2.38	0.144	2	4	5	82 66	39 35	<1	<1	39 35	28 20	0.07	0.69	0.9 1.2	-	-	6.13 6.35	14 12	51 64	118 61	516 328	13
BH1	23-May-2017 22-Aug-2017	- EM1711311001	1.56	841 699	0.002	0.68	0.04	2	3	3	66 50	40	<1 <1	<1	40	15	0.09	0.4	1.2	-	-	6.15	20	105	53	328	6
BH1	09-Nov-2017	EM1715406001	1.92	730	0.006	2.08	0.037	2	4	4	50	42	<1	<1	42	22	0.21	0.74	2.1	-	-	6.52	12	81	61	315	19
BH1	26-Feb-2018	EM1803674001	2.41	335	0.001	0.42	0.04	<1	4	2	52	34	<1	<1	34	15	0.14	1.25	0.2	-	-	5.6	5	<10	57	320	23
BH1	28-May-2018	EM1808721001	2.38	2,090	0.001	1.43	0.199	<1	2	<1	36	23	<1	<1	23	14	0.09	0.74	0.9	2,000	-	6.22	24	316	38	210	14
BH1 BH1	01-Aug-2018 28-Nov-2018	EM1812302001 EM1819277001	1.83 2.28	2,320 330	0.002 0.001	4.82 0.7	0.612	2	3	2	41 48	36 29	<1 <1	<1	36 29	22 17	0.28	0.11 1.58	0.8		-	6.44	9	196 61	42 56	245 273	19 44
BH1	26-Feb-2019	EM1819277001 EM1902808001	2.28	478	0.001	5.03	0.03	<1 <1	3	2	48	29	<1	<1	29	10	0.05	1.58	1.1		-	6.24	6	<10	65	277	21
BH1	20-May-2019	EM1907716001	2.21	593	0.003	1.64	0.014	<1	5	2	37	20	<1	<1	20	12	0.06	3.46	2.8	-		5.7	10	20	49	824	7
BH1	20-Aug-2019	EM1913616	1.2	509	0.002	0.9	0.015	<1	4	2	43	32	<1	<1	32	14	0.07	1.42	1.4	1.43		6.1	5	<10	53	308	21
BH1	04-Dec-2019	EM1920907	1.93	290	<0.001	_	0.044	2	6	8	73	31	<1	<1	31	23	<0.01	4.23	0.9	4.25		5.88	8	<10	116	494	21
BH1 BH1	11-Feb-2020 19-May-2020	EM2002157 EM2008425	2.28	314	<0.001 0.015	0.05 6.51	0.023	2	5	6	63 60	25 25	<1	<1	25 25	16	0.04 <0.01	2.61	2.7 2.5	2.62 8.43		6.42	1	90 46	91 57	406 357	11
BH1	19-May-2020 18-Aug-2020	EM2008425 EM2014393	1.63	432 421	0.015	0.51	0.04	2	5 12	5 5	43	25 48	<1	<1	25 48	24 14	<0.01 0.02	8.42 5.06	3.3	5.07		6.17 6.84	16 22	77	40	357 300	13 47
BH1	24-Nov-2020	EM2021040	1.7	476	0.006	2.17	0.162	5	18	14	94	78	<1	<1	78	33	0.04	10.3	2.7	10.3	-	7.17	20	48	131	723	17
BH1	24-Feb-2021	-													Unable to ac		•				•						
BH1	26-May-2021	-													ation lost due to		•										
BH1	13-Sep-2021	-													ation lost due to												
BH1 BH1	18-Nov-2021 01-Mar-2022																										
BH1	17-May-2022	-													ation lost due to												
BH1		-													ation lost due to		•										
BH1	-	Bore location lost due to road resurfacing																									
BH1	-	-													ation lost due to												
BH1	-	-												Bore loc	ation lost due to	road resurfa	acing										



SAMPLE NO.	SAMPLE DATE	LAB REPORT NO.	SWL	TDS	Chromium	Iron	Zinc	Calcium	Potassium	Magnesium	Sodium	Bicarbonate	Carbonate	Hydroxide	Total Alkalinity	Sulphate	Ammonia	Nitrate	Total Kjeldahl Nitrogen	Total Nitrogen	Total Phosphate	рН	Total Organic Carbon	Chemical Oxygen Demand	Chloride	EC	Volatile Fatty Acids (as Acetic Acid)
			m BGL	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg CaCO3/L	mg CaCO3/L	mg CaCO3/L	mg CaCO3/L	mg/L	mg N / L	mg N / L	mg N / L	mg N / L	mg P / L	Units	mg/L	mg/L	mg/L	uS/cm	mg/L
BH2 BH2	31-Oct-2003 29-Jan-2004	619302 648474	2.7 4.4	330	<0.01	<0.05	<0.01	16	1	32	83	-	-	-	130	8	0.2	<0.01	<0.3 1.4	-	-	7.4 6.7	3	17	110	500 600	-
BH2	07-Apr-2004	673236	3.43	320 310	<0.01	2.4	<0.01	<5.0 4.6	<5.0 3.1	14 25	70 52	-	-	-	130 150	7.8	0.2	0.07	0.5	-	-	6.9	4	9	100 110	690	-
BH2	21-Jul-2004	707746	2.69	320	<0.01	1.6	<0.01	2.7	5.6	29	62	-	-	-	130	16	0.2	0.01	<0.3	-	-	7.6	4	17	100	650	-
BH2	26-Oct-2004	743327	2.9	230	<0.01	0.94	<0.01	1.5	3.5	22	51	-	-	-	120	<1	0.2	<0.01	<0.3	-	-	6.9	2	11	72	490	-
BH2 BH2	20-Jan-2005 13-Apr-2005	775528 804581	3.02	220 210	<0.01	19 24	<0.01	1.9	4.1 0.5	19 20	48 47	-	-	-	110 110	8 6	0.2	<0.01	<0.3	-	-	6.9	3	<2 9	130 59	420 400	-
BH2	28-Jul-2005	841924	3.14	200	<0.01	35	0.02	2.1	1	19	33	-	-	-	120	2	0.2	0.04	<0.3	-	-	6.9	3	14	68	440	-
BH2	31-Oct-2005	872630	2.6	200	<0.01	24	<0.01	2	0.5	18	40	-	-	-	160	2	0.2	<0.01	0.5	-	-	6.7	4	4	61	390	-
BH2	30-Jan-2006	903879	3.03	190	<0.00	17	0.2	1.9	0.8	17	44	-	-	-	100	7	0.1	<0.01	0.7	-	-	7.9	2	<2	59	380	-
BH2	20-Apr-2006	933444	3.44	200	<0.01	22	0.04	2.1	0.3	19	42	-	-	-	110	2	0.2	<0.01	<0.3	-	-	6.8	6	7	63	400	-
BH2	25-Jul-2006	965727	3.22	180	<0.01	20	0.02	1.9	<0.5	18	60	-	-	-	100	2	0.2	<0.01	<0.3	-	-	6.8	5	10	68	400	-
BH2 BH2	24-Oct-2006 24-Jan-2007	993113 1108116	3.47	170 180	<0.01	23	<0.01 0.02	1.6	0.6 5.8	18 17	43 43	-	-	-	140 110	3 2.4	0.1	<0.01	0.8 <0.1	-	-	6.8	3	10 9	65 78	400 400	-
BH2	17-Apr-2007	1150662	3.71	200	<0.01	24	0.05	2.5	4.5	18	44	-	-	-	140	2	0.2	<0.01	0.4	-	-	6.8	9	60	69	410	-
BH2	25-Jul-2007	1219304	2.73	220	<0.01	27	<0.02	2.1	2.0	18	37	-	-	-	98	<1	0.2	<0.01	0.1	-	-	7.2	4	6	86	420	-
BH2	22-Oct-2007	1297215	3.16	210	<0.01	2.6	<0.02	2.3	1.5	20	44	-	-	-	100	<1	0.2	0.01	0.2	-	-	7.8	3	18	75	420	-
BH2	22-Jan-2008	1375492	3.48	220	<0.01	<0.2	<0.01	2.4	3.1	18	39	-	-	-	94	1	0.2	1.2	0.2	-	-	7.2	3	10	80	420	-
BH2	22-Apr-2008	1458429	3.745	210	<0.01	11	0.04	0.38	<0.5	16	39	-	-	-	88	<1	0.1	<0.01	0.4	-	-	6.89	3	8	76	410	-
BH2 BH2	22-Jul-2008 21-Oct-2008	1539822 1620240	3.14	110 220	<0.01	0.8 5.1	<0.01	2.3 1.9	3.3 2.4	18 17	43 42	-	-	-	86 94	<1 3	0.3	<0.01	0.2	-	-	6.84	2	<2 12	91 80	440 420	-
BH2	28-Jan-2009	1706035	3.41	220	<0.01	2.3	0.02	2.2	0.6	18	44	-	-	-	79	13	0.1	0.02	0.2	-	-	7.2	4	<10	82	450	-
BH2	28-Apr-2009	1791391	3.85	210	<0.01	3.3	0.02	5.1	1.3	19	57	-	-		91	<1	0.2	0.02	0.2	-	-	7.1	2	<5	80	420	-
BH2	29-Jul-2009	-	3.38	210	<0.01	6.3	0.02	2	<1	17	46	-	-	-	81	2	0.2	0.031	0.3	-	-	6.8	2	<5	85	430	-
BH2	29-Oct-2009	1976819	2.95	200	< 0.01	6.3	< 0.01	2	< 1	17	44	92	< 2	< 2	92	2	0.2	< 0.01	0.3	-	-	6.6	3	< 5	79	410	-
BH2	28-Jan-2010	2070256	3.29	180	< 0.001	0.17	0.001	1.7	1.8	17	46	97	< 2	< 2	97	1	0.2	< 0.01	0.2	-	-	6.6	3	8	77	430	-
BH2 BH2	20-Jul-2010 20-Oct-2010	2259580 2367031	2.59	200 210	< 0.001 < 0.001	0.32	< 0.001	1.9	2.2 0.4	21 19	43 42	100	< 2	< 2 < 2	100 100	< 1 2	0.2	0.01 < 0.01	0.2	-	-	6.6	5	11 < 5	78 81	420 410	-
BH2	24-Jan-2011	2474615	2.43	210	< 0.001	1.5	< 0.001	1.7	0.4	20	50	100	< 2	< 2	100	3	0.3	0.03	0.5	-	-	6.6	7	12	77	430	-
BH2	19-Apr-2011	2574914	2.65	210	< 0.001	1.4	0.022	1.6	0.8	18	53	94	< 2	< 2	94	7	0.6	0.07	0.7	-	-	6.6	4	12	74	430	-
BH2	28-Jul-2011	2688216	2.28	240	< 0.001	8.8	< 0.001	1.7	0.5	20	48	100	< 2	< 2	100	1	0.3	< 0.1	0.3	-	-	6.6	5	14	87	440	-
BH2	18-Oct-2011	2784844	2.59	230	< 0.01	1.6	< 0.01	1.8	0.5	20	50	100	< 2	< 2	100	2	0.3	0.02	0.5	-	-	6.7	-	8	89	450	-
BH2 BH2	19-Jan-2012 09-Aug-2012	2895497 3137526	2.92	260 250	< 0.01	5.7 24	< 0.01	2.1	< 1 0.6	18 20	48 51	100 95	< 2	< 2	100 95	2	0.1	< 0.05 0.15	0.3	-	-	6.7	4	< 5 < 5	85 89	470 460	-
BH2	28-Nov-2012	3274904	2.75	240	< 0.01	0.9	< 0.01	1.3	0.5	16	48	97	< 2	< 2	97	< 5	0.3	< 0.01	0.4	-	-	6.6	3	6	90	460	<del>-</del> -
BH2	27-Feb-2013	3383770	3.24	260	< 0.01	2.2	< 0.01	1.5	0.6	15	51	33	< 2	< 2	33	4	0.3	< 0.01	0.4	-	-	6.6	4	< 5	110	500	-
BH2	16-May-2013	3478281	3.41	290	< 0.01	35	< 0.01	2.2	0.6	21	60	87	< 2	< 2	87	< 5	0.3	< 0.01	0.3	-	-	6.6	3	< 5	140	570	-
BH2	28-Aug-2013	3598517	2.57	390	< 0.01	34	< 0.01	3.1	0.7	26	68	91	< 2	< 2	91	< 5	0.3	0.03	0.3	-	-	6.6	4	< 5	160	670	-
BH2	26-Nov-2013	3705703	2.86	280	< 0.01	7	0.04	1.8	0.5	16	48	94	< 2	< 2	94	< 10	0.2	< 0.05	0.2	-	-	6.7	3	< 5	110	520	-
BH2 BH2	25-Feb-2014 28-May-2014	3807899 3917833	3.43 3.52	340 360	< 0.01 < 0.01	27 17	< 0.01	3	0.8	25 20	78 59	96 110	< 2 < 2	< 2 < 2	96 110	3	0.4	0.03 < 0.01	0.4	-	0.06	6.7	3 5	< 5 < 5	150 170	640 720	-
BH2	26-Aug-2014	4022967	2.76	270	< 0.01	5.8	< 0.01	1.9	0.5	21	56	95	< 2	< 2	95	10	0.4	< 0.01	0.5	-	0.09	6.7	2	< 5	120	550	<del>-</del>
BH2	27-Nov-2014	4134769	3.27	270	< 0.01	+	< 0.01	1.7	0.5	21	59	94	< 2	< 2	94	7	0.2	< 0.01	0.4	-	0.16	6.6	2	< 5	110	510	-
BH2	25-Feb-2015	4243096	3.52	280	<0.01	3.6	0.02	1.5	0.7	18	52	93	<2	< 2	93	11	0.2	0.04	0.05	-	0.4	6.6	2.1	<5	94	500	-
BH2	27-Aug-2015	4455818	3.37	350	0.005	38	0.025	3	0.7	26	88	110	< 2	< 2	110	6	0.3	0.01	0.5	-	-	6.7	2.1	< 5	170	720	-
BH2	24-Feb-2016	4674179	3.84	460	<0.01	11	<0.01	3.9	0.9	26	96	80	< 2	< 2	80	12	0.6	0.04	0.9	-	-	6.5	3.5	< 5	210	890	-
BH2 BH2	16-Jan-2017 21-Mar-2017	-	3.02	412	<0.001	0.09 28.4	<0.005 0.031	2	<1 <1	19 19	87 86	86 76	<1 <1	<1 <1	86 76	14	0.59 1.29	0.01 <0.01	0.8 1.8	-	-	6.5 6.47	3	<10 <10	179	715 750	24
BH2	23-May-2017	-	3.18	400 394	<0.001	25	0.031	2	1	23	108	92	<1	<1	92	10	0.81	0.01	1.0	-	-	6.57	2	13	192 191	720	22
BH2	23-Aug-2017	EM1711442001	3.18	600	<0.001	30.2	0.02	4	<1	28	113	87	<1	<1	87	25	0.36	0.01	0.7	-	-	6.79	4	22	260	980	28
BH2	09-Nov-2017	EM1715406002	2.99	435	<0.001	+	0.01	3	<1	27	94	96	<1	<1	96	14	0.83	<0.01	0.8	-	-	6.54	<1	<10	228	803	32
BH2	27-Feb-2018	EM1803772001	3.46	415	<0.001	16.4	0.015	2	<1	19	81	87	<1	<1	87	11	0.71	0.04	0.7	-	-	6.4	3	<10	155	725	11
BH2	28-May-2018	EM1808721002	3.44	355	<0.001	11.9	0.044	2	1	19	79	93	<1	<1	93	14	1.79	<0.01	2.3		-	6.73	4	12	163	704	37
BH2	01-Aug-2018	EM1812302002	2.9	398	0.002	4.86	0.362	2	<1	26	89	92	<1	<1	92	19	0.36	0.02	1	-	-	6.78	<1	74	190	745	13
BH2 BH2	28-Nov-2018 26-Feb-2019	EM1819277002 EM1902808002	3.69	355 372	<0.001	1.41 21.2	0.007	2	<1 <1	21 19	107 90	86 90	<1 <1	<1 <1	86 90	14 19	0.33	0.08	0.8	-	-	6.87	5	61 <10	182 202	683 750	42 30
BH2	20-Feb-2019 20-May-2019	EM1907716002	3.11	474	<0.001	2.64	0.024	2	<1	23	94	79	<1	<1	79	18	0.47	0.14	0.9	-	-	6.40	2	<10	214	809	10
BH2	20-Aug-2019	EM1913616	2.27	493	<0.001	+	0.011	1	<1	23	97	104	<1	<1	104	15	0.21	0.03	0.4	<0.01		6.37	3	<10	200	813	26
BH2	04-Dec-2019	EM1920907	2.82	329	<0.001	0.3	0.013	2	1	21	87	84	<1	<1	84	19	0.37	0.1	0.6	<0.01		6.47	4	<10	171	693	17
BH2	11-Feb-2020	EM2002157	3.18	392	<0.001	+	0.013	2	<1	21	87	78	<1	<1	78	20	0.3	0.03	1.1	0.53		7	<1	36	170	679	22
BH2	18-May-2020	EM2008378	3.09	602	<0.001	25	0.017	2	<1	20	86	86	<1	<1	86	21	0.23	0.1	0.5	0.62		7.45	<1	<10	175	701	8
BH2	18-Aug-2020	EM2014393 EM2021040	2.56	442 382	<0.001	21.0	0.031	2	1 <1	23 17	98 90	97	<1	<1 <1	97 90	19	0.36	0.12	0.9 2.2	0.14	-	7.16 7.13	<1 3	<10	208	822 703	45 11
BH2	24-Nov-2020	□IVI∠UZ 1U4U	2.76	382	<0.001	31.0	0.031	ı	<1	17	90	90	<1	<1	90	16	0.68	0.08	2.2	0.09	-	1.13		<10	167	703	11



SAMPLE NO.	SAMPLE DATE	LAB REPORT NO.	SWL	TDS	Chromium	Iron	Zinc	Calcium	Potassium	Magnesium	Sodium	Bicarbonate	Carbonate	Hydroxide	Total Alkalinity	Sulphate	Ammonia	Nitrate	Total Kjeldahl Nitrogen	Total Nitrogen	Total Phosphate	рН	Total Organic Carbon	Chemical Oxygen Demand	Chloride	EC	Volatile Fatty Acids (as Acetic Acid)
			m BGL	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg CaCO3/L	mg CaCO3/L	mg CaCO3/L	mg CaCO3/L	mg/L	mg N / L	mg N / L	mg N / L	mg N / L	mg P / L	Units	mg/L	mg/L	mg/L	uS/cm	mg/L
BH2	24-Feb-2021	EM2103002	2.72	380	<0.001	-	0.023	2	2	13	84	68	<1	<1	68	28	1.66	0.77	2.1	0.87	-	-	1	<10	149	-	22
BH2	26-May-2021	EM2109946	3.22	354	0.001	12.9	0.068	1	<1	15	82	53	<1	<1	53	28	0.35	0.11	0.6	0.11	-	6.87	<1	<10	138	592	6
BH2	14-Sep-2021	EM2118437	2.27	359	0.001	106	0.073	1	<1	15	84	54	<1	<1	54	22	0.75	0.07	0.6	0.07		6.81	<1	<10	157	654	22
BH2	18-Nov-2021	EM2123390	2.58	372	0.002	77.9	0.109	1	1	13	84	50	<1	<1	50	22	0.86	0.03	1	0.21		7.2	4	<20	153	646	15
BH2	03-Mar-2022	EM2203751	2.92	295	0.001	33.1	0.064	3	1	13	82	57	<1	<1	57	31	0.43	0.27	0.6	0.27		6.74	2	<10	137	575	20
BH2	17-May-2022	EM2209266	3.13	272	0.002	8.62	0.025	1	<1	10	79	41	<1	<1	41	28	0.18	0.09	0.3	0.09		6.47	<1	<20	141	562	21
BH2	31-Aug-2022	EM2216860	2.12	417	<0.001	23	0.04	2	<1	18	96	56	<1	<1	56	22	0.08	0.01	0.3	0.01		6.78	2	<10	209	763	16
BH2	17-Nov-2022	EM2222858	1.93	342	<0.001	27.4	0.044	1	1	14	97	32	<1	<1	32	20	0.03	0.15	0.9	0.19		6.07	<1	<10	181	730	23
BH2	17-Feb-2023	EM2302775	2.98	385	<0.001	3.95	0.053	1	1	14	103	32	<1	<1	32	20	0.32	0.89	0.6	0.89		6.39	1	34	199	734	12
BH2	10-May-2023	EM2308315	2.9	469	<0.001	8.46	0.057	1	1	17	117	34	<1	<1	34	18	0.08	3.14	0.7	3.15	-	6.43	6	58	226	756	11



SAMPLE NO.	SAMPLE DATE	LAB REPORT NO.	SWL	TDS	Chromium	Iron	Zinc	Calcium	Potassium	Magnesium	Sodium	Bicarbonate	Carbonate	Hydroxide	Total Alkalinity	Sulphate	Ammonia	Nitrate	Total Kjeldahl Nitrogen	Total Nitrogen	Total Phosphate	рН	Total Organic Carbon	Chemical Oxygen Demand	Chloride	EC	Volatile Fatty Acids (as Acetic Acid)
			m BGL	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg CaCO3/L	mg CaCO3/L	mg CaCO3/L	mg CaCO3/L	mg/L	mg N / L	mg N / L	mg N / L	mg N / L	mg P / L	Units	mg/L	mg/L	mg/L	uS/cm	mg/L
BH3	31-Oct-2003	619303	0.4	950	<0.01	12	0.02	13	2.7	56	280	-	< 2	< 2	48	37	0.2	<0.01	0.5	-	-	6	10	31	590	1200	-
BH3	29-Jan-2004	648475	0.65	560	<0.01	0.09	0.02	<0.05	2.9	20	60	-	< 2	< 2	12	15	<0.1	0.29	<0.3	-	-	5.4	<1	- 45	240	820	-
BH3 BH3	07-Apr-2004	673237 707747	0.9	1500 1800	<0.01	17 0.2	<0.01	28 29	11 13	75 93	290 390	-	<2	< 2	200 120	30 47	0.2	<0.01	1.4 0.8	-	-	6.4 7.6	19 15	45 58	740 860	2900 3100	-
BH3	21-Jul-2004 26-Oct-2004	743328	0.4	1500	<0.01	4.9	<0.01	27	11	83	390	-	<2	< 2	100	<1	0.1	<0.03	0.6	-	-	6.2	15	45	790	2700	-
BH3	20-Jan-2005	775527	0.75	1100	<0.01	32	0.02	17	10	67	290	-	< 2	< 2	140	35	0.1	<0.01	0.7	-	-	6.6	16	30	690	2200	-
ВН3	13-Apr-2005	804582	0.74	1200	<0.01	38	0.08	22	10	68	310	-	< 2	< 2	160	27	0.2	<0.01	0.9	-	-	6.4	17	7	570	2000	-
ВН3	28-Jul-2005	841925	0.51	1400	<0.01	56	0.03	30	10	81	400	-	< 2	< 2	160	35	0.1	0.43	0.8	-	-	6.4	16	45	790	2800	-
BH3	31-Oct-2005	872631	0.5	1500	<0.01	35	0.02	27	9.2	75	340	-	< 2	< 2	150	27	0.1	0.02	1.1	-	-	6.4	17	32	740	2600	-
ВН3	30-Jan-2006	903880	0.63	1200	0.05	<0.05	0.06	26	12	65	280	-	< 2	< 2	220	27	<0.1	0.44	1	-	-	7.6	13	38	490	2100	-
BH3	20-Apr-2006	933445	0.705	1800	<0.01	37	0.08	44	24	97	410	-	< 2	< 2	230	31	0.1	<0.01	1.4	-	-	6.6	35	50	830	3200	-
BH3	25-Jul-2006	965728	0.51	1600	<0.01	35	0.06	38	13	88	500	-	< 2	< 2	190	28	0.1	<0.01	1.1	-	-	6.5	22	39	830	3100	-
BH3	24-Oct-2006	993114	0.58	1400	<0.01	44	0.02	31	16	76	350	-	< 2	< 2	220	27	<0.1	<0.01	1.8	-	-	6.6	11	54	680	2700	-
BH3 BH3	24-Jan-2007 17-Apr-2007	1108117 1150663	0.81	1700 1200	<0.01	35 57	0.03 <0.01	49 24	38 18	110 64	490 270	-	< 2 < 2	< 2	280 270	27 33	0.1	0.01 <0.01	0.9 0.5	-	-	6.7	21 10	60 240	1000 560	1000 2200	-
BH3	25-Jul-2007	1219305	0.52	1,800	<0.01	47	0.03	38	21	98	470	-	<2	< 2	130	47	0.1	<0.01	0.7	-	-	6.9	16	62	1,200	3,600	-
BH3	22-Oct-2007	1297216	0.52	1,800	<0.01	22	<0.02	41	18	100	480	-	< 2	< 2	170	35	0.3	<0.01	0.7	-	-	8.1	15	100	1,000	3,400	-
ВН3	22-Jan-2008	1375493	0.90	1,800	<0.01	3.5	0.02	56	39	100	460	-	< 2	< 2	280	5	<0.1	0.03	1.3	-	-	7.3	25	65	990	2,800	-
ВН3	22-Apr-2008	1458430	1.250	1,500	<0.01	37	0.05	27	14	79	370	-	< 2	< 2	91	35	<0.1	0.03	0.8	-	,	6.61	15	35	910	2,900	-
ВН3	22-Jul-2008	1539823	0.54	1,900	<0.01	12	0.02	43	20	100	500	-	< 2	< 2	34	43	<0.1	<0.01	0.7	-	-	6.25	14	37	1,200	3,800	-
ВН3	21-Oct-2008	1620241	0.52	2,000	<0.01	28	0.02	38	19	97	480	-	< 2	< 2	110	39	0.1	<0.01	1.1	-	-	6.07	14	38	1,200	3,700	-
BH3	28-Jan-2009	1706036	0.80	1,700	<0.01	4.9	0.01	46	25	89	420	-	< 2	< 2	240	21	0.1	0.03	1.3	-	-	6.6	16	52	960	3,100	-
BH3	28-Apr-2009	1791389	1.03	2,000	<0.01	43	0.05	73	20	110	490	-	< 2	< 2	120	47	0.2	0.03	0.9	-	-	6.7	17	52	1,300	3,800	-
BH3	29-Jul-2009	4070000	0.58	2,200	<0.01	6.8	0.05	43	20	110	580	- 140	< 2	< 2	80	43	<0.1	0.005	0.8	-	-	6.5	14	46	1,300	4,200	-
BH3 BH3	29-Oct-2009 28-Jan-2010	1976820 2070257	0.054	2200 1700	< 0.01 < 0.001	38 1.6	0.04	45 45	21 28	120 95	580 460	140 260	< 2	< 2	140 260	47 23	0.2 < 0.1	< 0.01	0.8	-	-	6.3	15 < 1	45 55	1300 880	4100 3300	-
BH3	20-Jul-2010 20-Jul-2010	2259581	0.70	2200	< 0.001	15	0.006	54	25	130	590	230	<2	< 2	230	29	0.3	< 0.05	0.9	_	-	6.4	22	63	1300	3700	-
BH3	20-Oct-2010	2367032	0.49	2000	< 0.001	37	0.008	47	20	120	540	210	< 2	< 2	210	32	0.1	< 0.05	1	-	-	6.3	22	43	1300	3800	-
ВН3	24-Jan-2011	2474616	0.53	2100	< 0.001	19	0.095	38	16	110	530	170	< 2	< 2	170	35	0.2	< 0.01	1.3	-	-	6.2	19	59	960	3200	-
BH3	19-Apr-2011	2574915	0.52	2200	< 0.001	36	0.01	41	16	120	540	220	< 2	< 2	220	37	0.2	0.01	0.7	-	,	6.4	20	64	1200	3900	-
ВН3	28-Jul-2011	2688217	0.52	2000	< 0.001	52	0.011	44	15	120	510	210	< 2	< 2	210	34	0.2	< 0.1	0.7	-	-	6.2	24	70	1100	3700	-
BH3	18-Oct-2011	2784845	0.53	2300	< 0.01	45	< 0.01	38	13	110	540	190	< 2	< 2	190	36	0.4	0.03	0.8	-	-	6.4	-	62	2100	3800	-
BH3	19-Jan-2012	2895498	0.66	1700	< 0.01	40	< 0.01	32	14	82	370	210	< 2	< 2	210	30	< 0.1	< 0.1	1	-	-	6.5	24	31	760	2800	-
BH3	02-Aug-2012	3131138	0.47	1900	< 0.001	71	0.099	47	14	110	390	210	< 2	< 2	210	29	0.1	0.02	0.9	-	-	6.4	20	28	1000	3300	-
BH3 BH3	28-Nov-2012 28-Feb-2013	3274905 3383772	0.59 1.19	1500 1600	< 0.01	25 27	< 0.01	29 37	13 16	71 78	330 370	240 180	<2	< 2	240 180	28 37	0.1	< 0.05 < 0.05	0.7	-	-	6.4	21 21	46 20	700 800	2600 2600	-
BH3	16-May-2013	3478110	0.99	1500	< 0.01	34	< 0.01	33	11	80	390	130	<2	< 2	130	74	0.2	0.02	0.9	-	-	6.4	13	27	860	2800	-
BH3	28-Aug-2013	3598480	0.51	2500	< 0.01	52	0.02	56	15	120	570	130	< 2	< 2	130	67	0.3	< 0.1	0.8	-	-	6.3	15	23	1400	4300	-
ВН3	26-Nov-2013	3705704	0.54	2200	< 0.01	19	0.06	37	12	86	480	90	< 2	< 2	90	58	0.1	< 0.05	0.7	-	-	6.3	14	7	1300	4100	-
ВН3	25-Feb-2014	3808278	1.42	1700	< 0.01	65	0.02	41	18	89	390	150	< 2	< 2	150	57	0.2	< 0.01	1	-	-	6.5	16	30	930	3000	-
BH3	28-May-2014	3917834	0.75	2900	< 0.01	35	< 0.01	66	20	140	670	95	< 2	< 2	95	84	0.1	0.02	0.7	-	< 0.05	6.1	12	10	1500	4700	-
BH3	26-Aug-2014	4022971	0.52	2200	< 0.01	28	0.03	59	16	140	650	55	< 2	< 2	55	55	0.1	< 0.05	0.6	-	0.07	6.2	9	13	1500	4500	-
BH3	26-Nov-2014	4133546	0.71	1500	< 0.01		< 0.01	41	18	86	440	150	< 2	< 2	150	36	< 0.1	< 0.1	1	-	-	6.7	14	18	800	2700	-
BH3	25-Feb-2015	4243094	1.17	1800	<0.01	17	0.04	40 57	21	130	360 650	110	< 2	< 2	110	76 56	0.2	0.1	0.07	-	0.8	6.4	15	16	940	3200	-
BH3 BH3	27-Aug-2015 24-Feb-2016	4455819 4674178	0.54 1.49	2200	0.004 <0.01	53 35	0.035	57 44	14 19	130 87	650 440	120 130	< 2 < 2	< 2	120 130	56 60	0.1	0.02	0.6	-	-	6.4	9.8 15	13 <5	1200 980	4400 3400	-
BH3	16-Jan-2017	4074178	0.85	1650	<0.01	2.35		38	21	80	403	165	<1	<1	165	26	0.2	0.04	1.1	-	-	6.75	25	95	901	2820	24
BH3	21-Mar-2017	-	1.4	1930	<0.001	_	0.301	41	23	76	411	130	<1	<1	130	52	0.14	0.66	2.1	-	-	6.43	19	93	932	3590	33
ВН3	24-May-2017	-	0.67	2190	<0.001	37.9		50	18	108	556	81	<1	<1	81	66	0.13	<0.01	0.9	-	-	6.56	14	96	1210	3810	37
ВН3	23-Aug-2017	EM1711311001	0.5	2,460	<0.001	30.1	0.066	53	13	124	652	90	<1	<1	90	63	0.09	0.03	0.4	-	-	6.68	18	63	1,440	4,580	21
ВН3	09-Nov-2017	EM1715406003	0.57	2,450	<0.001	43.6	0.067	45	10	108	576	96	<1	<1	96	62	0.12	0.06	0.9	-	-	6.62	8	<10	1,310	4,350	36
BH3	09-Nov-2017	EM1803674002	1.63	1,900	<0.001	_	0.033	42	22	79	354	158	<1	<1	158	56	0.26	<0.01	0.4	-	-	6.3	14	<10	819	3150	42
BH3	28-May-2018	EM1808881007	0.76	2,790	<0.001			60	18	119	712	46	<1	<1	46	55	0.06	0.02	0.6		-	6.22	10	28	1370	4780	30
BH3	02-Aug-2018	EM1812371008	0.57	2,060	<0.001	8.87		46	18	94	458	63	<1	<1	63	49	0.06	0.02	<0.1	-	-	6.49	6	22	1,170	3,530	25
BH3 BH3	28-Nov-2018 25-Feb-2019	EM1819277003 EM1902711001	0.62 1.9	1,540 1,680	<0.001	23.3 54.9		34 40	17 22	74 74	360 336	148 194	<1 <1	<1	148 194	38 63	0.18 0.19	0.01	0.8	-	-	6.59 6.58	18 26	<10 <10	867 997	2,780 2,770	31 45
BH3	25-Feb-2019 20-May-2019	EM1902711001 EM1907716003	0.46	2,980	<0.001	11	0.043	58	21	130	606	62	<1	<1	62	67	0.19	0.04	1	-	-	5.9	14	<10	1,530	4,390	12
BH3	20-May-2019 20-Aug-2019	EM1913616	0.40	2,840	<0.001	5.04		60	17	135	724	50	<1	<1	50	67	0.06	0.04	1.2	0.53		6.01	11	<10	1,570	4,820	32
BH3	04-Dec-2019	EM1920907	0.61	2,150	<0.001	_	0.033	43	17	100	460	71	<1	<1	71	68	0.25	<0.01	1.3	0.52		6.45	21	<10	1,320	3,750	21
ВН3	10-Feb-2020	EM2002050	1.18	2,500	<0.001	_		50	25	102	501	146	<1	<1	146	48	0.14	<0.01	1.3	<0.01		6.49	6	95	1,130	3,580	41
ВН3	19-May-2020	EM2008425	0.63	2,610	0.002	18.7	0.027	55	18	118	594	85	<1	<1	85	63	0.05	<0.01	0.6	<0.01		6.55	12	44	1,380	4,480	16
ВН3	17-Aug-2020	EM2014279	0.51	2840	0.003			67	19	159	643	114	<1	<1	114	69	0.21	<0.01	0.7	<0.01	-	6.41	12	<10	1580	5220	47
ВН3	23-Nov-2020	EM2020734	0.6	2380	0.001	44.8	0.075	48	18	114	559	144	<1	<1	144	54	0.42	<0.01	0.8	<0.01	-	6.42	16	<10	1180	4170	23



SAMPLE NO.	SAMPLE DATE	LAB REPORT NO.	SWL	TDS	Chromium	Iron	Zinc	Calcium	Potassium	Magnesium	Sodium	Bicarbonate	Carbonate	Hydroxide	Total Alkalinity	Sulphate	Ammonia	Nitrate	Total Kjeldahl Nitrogen	Total Nitrogen	Total Phosphate	рН	Total Organic Carbon	Chemical Oxygen Demand	Chloride	EC	Volatile Fatty Acids (as Acetic Acid)
			m BGL	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg CaCO3/L	mg CaCO3/L	mg CaCO3/L	mg CaCO3/L	mg/L	mg N / L	mg N / L	mg N / L	mg N / L	mg P / L	Units	mg/L	mg/L	mg/L	uS/cm	mg/L
BH3	23-Feb-2021	EM2102910	0.7	1600	0.002	36.3	0.025	37	20	74	352	221	<1	<1	221	27	0.1	0.06	1	0.06	-	6.77	26	12	761	2840	28
BH3	25-May-2021	EM2109822	0.63	1800	0.002	0.22	<0.005	49	27	88	379	242	<1	<1	242	13	0.03	0.01	0.9	0.01	-	7.02	19	40	888	3250	23
BH3	14-Sep-2021	EM2118437	0.63	2260	0.003	56	0.021	48	15	109	533	172	<1	<1	172	31	0.47	<0.01	0.9	<0.01	-	6.93	15	14	1210	4250	39
BH3	18-Nov-2021	EM2123390	0.62	2340	0.003	58.7	0.022	41	14	100	483	144	<1	<1	144	35	0.62	<0.01	0.7	<0.01		7.09	17	<10	1110	3920	33
BH3	01-Mar-2022	EM2203633	0.64	1540	0.002	35.3	0.088	45	22	80	358	298	<1	<1	298	15	0.69	0.04	1.8	0.04		6.86	19	33	747	2430	142
BH3	17-May-2022	EM2209266	0.61	2010	0.006	63.2	0.115	53	19	110	461	284	<1	<1	284	26	0.07	<0.01	1	<0.01	-	6.71	18	<20	1130	3590	30
BH3	31-Aug-2022	EM2216860	0.45	1,830	<0.001	58.4	0.061	39	12	83	423	241	<1	<1	241	14	0.68	<0.01	0.9	<0.01	-	6.93	30	18	932	3,240	14
BH3	17-Nov-2022	EM2222858	0.59	1,820	0.002	68.4	0.159	44	14	95	431	226	<1	<1	226	18	0.42	0.03	1	0.03		6.58	17	12	991	2,950	26
BH3	14-Feb-2023	EM2302525	0.87	1,380	0.01	49.9	0.09	39	18	71	304	227	<1	<1	227	18	0.13	<0.01	0.9	<0.01		6.67	30	13	669	2,390	<5
BH3	10-May-2023	EM2308315	0.60	2,030	0.003	68.9	0.045	51	18	94	406	196	<1	<1	196	29	0.14	< 0.02	0.9	0.01		8.15	23	117	917	3,350	18



SAMPLE NO.	SAMPLE DATE	LAB REPORT NO.	SWL	TDS	Chromium	Iron	Zinc	Calcium	Potassium	Magnesium	Sodium	Bicarbonate	Carbonate	Hydroxide	Total Alkalinity	Sulphate	Ammonia	Nitrate	Total Kjeldahl Nitrogen	Total Nitrogen	Total Phosphate	рН	Total Organic Carbon	Chemical Oxygen Demand	Chloride	EC	Volatile Fatty Acids (as Acetic Acid)
			m BGL	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg CaCO3/L	mg CaCO3/L	mg CaCO3/L	mg CaCO3/L	mg/L	mg N / L	mg N / L	mg N / L	mg N / L	mg P / L	Units	mg/L	mg/L	mg/L	uS/cm	mg/L
BH4	31-Oct-2003	619304	5	590	<0.01	18	0.02	9.4	0.2	27	150	-	< 2	< 2	54	94	<0.1	<0.01	<0.3	-	-	5.8	15	41	170	680	-
BH4	29-Jan-2004	648476	5.56	620	<0.01	50	0.04	1.3	1.7	21	93	-	< 2	< 2	96	120	0.1	<0.01	1.7	-	-	6	10	-	160	870	-
BH4	07-Apr-2004	673238	6.11	590	<0.01	47	<0.01	12	1.9	31	74	-	< 2	< 2	250	85	0.1	0.03	<0.3	-	-	6.5	6	19	120	1000	-
BH4 BH4	21-Jul-2004 26-Oct-2004	707748 743329	5.46 4.78	470	<0.01	1.1	<0.01	7.4	4.9 3.4	22 14	92	-	<2	< 2	94 8	80	<0.1	0.02	0.4 <0.3	-	-	8.2 5.1	6 13	17 31	140	770 800	<del>-</del>
BH4	20-Jan-2005	743329	5.39	500 470	<0.01	6.1	0.03	4.9 0.37	3.4	13	120 130	-	<2	< 2	30	35	<0.1	0.2 0.16	<0.3	-	-	5.8	12	29	230	790	-
BH4	13-Apr-2005	804583	5.53	570	<0.01	41	0.05	6.6	0.4	18	100	-	<2	<2	35	43	<0.1	<0.01	<0.3	-	_	5.6	11	20	130	660	-
BH4	28-Jul-2005	841921	5.54	430	<0.01	24	0.03	5.5	0.7	13	100	-	< 2	< 2	18	86	<0.1	0.23	0.7	-	-	5.4	6	21	170	730	-
BH4	31-Oct-2005	872632	4.82	1100	<0.01	16	0.02	3.6	0.2	8.9	76	-	< 2	< 2	16	44	<0.1	0.28	0.3	-	-	5.3	9	16	100	450	-
BH4	30-Jan-2006	903881	5.58	300	<0.00	0.35	0.03	4.5	1.1	11	89	-	< 2	< 2	20	33	<0.1	0.02	0.6	-	-	6.6	12	13	110	470	-
BH4	20-Apr-2006	933446	6.245	390	<0.01	15	<0.01	5.5	<0.1	15	95	-	< 2	< 2	100	45	0.4	<0.01	0.4	-	-	6.4	16	20	110	680	-
BH4	25-Jul-2006	965729	5.86	400	<0.01	37	0.13	8.7	1.2	22	83	-	< 2	< 2	140	38	<0.1	0.01	<0.3	-	-	6.4	7	15	110	690	-
BH4	24-Oct-2006	993115	6.13	370	<0.01	28	0.03	7.5	0.6	20	100	-	< 2	< 2	130	34	<0.1	0.03	0.7	-	-	6.4	6	21	100	680	-
BH4	24-Jan-2007	1108118	7.72	530	0.01	66	1.3	17	6.3	28	63	-	< 2	< 2	<2	230	0.1	20	0.4	-	-	3.2	17	96	84	1000	-
BH4	25-Jul-2007	1219306	6.56	420	<0.01	2.8	0.22	4.5	2.0	11	81	-	< 2	< 2	38	62	<0.1	0.25	0.2	-	-	6.3	6	8	120	560	-
BH4	22-Oct-2007	1297217	5.82	400	<0.01	4.2	0.05	4.6	1.1	11	84	-	< 2	< 2	32	34	<0.1	0.02	0.4	-	-	6.9	11	54	130	590	-
BH4	22-Jul-2008	1539824	7.26	330	<0.01	1	0.1	4.6	3.7	12	89	-	< 2	< 2	12	85	<0.1	0.06	0.8	-	-	5.22	4	11	110	600	-
BH4 BH4	21-Oct-2008 29-Oct-2009	1620242 1976821	5.97 6.9	600 570	< 0.01	3.4	0.03	6.6	2.0	16 11	100 96	95	< 2	< 2	57 95	37 44	1.0 < 0.1	< 0.01	1.1	-	-	6.1	43 12	160 < 5	170 110	720 580	-
BH4	20-Jul-2010	2259582	7.05	370	0.011	4.3	0.064	5.3	7.2	15	110	160	<2	< 2	160	32	0.3	0.05	0.5	-	-	6.3	15	23	98	640	-
BH4	20-Oct-2010	2367033	4.45	1100	0.021	130	0.008	17	0.2	40	140	290	< 2	< 2	290	< 5	< 0.1	< 0.2	3	-	-	6.3	180	420	150	1200	-
BH4	24-Jan-2011	2474617	3.43	940	0.013	96	0.008	12	0.2	32	210	160	< 2	< 2	160	46	0.1	< 0.05	1.5	-	-	5.8	66	170	360	1400	-
BH4	19-Apr-2011	2574916	4.4	930	0.014	97	0.009	11	0.3	29	190	180	< 2	< 2	180	13	0.1	< 0.01	0.6	-	-	5.8	63	190	280	1400	-
BH4	28-Jul-2011	2688218	4.58	920	0.011	89	0.005	10	0.2	31	200	230	< 2	< 2	230	13	0.2	< 0.1	0.9	-	-	5.8	60	170	320	1400	-
BH4	18-Oct-2011	2784846	4.47	860	< 0.01	64	< 0.01	11	0.3	30	190	160	< 2	< 2	160	20	< 0.1	< 0.1	0.6	-	-	5.8	-	100	340	1400	-
BH4	19-Jan-2012	2895499	4.84	960	< 0.01	88	< 0.01	11	< 1	30	180	130	< 2	< 2	130	11	< 0.1	< 0.1	0.8	-	-	5.9	43	27	340	1500	-
BH4	09-Aug-2012	3137527	4.38	910	< 0.01	120	0.02	17	0.4	43	190	210	< 2	< 2	210	< 50	0.2	< 0.2	0.4	-	-	5.9	21	13	340	1500	-
BH4	28-Nov-2012	3274906	4.69	830	< 0.01	45	< 0.01	10	0.2	34	180	190	< 2	< 2	190	41	< 0.1	< 0.1	0.3	-	-	6	23	14	340	1500	<del>-</del> -
BH4 BH4	28-Feb-2013 16-May-2013	3383773 3478111	5.47 5.86	1000	< 0.01 < 0.01	72 110	< 0.01	15 19	0.4 < 1	48 49	230 200	210 380	< 2 < 2	< 2	210 380	26 34	0.4	< 0.1 < 0.01	0.7	-	-	6.2	29 24	16 21	390 400	1700 1800	-
BH4	28-Aug-2013	3598481	5.72	1100	< 0.01	140	0.02	20	0.4	53	210	260	< 2	< 2	260	71	< 0.1	< 0.1	0.7	-	-	6.2	17	61	410	1800	<del>-</del>
BH4	26-Nov-2013	3705735	5.32	960	< 0.01	67	0.06	14	0.4	34	160	230	<2	<2	230	45	0.3	< 0.1	0.7	-	-	6.2	27	< 5	420	1700	-
BH4	25-Feb-2014	3808279	6.36	920	< 0.01	120	0.06	23	0.9	58	200	280	< 2	< 2	280	29	0.3	< 0.01	0.9	-	-	6.4	18	< 5	310	1500	-
BH4	26-Aug-2014	4022972	6.32	670	< 0.01	60	0.05	17	< 1	51	160	270	< 2	< 2	270	49	0.3	< 0.1	0.5	-	0.18	6.5	11	< 5	240	1300	-
BH4	27-Aug-2015	4455822	7.11	480	0.011	11	0.14	5.6	1.2	16	120	43	< 2	< 2	43	83	0.3	0.04	0.3	-	-	5.9	2.8	7	160	770	-
BH4	16-Jan-2017	-	5.44	1540	0.026	129	0.031	15	<1	49	233	334	<1	<1	334	<10	0.07	0.01	5	-	-	6.15	145	436	457	1740	200
BH4	21-Mar-2017	-	6.73	1300	0.037	193	0.063	18	<1	52	204	410	<1	<1	410	<10	0.14	<0.01	2.6	-	-	6.29	108	347	432	1940	44
BH4	24-May-2017	-	6.89	1020	0.012	99	0.076	14	<1	53	198	334	<1	<1	334	20	0.17	0.02	1	-	-	6.31	48	191	355	1530	82
BH4	24-Aug-2017	EM1711445001	6.67	861	0.01	117	0.201	16	<1	54	181	374	<1	<1	374	12	0.38	<0.01	1.8	-	-	6.54	44	310	288	1430	56
BH4	09-Nov-2017	EM1715406004	6.82	756	0.009	102	0.271	14	<1	47	155	351	<1	<1	351	<1	0.16	<0.01	0.8	-	-	6.54	26	171	240	1280	78
BH4	19-Aug-2019	EM1913513	5.3	1,900	0.007	_	0.081	18	<1	49	272	53	<1	<1	53	25	<0.01	<0.01	3.5	<0.01	77.2	5.5	77	300	663	2,270	41
BH4 BH4	03-Dec-2019 17-Aug-2020	EM1920764 EM2014279	5.59 7.17	1,600 625	0.024 0.006	_	0.012	18 7	<1 <1	56 19	288 158	196 43	<1	<1	196 43	<20 27	0.1	<0.01 0.02	2.9 1.8	0.03	-77.3	5.87 5.65	89	285 39	782 321	2,600 1150	27 42
BH4	23-Nov-2020	EM2014279 EM2020734	5.74	1510	0.006	_	0.091	19	<1	19 56	335	43	<1	<1	43	25	0.17	<0.02	1.8	<0.02	-	5.65	<1 21	23	795	2570	23
BH4	23-Nov-2020 23-Feb-2021	EM2102910	5.74	1450	0.016	26.1	0.125	14	<1	39	277	<1	<1	<1	<1	23	0.14	<0.01	1.1	<0.01	-	4.76	22	29	607	2000	26
BH4	24-May-2021	EM2109755	7.02	1130	0.018		0.106	11	<1	38	229	113	<1	<1	113	20	0.04	<0.01	2.4	0.01	-	6.14	11	142	504	1760	15
BH4	13-Sep-2021	EM2118306	4.69	1600	0.023	_	0.01	19	<1	59	344	51	<1	<1	51	5	0.29	<0.01	1.4	0.01		5.74	108	349	820	2750	47
BH4	17-Nov-2021	EM2123379	4.68	2460	0.036	171	0.041	29	<1	102	497	131	<1	<1	131	2	0.38	<0.01	2.6	<0.01		5.84	108	350	1080	3370	40
BH4	28-Feb-2022	EM2203466	5.4	3740	0.061	141	0.112	21	<1	70	353	110	<1	<1	110	2	0.26	<0.01	8.3	<0.01		5.93	77	721	770	2420	74
BH4	16-May-2022	EM2209019	5.79	2570	0.032	144	0.089	24	<1	73	307	84	<1	<1	84	8	0.54	0.02	1.5	0.02		6.25	62	252	674	2320	42
BH4	01-Sep-2022	EM2217005	4.52	1,380	0.019	123	0.061	20	<1	58	253	213	<1	<1	213	9	0.62	<0.01	1.4	<0.01		6.55	58	142	570	2,030	28
BH4	16-Nov-2022	EM2222748	3.25	1,410	0.03	116	0.077	23	<1	64	283	167	<1	<1	167	8	0.67	<0.02	2.3	<0.01		6.34	28	210	688	2,100	56
BH4	13-Feb-2023	EM2302400	4.88	1,060	0.012	39.5		12	<1	37	239	71	<1	<1	71	6	<0.01	0.03	0.7	0.03		5.96	39	145	550	1,770	25
BH4	10-May-2023	EM2308315	5.33	1,510	0.012	82.9	0.017	20	<1	58	303	96	<1	<1	96	2	0.16	0.08	0.7	0.08		7.71	35	149	720	2,300	60



SAMPLE NO.	SAMPLE DATE	LAB REPORT NO.	SWL	TDS	Chromium	Iron	Zinc	Calcium	Potassium	Magnesium	Sodium	Bicarbonate	Carbonate	Hydroxide	Total Alkalinity	Sulphate	Ammonia	Nitrate	Total Kjeldahl Nitrogen	Total Nitrogen	Total Phosphate	рН	Total Organic Carbon	Chemical Oxygen Demand	Chloride	EC	Volatile Fatty Acids (as Acetic Acid)
			m BGL	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg CaCO3/L	mg CaCO3/L	mg CaCO3/L	mg CaCO3/L	mg/L	mg N / L	mg N / L	mg N / L	mg N / L	mg P / L	Units	mg/L	mg/L	mg/L	uS/cm	mg/L
BH5	31-Oct-2003	619300	11	420	<0.01	<0.05	0.02	5.3	1.4	27	140	-	-	-	8	14	<0.1	0.29	<0.3	-	-	5.4	<1	<2	220	670	-
BH5	29-Jan-2004	648472	11.45	1200	<0.01	22	0.01	9.7	5.8	44	200	-	-	-	120	33	0.1	<0.01	4.8	-	-	6.4	10	-	500	1500	-
BH5	07-Apr-2004	673234	11.55	430	<0.01	<0.05	<0.01	6.8	<0.1	22	88	-	-	-	10	3.3	<0.1	0.29	<0.3	-	-	5.7	<1	<2	240	930	-
BH5	21-Jul-2004	707744	11.485	450	<0.01	<0.05	0.07	4.7	5.6	25	100	-	-	-	8	17	0.1	0.24	0.5	-	-	5.9	1	12	250	920	-
BH5	26-Oct-2004	743325	11.5	460	<0.01	<0.05	0.02	5.2	3.9	23	110	-	-	-	<2	16	<0.1	0.2	<0.3	-	-	5.6	1	6	250	880	-
BH5	20-Jan-2005	775530	11.55	460	<0.01	<0.05	0.03	0.49	4	23	110	-	-	-	10	17	<0.1	0.15	<0.3	-	-	5.6	<1	4	280	850	-
BH5	13-Apr-2005	804579	11.65	480	<0.01	0.26	0.03	5.3	1.6	25	120	-	-	-	15	18	<0.1	0.26	0.3	-	-	5.3	2	<2	210	850	-
BH5	28-Jul-2005	841922	11.81	430	<0.01	0.23	0.03	5	1.7	22	120	-	-	-	10	21	<0.1	0.25	<0.3	-	-	5.4	2	10	260	860	-
BH5	31-Oct-2005	872628	11.55	430	<0.01	<0.05	0.03	5	1.4	22	110	-	-	-	10	17	<0.1	0.23	0.3	-	-	5.5	5	<2	260	850	-
BH5	30-Jan-2006	903877	11.67	490	<0.00	<0.05	0.11	5	1.7	20	130	-	-	-	10	23	<0.1	0.16	0.7	-	-	6.5	4	4	270	870	-
BH5	20-Apr-2006	933442	11.93	510	<0.01	<0.05	0.07	5.5	1.3	25	130	-	-	-	4	16	0.2	0.14	<0.3	-	-	5.4	7	<2	260	910	-
BH5	25-Jul-2006	965725	11.93	450	<0.01	<0.05	0.09	5.2	<0.5	23	150	-	-	-	18	15	<0.1	0.1	<0.3	-	-	5.3	3	<2	260	900	-
BH5	24-Oct-2006	993111	12.11	460	<0.01	0.08	0.03	5.4	1.2	25	140	-	-	-	52	17	<0.1	0.14	0.3	-	-	5.4	3	<2	240	940	-
BH5	24-Jan-2007	1108114	12.19	460	0.03	65	1	7.3	5.2	35	140	-	-	-	7	18	<0.1	<0.01	<0.1	-	-	5.4	19	<2	290	950	-
BH5	17-Apr-2007	1150660	12.25	530	<0.01	4	0.14	10	6.5	27	140	-	-	-	38	17	<0.1	0.03	<0.1	-	-	5.4	9	<2	350	940	-
BH5	25-Jul-2007	1219302	13.23	460	<0.01	0.3	0.03	5.2	2.9	24	130	-	-	-	15	15	<0.1	0.07	<0.1	-	-	6.1	4	7	300	970	-
BH5	22-Oct-2007	1297213	12.25	480	<0.01	<0.2	0.04	7.0	2.6	30	140	-	-	-	16	18	<0.1	0.04	<0.05	-	-	6.5	2	30	270	1,000	-
BH5	22-Jan-2008	1375490	12.44	510	<0.01	<0.2	0.04	6.2	1.2	27	140	-	-	-	13	17	<0.1	0.25	<0.1	-	-	6.0	2	4	290	950	-
BH5	22-Apr-2008	1458427	12.60	500	<0.01	<0.2	0.05	3.8	<0.5	24	130	-	-	-	12	19	<0.1	0.09	0.1	-	-	5.22	2	<2	300	1,000	-
BH5	22-Jul-2008	1539820	12.55	440	<0.01	<0.2	0.06	6.9	2.0	29	130	-	-	-	43	17	<0.1	<0.01	<0.1	-	-	5.07	2	<2	280	1,000	-
BH5	21-Oct-2008	1620238	12.25	510	<0.01	0.4	0.03	4.9	1.2	23	120	-	-	-	12	18	<0.1	0.02	0.2	-	-	4.75	1	<10	310	1,000	-
BH5	28-Jan-2009	1706033	12.42	500	<0.01	<0.2	0.09	6.2	1.7	27	130	-	-	-	11	18	<0.1	0.06	0.2	-	-	5.1	2	31	280	1,000	-
BH5	28-Apr-2009	1791386	12.66	510	<0.01	0.3	0.1	11	1.8	25	140	-	-	-	11	20	<0.1	0.02	0.3	-	-	3.4	1	6	280	1,200	-
BH5	29-Jul-2009	-	12.58	480	<0.01	0.3	0.1	6	2	27	140	-	-	-	13	19	<0.1	0.003	<0.1	-	-	5.5	2	<5	280	1,000	-
BH5	29-Oct-2009	1976817	12.27	530	< 0.01	0.4	0.04	6	2	26	130	21	< 2	< 2	21	21	< 0.1	< 0.01	< 0.1	-	-	5.2	2	< 5	290	1000	-
BH5	28-Jan-2010	2070254	12.28	480	< 0.001	0.34	0.05	6.1	3.2	29	130	12	< 2	< 2	12	19	< 0.1	0.02	< 0.1	-	-	5.1	2	< 5	310	1000	-
BH5	20-Jul-2010	2259579	11.89	570	< 0.001	0.37	0.038	6.3	3.2	29	130	13	< 2	< 2	13	20	< 0.1	0.06	< 0.1	-	-	5.2	2	10	280	970	-
BH5	20-Oct-2010	2367030	10.34	510	< 0.001	0.4	0.038	6.8	1.4	31	130	12	< 2	< 2	12	20	< 0.1	< 0.01	0.1	-	-	5.1	5	< 5	330	1000	-
BH5	24-Jan-2011	2474614	9.68	570	< 0.001	0.12	0.036	6.5	1.5	30	150	11	< 2	< 2	11	22	< 0.1	< 0.01	0.2	-	-	5.1	6	< 10	330	1100	-
BH5	19-Apr-2011	2574913	9.95	520	< 0.001	0.13	0.033	6.4	1.5	28	150	12	< 2	< 2	12	21	< 0.1	0.05	< 0.1	-	-	5.2	2	6	280	1100	-
BH5	28-Jul-2011	2688214	10.03	480	< 0.001	0.28	0.036	5.8	1.5	26	140	12	< 2	< 2	12	22	< 0.1	0.01	0.1	-	-	5.2	3	9	320	1000	-
BH5	28-Nov-2012	3274902	10.08	360	< 0.01	< 0.2	0.03	3	1.2	16	100	15	< 2	< 2	15	20	< 0.1	0.7	< 0.1	-	-	5.4	3	< 5	190	720	-
BH5	27-Feb-2013	3383768	10.4	380	< 0.01	< 0.2	0.01	3	1.1	16	100	39	< 2	< 2	39	21	< 0.1	0.98	< 0.1	-	-	5.2	3	< 5	190	700	-



SAMPLE NO.	SAMPLE DATE	LAB REPORT NO.	SWL	TDS	Chromium	Iron	Zinc	Calcium	Potassium	Magnesium	Sodium	Bicarbonate	Carbonate	Hydroxide	Total Alkalinity	Sulphate	Ammonia	Nitrate	Total Kjeldahl Nitrogen	Total Nitrogen	Total Phosphate	рН	Total Organic Carbon	Chemical Oxygen Demand	Chloride	EC	Volatile Fatty Acids (as Acetic Acid)
			m BGL	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg CaCO3/L	mg CaCO3/L	mg CaCO3/L	mg CaCO3/L	mg/L	mg N / L	mg N / L	mg N / L	mg N / L	mg P / L	Units	mg/L	mg/L	mg/L	uS/cm	mg/L
BH6	16-Jan-2017	-	12.09	422	<0.001	0.17	0.142	4	1	20	107	7	<1	<1	7	20	0.02	0.51	<0.1	-	-	5.22	1	<10	245	790	18
BH6	21-Mar-2017	-	12.3	478	<0.001	0.1	0.106	4	1	19	102	11	<1	<1	410	20	0.02	0.53	0.2	-	-	5.39	1	<10	234	784	18
BH6	23-May-2017	-	12.41	548	<0.001	<0.05	0.086	5	2	23	127	8	<1	<1	8	20	0.03	0.53	0.3	-	-	5.44	2	17	256	776	11
BH6	23-Aug-2017	EM1711442003	12.42	593	<0.001	0.2	0.14	6	2	22	107	9	<1	<1	9	21	0.02	0.48	<0.1	-	-	6.62	3	28	249	848	9
BH6	08-Nov-2017	EM1715369001	12.51	508	<0.001	0.11	0.045	5	1	23	108	13	<1	<1	13	20	0.02	0.55	<0.1	-	-	5.82	<1	<10	235	786	23
BH6	26-Feb-2018	EM1803674003	12.77	516	<0.001	0.2	0.117	4	2	19	106	12	<1	<1	12	20	0.02	0.7	<0.1	-	-	5	<1	<10	227	795	28
BH6	28-May-2018	EM1808540001	12.98	484	<0.001	<0.05	0.069	6	1	18	93	12	<1	<1	12	18	0.04	0.74	0.1		-	5.7	1	<10	225	728	32
BH6	31-Jul-2018	EM1812248001	12.93	483	<0.001	0.18	0.096	5	2	20	98	27	<1	<1	27	18	<0.01	0.85	<0.1	-	-	6.11	<1	38	226	780	34
BH6	28-Nov-2018	EM1819277004	13.02	398	<0.001	0.06	0.05	4	1	18	93	30	<1	<1	30	20	0.02	0.85	0.2	-		5.62	2	34	216	732	17
BH6	26-Feb-2019	EM1902808003	13.22	427	<0.001	0.13	0.046	3	1	17	96	9	<1	<1	9	22	0.09	0.73	<0.1	-	-	5.62	4	<10	254	731	30
BH6	21-May-2019	EM1907812006	13.23	410	0.002	0.31	0.067	4	1	17	96	10	<1	<1	10	18	0.04	0.58	<0.1	-	-	5.05	<1	<10	231	785	9
BH6	20-Aug-2019	EM1913616	12.45	447	<0.001	<0.05	0.054	4	1	18	96	11	<1	<1	11	21	0.01	0.53	<0.1	<0.01		5.37	<1	<10	234	745	21
BH6	05-Dec-2019	EM1920919	12.41	466	<0.001	0.07	0.05	4	2	19	96	6	<1	<1	6	33	0.02	0.62	1.4	0.02		5.04	2	<10	225	800	6
BH6	11-Feb-2020	EM2002157	12.6	515	<0.001	<0.05	0.054	4	2	20	97	8	<1	<1	8	18	0.01	0.53	0.4	0.04		6.02	<1	<10	238	757	9
BH6	20-May-2020	EM2008511	12.69	494	0.001	0.26	0.043	4	1	21	100	12	<1	<1	12	19	<0.01	0.52	<0.1	0.72	-	5.87	<1	<10	234	821	11
BH6	19-Aug-2020	EM2014471	12.59	427	<0.001	0.11	0.055	4	2	21	102	13	<1	<1	13	18	<0.01	0.47	0.2	0.47	-	6.82	<1	<10	250	847	40
BH6	24-Nov-2020	EM2021040	12.38	454	<0.001	<0.05	0.113	4	1	21	102	12	<1	<1	12	18	0.06	0.57	<0.1	0.57		6.05	<1	<10	228	799	15
BH6	22-Feb-2021	EM2102856	12.41	444	<0.001	0.07	0.041	4	1	20	101	9	<1	<1	9	19	<0.01	0.6	0.4	0.6	-	5.37	<1	<10	260	795	18
BH6	24-May-2021	EM2109755	12.6	506	0.003	0.49	0.052	4	1	20	98	11	<1	<1	11	20	0.02	0.63	0.2	0.63	•	5.43	<1	<10	226	782	15
BH6	15-Sep-2021	EM2118538	12.04	494	0.001	0.25	0.042	4	2	21	100	11	<1	<1	11	21	0.07	0.76	<0.1	0.76	-	5.62	<10	<10	255	804	19
BH6	19-Nov-2021	EM2123116	12.03	426	0.002	0.25	0.042	4	2	19	94	10	<1	<1	10	22	0.1	0.82	0.1	0.82	-	5.19	<5	<10	233	736	12
BH6	02-Mar-2022	EM2203679	12.19	450	<0.001		0.062	4	1	19	96	10	<1	<1	10	20	0.19	0.89	1.6	0.89	-		<1	<10	213		16
BH6	16-May-2022	EM2209138	12.37	365	<0.001		0.041	4	1	18	94	15	<1	<1	15	20	0.08	0.79	<0.1	0.79	-		5	<10	218		12
BH6	02-Sep-2022	EM2217005	11.72	439	0.001	0.3	0.059	4	1	17	94	10	<1	<1	10	20	<0.01	0.97	0.4	0.97		5.79	5	<10	215	746	11
BH6	17-Nov-2022	EM2222858	11.20	375	0.001	0.22	0.077	4	1	18	91	12	<1	<1	12	20	<0.01	1.39	0.3	1.39	-	5.57	<1	12	197	754	30
BH6	14-Feb-2023	EM2302525	11.65	395	0.003	0.41	0.043	5	1	17	91	13	<1	<1	13	19	<0.01	1.91	0.3	1.91		5.66	4	16	182	661	<5
BH6	10-May-2023	EM2308315	11.96	425	0.001	0.12	0.034	4	1	17	90	10	<1	<1	10	20	<0.01	2.01	0.4	2.01	-	6.92	<1	<10	180	674	11



SAMPLE NO.	SAMPLE DATE	LAB REPORT NO.	SWL	TDS	Chromium	Iron	Zinc	Calcium	Potassium	Magnesium	Sodium	Bicarbonate	Carbonate	Hydroxide	Total Alkalinity	Sulphate	Ammonia	Nitrate	Total Kjeldahl Nitrogen	Total Nitrogen	Total Phosphate	рН	Total Organic Carbon	Chemical Oxygen Demand	Chloride	EC	Volatile Fatty Acids (as Acetic Acid)
			m BGL	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg CaCO3/L	mg CaCO3/L	mg CaCO3/L	mg CaCO3/L	mg/L	mg N / L	mg N / L	mg N / L	mg N / L	mg P / L	Units	mg/L	mg/L	mg/L	uS/cm	mg/L
BH7	16-Jan-2017	-	2.7	542	<0.001	5.41	0.013	19	13	22	123	148	<1	<1	148	11	0.62	<0.01	1.2	-	-	6.34	8	28	250	1010	27
BH7	21-Mar-2017	-	2.85	685	<0.001	57.6	0.033	17	10	22	116	162	<1	<1	162	3	0.73	<0.01	0.08	-	-	6.42	6	22	272	1080	31
BH7	24-May-2017	-	2.57	690	<0.001	48.2	0.029	19	13	26	132	110	<1	<1	110	18	0.61	<0.01	1.1	-	-	6.4	7	79	319	1070	40
BH7	22-Aug-2017	EM1711311002	2.37	863	<0.001	11.4	0.009	36	19	35	146	172	<1	<1	172	3	0.48	0.01	1.5	-	-	6.48	7	65	390	1,410	11
BH7	08-Nov-2017	EM1715369002	2.47	840	<0.001	43.2	0.027	29	15	31	149	192	<1	<1	192	3	0.71	0.01	1.4	-	-	6.6	3	105	363	1,310	60
BH7	26-Feb-2018	EM1803674004	3.14	636	<0.001	47.5	0.033	18	12	25	116	142	<1	<1	142	<1	0.32	<0.01	0.4	-	-	6.7	7	73	250	1215	32
BH7	28-May-2018	EM1808721003	2.73	657	<0.001	51.4	0.044	22	14	27	128	166	<1	<1	166	10	0.91	<0.01	1		-	6.55	6	58	306	1150	76
BH7	02-Aug-2018	EM1812371007	2.46	865	<0.001	57.9	0.06	36	19	36	152	180	<1	<1	180	6	0.82	0.01	1.3	-	-	6.46	<5	<10	411	1,280	23
BH7	27-Nov-2018	EM1819190001	2.63	956	<0.001	11.3	0.012	28	16	33	160	111	<1	<1	111	21	0.76	0.02	2.4	-	-	6.96	12	<10	391	1,450	38
BH7	25-Feb-2019	EM1902711002	3.38	639	0.027	79.1	0.024	16	11	25	115	171	<1	<1	171	1	0.66	0.06	0.8	-	-	6.46	17	<10	314	959	58
BH7	20-May-2019	EM1907716004	2.6	714	<0.001	14.8	0.009	19	13	25	136	119	<1	<1	119	24	0.73	<0.01	1.5	-	-	6.38	6	<10	352	1,160	16
BH7	19-Aug-2019	EM1913513	2.38	840	<0.001	31.9	0.011	31	18	33	154	206	<1	<1	206	45	0.8	<0.01	1.8	4.04		6.41	12	136	377	1,630	48
BH7	04-Dec-2019	EM1920907	2.51	769	<0.001	63.7	0.007	28	15	34	151	122	<1	<1	122	29	0.81	<0.01	1.2	0.14		6.6	14	64	406	1,410	17
BH7	11-Feb-2020	EM2002157	2.97	960	<0.001	62.6	0.015	31	18	36	165	146	<1	<1	146	32	0.69	<0.01	1.5	0.07		6.74	6	70	401	1,410	17
BH7	19-May-2020	EM2008425	2.53	748	0.113	115	0.114	22	14	28	153	154	<1	<1	154	31	0.43	0.03	1.8	0.14		6.44	9	<10	365	1,270	24
BH7	17-Aug-2020	EM2014279	2.39	996	0.023	83.4	0.032	42	22	47	183	210	<1	<1	210	15	1.01	<0.01	1.4	<0.01	-	6.4	<1	56	483	1790	88
BH7	23-Nov-2020	EM2020734	2.48	935	0.028	86.9	0.13	33	18	38	205	181	<1	<1	181	40	1.4	<0.01	7.4	<0.01	-	6.31	3	<10	484	1640	36
BH7	23-Feb-2021	EM2102910	2.57	950	0.033	75.5	0.051	21	14	29	187	142	<1	<1	142	45	0.39	<0.01	1.5	<0.01	-	6.44	10	<10	421	1540	24
BH7	25-May-2021	EM2109822	2.52	885	0.02	64.2	0.029	20	15	28	180	66	<1	<1	66	30	0.41	<0.01	0.9	<0.01	-	6.18	5	62	412	1500	16
BH7	14-Sep-2021	EM2118437	2.5	613	0.022	64.5	0.026	17	12	23	136	141	<1	<1	141	31	0.65	0.01	0.9	0.03		6.79	2	<10	264	1240	40
BH7	18-Nov-2021	EM2123390	2.5	641	0.014	62	0.018	13	11	22	130	127	<1	<1	127	25	1	0.01	2.2	0.01		7.04	6	<20	252	1070	36
BH7	01-Mar-2022	EM2203633	2.6	621	0.003	48.3	0.034	17	12	24	135	133	<1	<1	133	31	1.19	0.02	1.2	0.02		6.39	6	<10	296	1020	18
BH7	17-May-2022	EM2209266	2.49	590	0.012	43.9	0.028	21	16	23	116	134	<1	<1	134	5	0.41	0.02	0.8	0.02		6.6	4	<20	290	1050	37
BH7	31-Aug-2022	EM2216860	2.42	588	0.002	44.9	0.037	24	16	26	119	146	<1	<1	146	12	8.0	0.02	1.2	0.02		6.79	9	<10	263	1,090	25
BH7	17-Nov-2022	EM2222858	2.42	462	0.004	39.2	0.018	22	15	24	100	181	<1	<1	181	9	0.43	0.01	1	0.01		6.63	13	<10	168	934	31
BH7	14-Feb-2023	EM2302525	2.69	573	0.035	85.1	0.07	18	15	24	111	152	<1	<1	152	10	0.79	<0.01	0.9	<0.01		6.53	15	196	205	924	<5
BH7	10-May-2023	EM2308315	2.31	500	0.003	16.1	0.013	25	18	25	106	146	<1	<1	146	2	1.51	0.02	1.5	0.02		8.03	12	65	210	928	29



SAMPLE NO.	SAMPLE DATE	LAB REPORT NO.	SWL	TDS	Chromium	Iron	Zinc	Calcium	Potassium	Magnesium	Sodium	Bicarbonate	Carbonate	Hydroxide	Total Alkalinity	Sulphate	Ammonia	Nitrate	Total Kjeldahl Nitrogen	Total Nitrogen	Total Phosphate	рН	Total Organic Carbon	Chemical Oxygen Demand	Chloride	EC	Volatile Fatty Acids (as Acetic Acid)
			m BGL	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg CaCO3/L	mg CaCO3/L	mg CaCO3/L	mg CaCO3/L	mg/L	mg N / L	mg N / L	mg N / L	mg N / L	mg P / L	Units	mg/L	mg/L	mg/L	uS/cm	mg/L
BH8	16-Jan-2017	-	3.15	627	<0.001	10.2	0.035	16	8	47	129	430	<1	<1	430	15	9.35	0.13	9.7	-	-	6.46	34	117	144	1150	76
BH8	21-Mar-2017	-	3.39	614	0.001	77.6	0.047	11	7	38	114	414	<1	<1	414	<1	7.52	<0.01	7.8	-	-	6.56	41	129	162	1180	64
BH8	24-May-2017	-	3.38	447	<0.001	31.2	0.016	4	3	28	102	252	<1	<1	252	2	3.1	0.04	3.2	-	-	6.84	17	117	118	783	40
BH8	22-Aug-2017	EM1711311003	3.26	510	<0.001	4.43	0.049	10	4	28	94	252	<1	<1	252	3	3.93	0.04	4.3	-	-	7.01	17	317	112	769	9
BH8	08-Nov-2017	EM1715369003	3.24	596	0.001	39.9	0.034	9	5	36	103	313	<1	<1	313	2	6.84	0.01	7.6	-	-	6.76	21	194	127	920	74
BH8	27-Feb-2018	EM1803772002	3.54	533	<0.001	19.4	0.027	5	3	28	97	250	<1	<1	250	3	1.67	0.06	4.9	-	-	6.9	21	<50	100	-	-
BH8	28-May-2018	EM1808721004	3.6	434	<0.001	30.9	0.024	2	<1	25	97	236	<1	<1	236	3	1.06	<0.01	1.4		-	6.92	10	<10	107	730	70
BH8	01-Aug-2018	EM1812302003	3.5	398	<0.001	31.6	0.07	2	1	24	105	233	<1	<1	233	2	1.06	<0.01	1.5	-	-	6.93	10	85	106	717	23
BH8	27-Nov-2018	EM1819190002	3.48	418	<0.001	1.61	0.006	2	<1	22	105	208	<1	<1	208	3	0.7	0.03	1.1	-	-	7.83	9	<10	105	747	30
BH8	25-Feb-2019	EM1902711003	3.68	528	0.099	121	0.128	2	1	21	95	244	<1	<1	244	6	0.91	0.23	3.5	-	-	6.71	33	<10	115	671	42
BH8	20-May-2019	EM1907716005	3.74	469	<0.001	<0.05	0.006	2	<1	20	103	227	<1	<1	227	3	0.78	0.02	1.6	-	-	6.75	10	<10	123	748	18
BH8	20-Aug-2019	EM1913616	2.75	504	<0.001	14.8	0.013	13	5	25	110	192	<1	<1	192	108	3.7	<0.01	6	0.17		6.21	25	200	99	877	57
BH8	04-Dec-2019	EM1920907	3.14	515	0.002	60.9	0.021	14	5	37	113	309	<1	<1	309	19	5.47	0.02	9.6	<0.01		7.07	42	109	138	1,010	6
BH8	10-Feb-2020	EM2002050	3.35	640	<0.001	59.8	0.029	9	5	34	111	331	<1	<1	331	4	3.83	0.02	5.9	0.02		6.6	11	114	131	905	20
BH8	19-May-2020	EM2008425	3.47	466	0.059	78	0.055	4	2	24	102	249	<1	<1	249	2	0.99	0.72	3.5	0.27		6.93	10	75	43	747	21
BH8	18-Aug-2020	EM2014393	3.34	430	-	-	-	3	3	25	107	238	<1	<1	238	3	2.45	0.02	5.4	0.02	-	8	5	96	134	828	67
BH8	23-Nov-2020	EM2020734	3.03	523	0.016	80.7	0.067	16	6	35	116	367	<1	<1	367	27	5.39	0.01	5.5	0.01	-	6.6	21	114	118	965	15
BH8	23-Feb-2021	EM2102910	3.15	682	0.103	122	0.086	12	4	30	118	299	<1	<1	299	18	1.78	0.02	6.7	0.02	-	6.78	25	196	130	986	31
BH8	25-May-2021	EM2109822	3.32	489	0.028	69.7	0.033	10	4	33	106	297	<1	<1	297	2	1.5	<0.01	3.6	<0.01	-	6.61	30	141	128	901	26
BH8	14-Sep-2021	EM2118437	2.73	534	0.028	85.8	0.033	16	4	37	112	276	<1	<1	276	29	3.13	0.01	5.2	0.01		7.11	14	138	147	1020	45
BH8	18-Nov-2021	EM2123390	2.85	536	0.01	69.4	0.017	12	3	31	104	258	<1	<1	258	34	2.01	<0.01	4	<0.01		7.37	21	<10	112	914	48
BH8	01-Mar-2022	EM2203633	2.96	1120	0.061	118	0.088	17	4	32	114	293	<1	<1	293	14	4.79	0.04	6.7	0.04		6.8	18	143	147	980	47
BH8	17-May-2022	EM2209266	3.18	539	0.022	76.6	0.043	12	5	31	119	317	<1	<1	317	2	5.49	<0.01	6.2	<0.01		6.71	24	<20	165	993	35
BH8	31-Aug-2022	EM2216860	2.25	521	0.013	70	0.072	17	4	33	116	242	<1	<1	242	56	3.7	0.01	5.4	0.01		7.05	21	<10	139	1,020	17
BH8	16-Nov-2022	EM2222748	1.87	455	0.01	56.5	0.023	15	4	31	101	277	<1	<1	277	28	4.56	<0.01	4.9	<0.01		7.06	19	105	100	875	31
BH8	14-Feb-2023	EM2302525	3.02	656	0.102	162	0.098	13	4	26	114	275	<1	<1	275	7	1.43	<0.01	4	<0.01		6.85	30	439	96	823	9
BH8	10-May-2023	EM2308315	3.00	489	0.011	51.2	0.009	13	4	30	112	282	16	<1	298	3	3.6	0.02	3.7	0.02		8.46	21	134	94	809	55



SAMPLE NO.	SAMPLE DATE	LAB REPORT NO.	SWL	TDS	Chromium	Iron	Zinc	Calcium	Potassium	Magnesium	Sodium	Bicarbonate	Carbonate	Hydroxide	Total Alkalinity	Sulphate	Ammonia	Nitrate	Total Kjeldahl Nitrogen	Total Nitrogen	Total Phosphate	рН	Total Organic Carbon	Chemical Oxygen Demand	Chloride	EC	Volatile Fatty Acids (as Acetic Acid)
			m BGL	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg CaCO3/L	mg CaCO3/L	mg CaCO3/L	mg CaCO3/L	mg/L	mg N / L	mg N / L	mg N / L	mg N / L	mg P / L	Units	mg/L	mg/L	mg/L	uS/cm	mg/L
BH10	16-Jan-2017	-	2.93	466	0.002	2.91	0.178	5	8	15	96	44	<1	<1	44	31	1.3	0.25	1.9	-	-	5.72	8	22	205	753	26
BH10	21-Mar-2017	-	2.96	599	0.001	7.6	0.089	5	6	16	97	49	<1	<1	49	24	1.32	0.07	1.5	-	-	5.8	6	17	224	796	27
BH10	23-May-2017	-	2.98	596	0.001	7.98	0.058	7	6	23	129	52	<1	<1	52	21	1.76	0.02	2.1	-	-	6.37	6	47	238	821	24
BH10	23-Aug-2017	EM1711442004	2.94	478	<0.001	12.9	0.059	7	3	22	105	63	<1	<1	63	19	1.81	0.02	2.6	-	-	6.94	5	147	230	886	12
BH10	08-Nov-2017	EM1715369004	2.97	498	0.001	10.5	0.032	5	5	21	97	59	<1	<1	59	25	1.44	0.02	1.4	-	-	6.09	2	53	208	785	34
BH10	26-Feb-2018	EM1803674005	3.13	554	<0.001	14.6	0.069	5	4	20	101	67	<1	<1	67	16	2.4	0.02	2.4	-	-	6	2	<10	226	923	17
BH10	28-May-2018	EM1808540002	3.24	614	<0.001	5.12	0.027	6	4	22	102	60	<1	<1	60	18	1.34	0.06	1.4		-	6.28	8	<10	242	860	40
BH10	01-Aug-2018	EM1812302004	3.2	849	<0.001	8.02	0.354	6	4	21	110	70	<1	<1	70	21	2.02	0.09	2.6	-	-	6.36	6	96	244	819	32
BH10	27-Nov-2018	EM1819190003	3.31	937	<0.001	1.85	0.015	5	3	21	105	34	<1	<1	34	18	1.94	0.05	10.2	-	-	7.09	8	<10	243	845	19
BH10	25-Feb-2019	EM1902711004	3.44	623	0.041	45.4	0.055	5	4	19	102	60	<1	<1	60	18	1.89	0.06	3.9	-	-	6.49	13	<10	287	840	23
BH10	21-May-2019	EM1907812004	3.44	424	0.004	6.08	0.067	4	4	13	87	14	<1	<1	14	16	1.13	1.53	2.7	-	-	5.22	5	<10	206	717	7
BH10	20-Aug-2019	EM1913616	2.97	597	0.019	1.48	0.06	2	8	7	56	25	<1	<1	25	32	0.21	4.02	3.7	0.03		5.86	36	215	70	372	23
BH10	04-Dec-2019	EM1920907	2.94	657	0.001	4.49	0.034	5	8	19	94	33	<1	<1	33	26	1.2	0.13	2.8	0.1		6.06	8	251	220	754	13
BH10	11-Feb-2020	EM2002157	3.05	530	0.001	7.9	0.032	6	7	20	96	44	<1	<1	44	21	1.34	0.07	1.9	0.03		6.34	2	48	232	791	15
BH10	19-May-2020	EM2008425	2.94	449	0.008	22.3	0.03	5	4	21	99	57	<1	<1	57	18	1.42	0.14	1.8	0.1		6.28	<1	25	242	812	11
BH10	18-Aug-2020	EM2014393	2.89	390	-	-	-	4	6	18	93	51	<1	<1	51	26	1.26	2.11	1.8	2.12	-	6.52	1	15	218	750	51
BH10	24-Nov-2020	EM2021040	2.68	485	0.003	20.3	0.104	5	6	20	102	64	<1	<1	64	20	1.34	0.3	2.3	0.3	-	6.3	<1	<10	222	831	14
BH10	22-Feb-2021	EM2102856	2.7	484	0.004	3.88	0.048	4	6	18	97	33	<1	<1	33	24	1.63	2.1	2	2.13	-	5.7	5	<10	238	805	13
BH10	25-May-2021	EM2109822	2.72	470	0.009	29.2	0.044	6	4	22	101	58	<1	<1	58	18	1.11	0.21	1.9	0.22	-	6.23	<1	41	229	933	16
BH10	13-Sep-2021	EM2118306	2.55	920	0.051	147	0.151	6	7	20	103	49	<1	<1	49	21	1.61	0.22	5	0.24		6.15	10	<20	239	875	16
BH10	17-Nov-2021	EM2123379	2.54	748	0.019	55	0.071	8	5	24	111	48	<1	<1	48	19	1.74	0.15	2.1	0.22		5.92	7	<20	237	841	17
BH10	28-Feb-2022	EM2203466	2.52	1720	0.068	151	0.255	6	12	16	108	41	<1	<1	41	24	1.93	0.44	10.6	0.44		6.26	14	<50	222	780	46
BH10	16-May-2022	EM2209019	2.59	732	0.024	64	0.137	5	4	21	102	59	<1	<1	59	17	1.76	<0.01	4	<0.01		6.53	6	<10	235	889	18
BH10	01-Sep-2022	EM2217005	2.26	764	0.021	35.9	0.108	8	19	17	85	95	<1	<1	95	30	1.06	0.57	4.8	0.57		6.44	33	61	150	708	30
BH10	18-Nov-2022	EM2222858	2.06	566	0.016	31	0.071	8	11	19	96	58	<1	<1	58	23	1.28	0.03	3.2	0.03		6	11	17	206	845	17
BH10	14-Feb-2023	EM2302525	2.44	563	0.005	22.8	0.062	8	9	20	103	46	<1	<1	46	23	1.52	0.03	1.8	0.03		5.76	11	83	215	806	9
BH10	09-May-2023	EM2308222		459	0.003	7.1	0.028	6	9	19	95	47	<1	<1	47	24	1.23	0.25	1.3	0.25		6.32	11	24	200	761	18



SAMPLE NO.	SAMPLE DATE	LAB REPORT NO.	SWL	TDS	Chromium	Iron	Zinc	Calcium	Potassium	Magnesium	Sodium	Bicarbonate	Carbonate	Hydroxide	Total Alkalinity	Sulphate	Ammonia	Nitrate	Total Kjeldahl Nitrogen	Total Nitrogen	Total Phosphate	рН	Total Organic Carbon	Chemical Oxygen Demand	Chloride	EC	Volatile Fatty Acids (as Acetic Acid)
			m BGL	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg CaCO3/L	mg CaCO3/L	mg CaCO3/L	mg CaCO3/L	mg/L	mg N / L	mg N / L	mg N / L	mg N / L	mg P / L	Units	mg/L	mg/L	mg/L	uS/cm	mg/L
BH14	09-Nov-2017	EM1715406005	2.99	833	0.003	1.42	0.125	4	<1	11	87	107	<1	<1	107	22	0.17	0.01	1	-	-	6.78	8	600	134	603	34
BH14	27-Feb-2018	EM1803772003	4.15	2,170	0.002	1.93	0.284	6	<1	18	209	274	<1	<1	274	8	0.46	0.02	3.6	-	-	6.6	11	<100	254	1255	22
BH14	28-May-2018	EM1808881008	3.3	755	<0.001	4.17	0.029	9	<1	24	180	172	<1	<1	172	39	0.06	0.88	0.3		-	6.99	4	<10	233	1100	40
BH14	02-Aug-2018	EM1812371009	2.68	595	0.002	0.47	0.188	16	3	24	87	52	<1	<1	52	26	0.01	0.19	0.8	-	-	6.21	<1	111	220	714	15
BH14	28-Nov-2018	EM1819277005	3.14	258	<0.001	0.07	0.02	6	2	10	48	52	<1	<1	52	13	0.05	0.18	0.1	-	-	6.33	5	41	85	388	24
BH14	26-Feb-2019	EM1902808004	4.13	876	0.038	39.7	0.053	4	<1	17	207	302	<1	<1	302	4	0.1	0.03	0.1	-	-	7.08	13	<10	313	1260	41
BH14	21-May-2019	EM1907812005	3.24	498	0.018	9.34	0.036	13	3	19	73	26	<1	<1	26	24	0.03	1.67	0.8	-	-	5.92	1	<10	199	738	7
BH14	19-Aug-2019	EM1913513	2.31	1,520	<0.001	0.05	0.021	43	4	74	278	64	<1	<1	64	49	0.04	0.16	1.2	0.02		5.92	7	<10	715	2,500	32
BH14	05-Dec-2019	EM1920919	2.88	466	<0.001	7.91	0.018	9	2	15	68	94	<1	<1	94	15	0.13	<0.01	5.8	<0.01		6.27	8	<10	114	541	13
BH14	10-Feb-2020	EM2002050	3.74	502	<0.001	16.5	0.023	10	2	21	92	129	<1	<1	129	2	0.38	0.02	0.7	<0.01		6.91	5	46	178	736	16
BH14	19-May-2020	EM2008425	3.04	444	0.011	9.8	0.028	11	2	19	78	60	<1	<1	60	11	0.07	0.27	0.5	<0.01		6.48	<1	<10	188	662	16
BH14	18-Aug-2020	EM2014393	2.55	416	-	-	-	10	2	19	86	84	<1	<1	84	16	0.22	0.01	2.2	0.01	-	6.8	4	112	178	699	36
BH14	23-Nov-2020	EM2020734	2.61	248	0.004	22.6	0.036	8	2	16	47	133	<1	<1	133	1	0.38	0.01	0.8	0.01	-	6.69	9	54	60	422	12
BH14	23-Feb-2021	EM2102910	3.36	284	0.031	27.7	0.049	8	2	15	64	103	<1	<1	103	5	0.24	0.04	1	0.04	-	6.74	10	94	109	550	24
BH14	26-May-2021	EM2109946	2.81	619	0.193	177	0.246	9	2	19	91	92	<1	<1	92	3	0.56	0.02	6.3	0.02	-	6.84	18	142	197	768	16
BH14	15-Sep-2021	EM2118538	2.55	642	0.016	34.6	0.032	19	2	33	127	115	<1	<1	115	13	0.29	0.02	0.6	0.02		6.64	2	103	322	1230	24
BH14	18-Nov-2021	EM2123390	2.66	980	0.09	91.4	0.104	8	2	19	111	134	<1	<1	134	5	0.87	<0.01	2.6	<0.01		7.15	10	<20	195	856	31
BH14	01-Mar-2022	EM2203633	3.46	2010	0.037	53	0.129	11	1	24	136	150	<1	<1	150	6	0.86	0.02	5.8	0.02		6.92	10	80	251	866	34
BH14	17-May-2022	EM2209266	2.85	570	0.007	40.2	0.018	20	3	31	101	97	<1	<1	97	1	0.67	0.03	0.9	0.03		6.54	7	<20	295	993	23
BH14	01-Sep-2022	EM2217005	2.23	1,240	0.014	48.2	0.046	33	3	52	187	97	<1	<1	97	17	0.24	0.04	1.5	0.04		6.68	10	<10	517	1,780	14
BH14	16-Nov-2022	EM2222748	2.01	820	0.024	40.9	0.073	22	3	45	168	124	<1	<1	124	37	0.32	0.03	1.4	0.03	-	6.88	11	131	409	1,520	34
BH14	13-Feb-2023	EM2302400	3.19	978	0.048	47.5	0.059	21	4	39	163	138	<1	<1	138	22	0.51	0.01	0.9	0.01		6.65	16	90	363	1,330	19
BH14	11-May-2023	EM2308446	2.85	893	0.004	36.6	0.016	26	4	42	158	103	<1	<1	103	9	0.74	0.03	1.3	0.03		6.7	7	<10	378	1,290	24



SAMPLE NO.	SAMPLE DATE	LAB REPORT NO.	SWL	TDS	Chromium	Iron	Zinc	Calcium	Potassium	Magnesium	Sodium	Bicarbonate	Carbonate	Hydroxide	Total Alkalinity	Sulphate	Ammonia	Nitrate	Total Kjeldahl Nitrogen	Total Nitrogen	Total Phosphate	pН	Total Organic Carbon	Chemical Oxygen Demand	Chloride	EC	Volatile Fatty Acids (as Acetic Acid)
			m BGL	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg CaCO3/L	mg CaCO3/L	mg CaCO3/L	mg CaCO3/L	mg/L	mg N / L	mg N / L	mg N / L	mg N / L	mg P / L	Units	mg/L	mg/L	mg/L	uS/cm	mg/L
LB1	16-Jan-2017	-	11.92	564	0.009	16.4	0.23	47	15	22	115	212	<1	<1	212	<1	3.28	<0.01	5.1	-	-	7.15	4	23	231	1060	36
LB1	21-Mar-2017	-	12	604	0.006	18.1	0.274	44	12	20	103	202	<1	<1	202	<1	2.02	<0.01	2.2	-	-	7.21	3	14	245	1070	46
LB1	23-May-2017	-	12.04	728	0.171	161	9.21	52	22	25	133	217	<1	<1	217	<1	5.25	<0.01	8.4	-	-	7.23	11	402	251	1080	64
LB1	23-Aug-2017	EM1711442005	12.07	608	0.099	92.3	4.88	49	14	23	111	218	<1	<1	218	<1	3.02	<0.01	3	-	-	7.83	8	390	255	1,120	35
LB1	08-Nov-2017	EM1715369005	12.09	588	0.002	10.1	0.09	45	8	22	110	176	<1	<1	176	<1	1.79	<0.01	1.8	-	-	7.71	<1	<10	230	1,020	29
LB1	26-Feb-2018	EM1803674006	12.21	622	0.014	14.7	0.536	41	12	17	112	163	<1	<1	163	<1	2.26	<0.01	2.4	-	-	6.9	5	96	225	1,041	25
LB1	27-Nov-2018	EM1819193001	-	620	<0.001	<0.05	<0.005	63	23	25	107	267	<1	<1	267	<1	5.19	0.04	12.3	-	-	7.93	13	101	244	1,170	23
LB1	18-Aug-2020	-	13.73																								
LB1	24-Nov-2020	-	13.57																			-					
LB1	24-Feb-2021	EM2103002	13.56	815	0.012	-	1.57	47	13	21	120	217	<1	<1	217	<1	3.26	<0.01	3.7	<0.01	-	-	6	82	262	-	31
LB1	26-May-2021	-	13.63	Bore blo																		-					
LB1	15-Sep-2021	-	13.36	Bore blo																							
LB1	18-Nov-2021	-	13.31	Bore blo			-					-															
LB1	03-Mar-2022	-	13.45	Bore blo																							
LB1	17-May-2022	-	13.5	Bore blo																		-					



SAMPLE NO.	SAMPLE DATE	LAB REPORT NO.	SWL	TDS	Chromium	Iron	Zinc	Calcium	Potassium	Magnesium	Sodium	Bicarbonate	Carbonate	Hydroxide	Total Alkalinity	Sulphate	Ammonia	Nitrate	Total Kjeldahl Nitrogen	Total Nitrogen	Total Phosphate	pН	Total Organic Carbon	Chemical Oxygen Demand	Chloride	EC	Volatile Fatty Acids (as Acetic Acid)
			m BGL	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg CaCO3/L	mg CaCO3/L	mg CaCO3/L	mg CaCO3/L	mg/L	mg N / L	mg N / L	mg N / L	mg N / L	mg P / L	Units	mg/L	mg/L	mg/L	uS/cm	mg/L
LB2	16-Jan-2017	-	14.59	737	0.035	47.7	0.316	35	45	27	143	330	<1	<1	330	<1	18.6	0.04	20.9	-	-	6.56	31	238	308	1440	66
LB2	21-Mar-2017	-	14.44	792	0.114	97.5	1.07	33	35	26	128	325	<1	<1	325	<1	19.9	0.08	27.1	-	-	6.7	19	200	282	1420	48
LB2	23-May-2017	-	14.78	862	0.368	232	3.69	35	56	29	163	326	<1	<1	326	<1	23.8	0.02	26.7	-	-	6.66	22	607	281	1350	51
LB2	24-Aug-2017	EM1711445006	14.88	774	0.138	102	1.64	40	35	28	126	331	<1	<1	331	<1	21.7	0.01	20.6	-	-	7.28	20	359	261	1,420	53
LB2	09-Nov-2017	EM1715406006	14.81	784	0.107	85.8	1.06	39	30	30	136	320	<1	<1	320	2	20.5	0.01	20.1	-	•	6.9	16	1,280	296	1,360	69
LB2	27-Feb-2018	EM1803772004	14.82	698	<0.001	28.5	0.021	41	33	27	123	334	<1	<1	334	<1	21.2	0.04	24.7	-	-	6.5	14	51	256	1475	36
LB2	28-May-2018	EM1808540003	1480	753	<0.001	1.19	0.008	44	35	30	123	351	<1	<1	351	1	19.1	0.02	24.6		•	7.03	8	11	264	1380	70
LB2	01-Aug-2018	EM1812302005	-	712	0.001	28	0.3	41	34	31	125	350	<1	<1	350	<1	19.1	0.02	19.5	-	•	6.98	9	173	276	1,420	69
LB2	27-Nov-2018	EM1819193002	-	661	<0.001	0.19	<0.005	38	35	29	125	316	<1	<1	316	<1	16.9	<0.01	18.1	-	-	7.64	20	70	272	1,440	64
LB2	26-Feb-2019	EM1902808005	15.01	1680	0.034	72.6	0.143	38	35	29	127	373	<1	<1	373	<1	20.4	<0.01	28.1	-	•	6.95	31	<10	319	1,450	50
LB2	21-May-2019	EM1907812007	14.78	869	0.012	50.3	0.332	39	36	29	125	352	<1	<1	352	1	24.7	<0.01	28.7	-	-	6.62	15	<10	293	1,610	45
LB2	20-Aug-2019	EM1913616	14.66	931	0.061	72.8	0.274	48	38	33	130	371	<1	<1	371	<1	26.1	0.01	30.3	0.01		6.61	22	181	311	1,530	83
LB2	04-Dec-2019	EM1920907	14.73	697	0.001	45.2	<0.005	44	34	31	125	307	<1	<1	307	<1	25.9	<0.01	26.5	<0.01	-	7.11	22	103	316	1,450	21
LB2	11-Feb-2020	EM2002157	14.75	678	0.01	52	0.186	42	36	28	124	254	<1	<1	254	<1	20.8	<0.01	24.2	<0.01	1	7.38	16	131	274	1,330	22
LB2	18-May-2020	EM2008378	16.7	721	0.023	58.5	0.188	36	35	27	125	319	<1	<1	319	<1	18	0.01	26.1	0.01	-	7.37	7	155	286	1,380	24
LB2	18-Aug-2020	EM2014393	14.67	683	0.01	40.7	0.054	35	35	26	124	292	<1	<1	292	<1	18.4	<0.01	18.4	<0.01	•	7.33	12	51	299	1400	51
LB2	24-Nov-2020	EM2021040	14.54	709	0.024	52.4	0.167	32	34	24	118	301	<1	<1	301	5	17.6	0.01	25.5	0.01	-	7.38	15	<10	264	1290	32
LB2	24-Feb-2021	EM2103002	14.68	697	0.034	-	0.249	32	33	24	124	298	<1	<1	298	<1	19.7	<0.01	21.3	<0.01	•	-	11	139	284	-	36
LB2	26-May-2021	EM2109946	14.67	678	0.048	65.4	0.296	39	31	26	119	278	<1	<1	278	<1	13	0.02	15.4	0.02	-	7.22	11	<10	256	1290	49
LB2	15-Sep-2021	EM2118538	14.6	754	0.114	96.7	0.924	34	31	24	122	260	<1	<1	260	<1	18	<0.01	25.2	<0.01		6.78	21	<50	309	1310	19
LB2	18-Nov-2021	EM2123390	14.58	810	0.084	83.8	0.742	29	27	23	119	246	<1	<1	246	2	16.3	<0.01	19.1	<0.01	-	7.46	15	23	264	1280	38
LB2	03-Mar-2022	-	14.32	Bore blo			-																		-		
LB2	17-May-2022	-	14.26	Bore blo																							



SAMPLE NO.	SAMPLE DATE	LAB REPORT NO.	SWL	TDS	Chromium	Iron	Zinc	Calcium	Potassium	Magnesium	Sodium	Bicarbonate	Carbonate	Hydroxide	Total Alkalinity	Sulphate	Ammonia	Nitrate	Total Kjeldahl Nitrogen	Total Nitrogen	Total Phosphate	pН	Total Organic Carbon	Chemical Oxygen Demand	Chloride		Volatile Fatty Acids (as Acetic Acid)
			m BGL	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg CaCO3/L	mg CaCO3/L	mg CaCO3/L	mg CaCO3/L	mg/L	mg N / L	mg N / L	mg N / L	mg N / L	mg P / L	Units	mg/L	mg/L	mg/L	uS/cm	mg/L
LB3	18-Aug-2020	-	11.1	N/A																							
LB3	24-Nov-2020	-	10.95	N/A																							
LB3	24-Feb-2021	-	10.94	N/A																							
LB3	26-May-2021	-	11.01	N/A																							
LB3	15-Sep-2021	-	10.76	N/A																							
LB3	18-Nov-2021	-	10.48	N/A																							
LB3	03-Mar-2022	-	10.82	N/A								-															
LB3	17-May-2022	-	11.88	N/A																							



SAMPLE NO.	SAMPLE DATE	REPROT No.	TDS	Chromium	Iron	Zinc	Calcium	Potassium	Magnesium	Sodium	Bicarbonate	Carbonate	Hydroxide	Total Alkalinity	Sulphate	Ammonia	Nitrate	Total Kjeldahl Nitrogen	Total Phosphate	рН	Total Organic Carbon	Chemical Oxygen Demand	Chloride	EC	Volatile Fatty Acids (as Acetic Acid)
			mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg CaCO3/L	mg CaCO3/L	mg CaCO3/L	mg CaCO3/L	mg/L	mg N / L	mg N / L	mg N / L	mg P / L	Units	mg/L	mg/L	mg/L	uS/cm	mg/L
Creek @ BH3	21-Oct-08	1620319	290	<0.01	7.4	<0.01	11	4.1	16	55	-	-	-	77	4	0.1	<0.01	0.7	-	7.9	10	31	120	560	-
Creek @ BH3	29-Jul-09	1882853	180	-	-	0.01	7.9	1.9	11	38	-	-	-	32	19	-	-	0.4	-	7.1	4	9	79	350	-
Creek @ BH3	29-Oct-09	1976835	150	< 0.01	0.7	0.04	7.2	1.3	8	33	38	< 2	< 2	38	8	< 0.1	< 0.01	0.4	-	7	6	12	56	260	-
Creek @ BH3	20-Jul-10	2259587	170	< 0.001	1.6	0.014	6.2	3.9	8.5	32	32	< 2	< 2	32	8	< 0.1	0.41	0.6	-	7.1	12	22	64	280	-
Creek @ BH3	03-Nov-10	2382975	-	-	-	< 0.01	-	-	-	-	-	-	-	-	-	-	- 1	0.8	-	7.4	-	19	-	210	-
Creek @ BH3	22-May-12	3045888	200	< 0.01	5	< 0.01	10	1.7	13	39	60	< 2	< 2	60	3	< 0.1	1.6	0.8	-	7.4	7	16	87	370	-
Creek @ BH3	02-Aug-12	3131175	160	0.001	1.2	0.01	6	5	7.5	22	33	< 2	< 2	33	6	< 0.1	1.1	0.7	-	7.1	9	17	46	240	-
Creek @ BH3	29-Nov-12	3276020	-	-	-	0.02	-	-	-	-	-	-	-	-	-	-	-	0.4	-	7.1	-	16	-	380	-
Creek @ BH3	28-Aug-13	3598537	180	< 0.01	1.7	< 0.01	6.6	2	8.2	30	30	< 2	< 2	30	7	< 0.1	0.53	0.3	-	7.3	8	16	53	250	-
Creek @ BH3	26-Nov-13	3705776	120	< 0.01	1.2	< 0.01	6.6	1.2	8.1	25	46	< 2	< 2	46	5	< 0.1	0.13	0.2	-	7.3	5	10	53	270	-
Creek @ BH3	27-Aug-14	4024248	160	< 0.01	1.1	< 0.01	5.7	1.5	7.6	20	31	< 2	< 2	31	7	< 0.1	1	0.5	-	7.2	6	10	55	250	-
Creek @ BH3	26-Nov-14	4133479	290	< 0.01	0.7	< 0.01	14	2.1	19	57	56	< 2	< 2	56	3	< 0.1	< 0.01	0.3	-	6.7	5	9	120	530	-
Creek @ BH3	17-Jan-17	-	416	0.001	12	< 0.005	14	2	22	84	83	<1	<1	83	2	0.08	0.01	<0.1	-	6.61	9	16	175	708	-
Creek @ BH3	21-Mar-17	-	327	0.001	7.14	0.018	10	4	13	52	48	<1	<1	48	7	0.1	0.50	1.3	-	6.79	19	45	129	517	-
Creek @ BH3	24-May-17	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Creek @ BH3	24-Aug-17	EM1711445003	523	<0.001	1.03	< 0.005	26	14	27	104	174	<1	<1	174	205	<0.01	0.05	0.6	-	7.68	13	26	205	954	16
Creek @ BH3	09-Nov-17	EM1715409002	182	<0.001	2.3	< 0.005	7	1	11	32	57	<1	<1	57	4	0.1	0.08	0.3	-	7.45	5	16	72	326	11
Creek @ BH3	29-May-18	EM1808881002	214	<0.001	1.26	0.031	7	3	10	33	25	<1	<1	25	11	0.06	0.33	0.6	-	6.56	8	25	80	351	26
Creek @ BH3	02-Aug-18	EM1812371002	151	<0.001	0.77	0.009	6	2	8	30	24	<1	<1	24	7	0.02	0.39	0.4	-	7.04	8	26	58	247	10
Creek @ BH3	29-Nov-18	EM1819464002	266	<0.001	7.49	< 0.005	10	2	15	56	62	<1	<1	62	2	0.09	0.02	0.3	-	7.04	7	10	126	505	23
Creek @ BH3	19-Aug-19	EM1913513	140	0.001	1.01	< 0.005	5	2	6	26	30	<1	<1	30	7	0.01	2.23	0.6	-	6.99	10	24	39	249	32
Creek @ BH3	03-Dec-19	EM1920764	205	<0.001	0.99	< 0.005	4	2	6	30	51	<1	<1	51	6	0.02	0.06	0.3	44.1	6.89	8	14	58	308	8
Creek @ BH3	14-Feb-20	EM2002405	640	<0.001	16.4	< 0.005	18	3	30	92	80	<1	<1	80	<1	0.08	<0.01	0.4	-	6.87	4	10	264	905	9
Creek @ BH3	18-May-20	EM2008378	374	<0.001	12.5	0.009	11	2	19	70	83	<1	<1	83	1	0.08	0.01	0.5	-	6.88	8	<10	160	594	16
Creek @ BH3	17-Aug-20	EM2014279	148	0.001	1.27	< 0.005	6	1	9	29	45	<1	<1	45	5	<0.01	<0.01	0.4	-	6.75	6	<10	49	274	35
Creek @ BH3	25-Nov-20	EM2021046	180	<0.001	1.6	< 0.005	5	2	7	26	56	<1	<1	56	4	0.05	<0.01	0.3	-	7.14	6	11	44	256	12
Creek @ BH3	23-Feb-21	EM2102910	532	<0.001	35.5	< 0.005	17	3	28	97	114	<1	<1	114	<1	0.15	<0.01	0.8	-	6.81	16	<10	233	927	20
Creek @ BH3	24-May-21	EM2109755	614	<0.001	17.6	< 0.005	16	3	28	100	92	<1	<1	92	<1	0.19	<0.01	0.5	-	6.69	6	<10	272	965	13
Creek @ BH3	13-Sep-21	EM2118306	134	< 0.001	0.76	< 0.005	6	2	7	24	42	<1	<1	42	6	0.02	1.55	-	7	21	43	251	19	-	-
Creek @ BH3	17-Nov-21	EM2123379	175	<0.001	1.2	< 0.005	5	1	8	28	48	<1	<1	48	4	0.09	0.36	-	7	23	48	264	19	-	-
Creek @ BH3	28-Feb-22	EM2203466	950	<0.001	38.8	< 0.005	25	4	42	138	94	<1	<1	94	2	1.17	<0.01	-	9	<10	371	1160	56	-	-
Creek @ BH3	16-May-22	EM2209019	318	< 0.001	7.04	< 0.005	10	3	15	66	71	<1	<1	71	4	0.19	0.02	-	7	12	131	572	21	-	
Creek @ BH3	01-Sep-22	EM2217005	217	0.002	1.2	< 0.005	6	2	7	24	35	<1	<1	35	7	<0.01	1.68	0.8	-	7.44	10	29	34	228	10
Creek @ BH3	16-Nov-22	EM2222748	158	0.005	2.82	0.012	6	2	7	19	33	<1	<1	33	3	0.01	0.73	1.3	-	7.04	20	69	31	204	16
Creek @ BH3	13-Feb-23	EM2302400	477	< 0.001	14.7	< 0.005	18	3	26	84	90	<1	<1	90	<1	0.15	<0.01	0.8	-	7.1	11	11	205	782	8
Creek @ BH3	11-May-23	EM2308446	561	<0.001	2.68	0.01	16	4	22	80	187	<1	<1	187	1	0.11	0.05	0.7	-	7.67	11	15	220	996	16



SAMPLE NO.	SAMPLE DATE	REPROT No.	TDS	Chromium	Iron	Zinc	Calcium	Potassium	Magnesium	Sodium	Bicarbonate	Carbonate	Hydroxide	Total Alkalinity	Sulphate	Ammonia	Nitrate	Total Kjeldahl Nitrogen	Total Phosphate	рН	Total Organic Carbon	Chemical Oxygen Demand	Chloride	EC	Volatile Fatty Acids (as Acetic Acid)
			mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg CaCO3/L	mg CaCO3/L	mg CaCO3/L	mg CaCO3/L	mg/L	mg N / L	mg N / L	mg N / L	mg P / L	Units	mg/L	mg/L	mg/L	uS/cm	mg/L
Creek D/S BH3	08-Sep-08	1580862	150	<0.01	0.4	<0.01	4.7	1.3	6.6	27	-	-	-	24	11	<0.1	0.39	0.5	-	7.2	8	7	57	240	-
Creek D/S BH3	21-Oct-08	1620320	210	<0.01	2.1	<0.01	7.0	3.6	9.6	36	-	-	-	46	9	<0.1	0.03	0.6	-	7.7	8	24	78	370	-
Creek D/S BH3	29-Jul-09	1882854	200	-	-	0.01	8.5	2.1	12	45	-	-	-	32	20	-	-	0.2	-	7.2	4	7	91	400	-
Creek D/S BH3	29-Oct-09	1976836	150	< 0.01	0.8	0.06	7	1.3	7.9	32	38	< 2	< 2	38	8	< 0.1	< 0.01	0.4	-	7	7	14	58	270	-
Creek D/S BH3	20-Jul-10	2259588	180	0.001	1.7	0.011	5.7	3.5	8	30	28	< 2	< 2	28	9	< 0.1	0.38	0.5	-	7	12	21	60	270	-
Creek D/S BH3	03-Nov-10	2382976	-	-	-	< 0.01	-	-	-	-	-	-	-	-	-	-	-	0.6	-	7.4	-	18	-	210	-
Creek D/S BH3	22-May-12	3045889	180	< 0.01	3.8	< 0.01	9.7	1.7	13	38	60	< 2	< 2	60	3	< 0.1	0.07	0.5	-	7.5	7	17	85	370	-
Creek D/S BH3	02-Aug-12	3131176	160	0.001	1.3	0.004	6	1.7	7.3	21	35	< 2	< 2	35	5	< 0.1	1.1	0.5	-	7.5	9	15	42	220	-
Creek D/S BH3	29-Nov-12	3276021	-	-	-	< 0.01	-	-	-	-	-	-	-	-	-	-		0.3	-	7	-	15	-	350	-
Creek D/S BH3	28-Aug-13	3598538	180	< 0.01	1	< 0.01	6.9	1.8	8.3	33	30	< 2	< 2	30	8	< 0.1	0.48	0.4	-	7	7	18	60	270	-
Creek D/S BH3	26-Nov-13	3705777	130	< 0.01	1.2	< 0.01	7.2	1.2	8.5	22	45	< 2	< 2	45	5	0.1	0.12	0.3	-	7.3	5	10	53	270	-
Creek D/S BH3	27-Aug-14	4024249	100	< 0.01	0.6	< 0.01	6	1.4	7.9	21	30	< 2	< 2	30	6	0	1	0.3	-	7.3	6	11	48	240	-
Creek D/S BH3	26-Nov-14	4133480	270	< 0.01	0.4	< 0.01	14	2	16	49	57	< 2	< 2	57	4	< 0.1	0.01	0.3		6.7	5	9	110	480	-
Creek D/S BH3	17-Jan-17	-	290	0.001	4.41	< 0.005	12	2	15	54	84	<1	<1	84	3	0.19	0.06	0.3	-	6.46	10	22	100	506	-
Creek D/S BH3	21-Mar-17	-	194	<0.001	2.43	0.142	8	2	8	28	38	<1	<1	38	40	0.13	0.09	0.6		6.6	7	17	35	295	-
Creek D/S BH3	24-May-17	-					-					-					<u> </u>			-	-	-			
Creek D/S BH3	24-Aug-17	EM1711445004	152	0.002	1.43	0.009	5	2	8	30	34	<1	<1	34	6	0.03	0.42	0.3		7.16	10	26	45	255	18
Creek D/S BH3	09-Nov-17	EM1715409003	173	<0.001	1.61	< 0.005	7	1	11	31	56	<1	<1	56	5	0.11	0.13	0.4		7	6	18	66	319	11
Creek D/S BH3	29-May-18	EM1808881003	450	<0.001	2.57	0.056	15	3	21	75	34	<1	<1	34	16	0.13	0.39	0.4		6.59	5	15	207	754	18
Creek D/S BH3	02-Aug-18	EM1812371003	155	<0.001	0.76	0.009	6	2	7	28	24	<1	<1	24	7	0.05	0.38	0.1	-	7.02	8	24	56	246	13
Creek D/S BH3	29-Nov-18	EM1819464003	319	<0.001	4.18	0.008	9	2	12	46	63	<1	<1	63	3	0.03	0.01	0.4	-	7.15	7	15	96	408	29
Creek D/S BH3	19-Aug-19	EM1913513	130	0.002	0.93	<0.005	4	2	6	23	25	<1	<1	25	7	0.03	2.34	0.7		6.98	9	24	34	223	13
Creek D/S BH3	03-Dec-19	EM1920764	214	<0.001	0.8	0.005	4	2	6	27	49	<1	<1	49	6	0.03	0.06	0.3	50.7	6.96	7	13	49	476	8
Creek D/S BH3	18-May-20	EM2008378	272	0.002	1.23	0.01	12	3	14	46	59	<1	<1	59	4	0.03	0.02	0.2	-	7.02	6	13	102	389	13
Creek D/S BH3	17-Aug-20	EM2014279	166	<0.001	1.01	<0.005	6	1	9	28	48	<1	<1	48	5	<0.01	<0.01	0.5	-	6.79	7	<10	49	279	35
Creek D/S BH3 Creek D/S BH3	25-Nov-20	EM2021046	185	<0.001	1.61	<0.005	5	2	17	26	56	<1	<1	56	4	0.03	<0.01	0.5	-	7.11	6	12	45	252	11
	23-Feb-21	EM2102910	340	<0.001	10.5	0.006	14	2	17 18	52	95	<1	<1	95	1 2	0.16	<0.01	0.6	-	6.96	11	18	112	544	20
Creek D/S BH3	24-May-21	EM2109755	437	<0.001	8.21	<0.005	14 6	2	16	65	62	<1	<1	62	-	0.17	<0.01	0.3	-	6.9	4	<10	170	640	34
Creek D/S BH3	13-Sep-21	EM2118306	144	<0.001	0.9	0.006	6	1	8	24	44	<1	<1	44 52	6	<0.01	1.52	-	8	22	44	260	12	-	
Creek D/S BH3 Creek D/S BH3	17-Nov-21 28-Feb-22	EM2123379 EM2203466	180 470	<0.001 <0.001	1.93	0.008	17	2	22	29 66	52 96	<1	<1	96	4	0.11	0.31	-	0	24	50 149	284 591	15 52	-	-
0.00					13			3	16			<1	<1		<1			-	9	18				-	-
Creek D/S BH3 Creek D/S BH3	16-May-22 01-Sep-22	EM2209019 EM2217005	344 216	<0.001 0.002	4.95	<0.005 <0.005	10 6	3	7	69 24	70 33	<1 <1	<1 <1	70 33	8	0.24 <0.01	0.02	1	ь	11	142	600	16	230	10
		EM2217005 EM2222748			1.28		6	2	7	19		<1		33	3		1.65		-	7.22	10 19	31 69	34		22
Creek D/S BH3 Creek D/S BH3	16-Nov-22 13-Feb-23	EM2222748 EM2302400	154	0.003 <0.001	2.54	0.012 <0.005	16	3	22	77	32 82	<1	<1 <1	82 82	6	0.03	0.73	1.2 0.8		7.04	10	15		207 687	
			429		4.82			3	22		62				7	<0.01	0.14	0.8	-	7.5	7		172		11
Creek D/S BH3	11-May-23	EM2308446	537	<0.001	9.1	0.011	16	3	23	84	02	<1	<1	62	/	0.1	0.09	0.7	-	7.1	/	<10	189	700	, 10



			TDS	Chramium	Ivan	Zinc	Calcium	Detection	Manuacium	C- 4:	Disarbanata	Carbanata	Uhrdaarida	Tatal Alkalinitu	Culmbata	A	Nitrate	Total Kjeldahl	Total	рН	Total	Chemical	Chloride	EC	Volatile Fatty
SAMPLE NO.	SAMPLE DATE	REPROT No.	100	Chromium	Iron	Zinc	Calcium	Potassium	Magnesium	Sodium	Bicarbonate	Carbonate	Hydroxide	Total Alkalinity	Sulphate	Ammonia	Nitrate	Nitrogen	Phosphate	рп	Organic Carbon	Oxygen Demand	Chioride		Acids (as Acetic Acid)
			ma/L	ma/L	mg/L	ma/L	ma/L	ma/L	ma/L	ma/L	mg CaCO3/L	mg CaCO3/L	mg CaCO3/L	mg CaCO3/L	ma/L	ma N / L	ma N / L	ma N / L	ma P / L	Units	ma/L	ma/L	ma/L	uS/cm	ma/L
Creek U/S BH3	08-Sep-08	1580861	140	<0.01	0.4	<0.01	4.8	1.4	7.4	30	-	-	-	22	9	<0.1	0.60	0.6	-	7.3	8	10	51	230	-
Creek U/S BH3	21-Oct-08	1620318	220	<0.01	2.9	0.02	9.3	3.4	12	39	-	-	-	62	7	<0.1	0.01	0.7	-	8.0	11	31	77	390	-
Creek U/S BH3	29-Jul-09	1882852	140	-	-	0.04	7.2	2.8	8.4	30	-	-	-	30	19	-	- 1	0.2	-	7.0	4	7	58	290	-
Creek U/S BH3	29-Oct-09	1976834	190	< 0.01	0.3	0.01	7.1	1.4	7.9	33	34	< 2	< 2	34	9	< 0.1	< 0.01	0.4	-	6.8	7	10	53	260	-
Creek U/S BH3	20-Jul-10	2259586	160	0.001	1.4	0.012	5.2	3.4	7.3	28	27	< 2	< 2	27	8	< 0.1	0.42	0.5	-	7.1	12	17	57	250	-
Creek U/S BH3	03-Nov-10	2382974	-	-	-	< 0.01	-	-	-	-	-	-	-	-	-	-	- 1	0.8	-	7.4	-	18	-	220	-
Creek U/S BH3	22-May-12	3045887	180	< 0.01	3.8	< 0.01	9.5	1.6	12	38	60	< 2	< 2	60	4	< 0.1	0.07	0.3	-	7.3	7	13	82	360	-
Creek U/S BH3	02-Aug-12	3131174	160	0.001	1.2	0.003	5.4	1.7	7.2	21	31	< 2	< 2	31	5	< 0.1	1.2	0.8	-	7.5	9	16	41	220	-
Creek U/S BH3	29-Nov-12	3276019	-	-	-	0.01	-	-	-	-	-	-	-	-	-	-	-	0.2	-	6.9	-	17	-	370	-
Creek U/S BH3	28-Aug-13	3598536	170	< 0.01	0.6	< 0.01	6.2	1.7	8	29	30	< 2	< 2	30	7	< 0.1	0.52	0.5	-	7.3	8	17	53	250	-
Creek U/S BH3	26-Nov-13	3705775	140	< 0.01	1.1	0.01	6.4	1.1	7.8	21	42	< 2	< 2	42	6	0.2	0.13	0.3	-	7.2	5	8	52	260	-
Creek U/S BH3	27-Aug-14	4024247	110	< 0.01	0.4	< 0.01	5.3	1.3	7	16	30	< 2	< 2	30	7	< 0.1	1	0.3	-	7.3	6	11	49	230	-
Creek U/S BH3	26-Nov-14	4133478	220	< 0.01	0.3	< 0.01	8.8	2.3	11	34	38	< 2	< 2	38	4	< 0.1	0.2	0.6	-	6.9	7	16	74	320	-
Creek U/S BH3	17-Jan-17	-	414	0.001	3.22	< 0.005	15	2	22	84	81.00	<1	<1	81	7	0.08	0.08	<0.1	-	7.25	9	16	172	708	-
Creek U/S BH3	21-Mar-17	-	242	0.001	5.21	0.028	7	4	9	34	35.00	<1	<1	35	8	0.08	0.57	1	-	6.67	14	37	78	352	-
Creek U/S BH3	24-May-17	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Creek U/S BH3	24-Aug-17	EM1711445002	141	0.002	1.21	0.007	6	1	8	29	34	<1	<1	34	7	<0.01	0.42	0.3	-	6.95	11	22	43	248	11
Creek U/S BH3	09-Nov-17	EM1715409001	170	<0.001	1.84	<0.005	7	1	11	31	55	<1	<1	55	5	0.11	0.08	0.3	-	7.29	5	16	73	312	10
Creek U/S BH3	29-May-18	EM1808881001	173	<0.001	0.98	0.037	5	3	7	25	24	<1	<1	24	8	0.05	0.36	0.3	-	6.75	8	23	54	263	7
Creek U/S BH3	02-Aug-18	EM1812371001	166	0.001	0.74	0.009	5	1	7	27	27	<1	<1	27	11	0.03	0.43	<0.1	-	7.19	8	25	72	241	13
Creek U/S BH3	29-Nov-18	EM1819464001	330	<0.001	3.86	0.009	7	1	11	42	60	<1	<1	60	4	0.02	0.05	0.4	-	7.27	7	16	102	441	11
Creek U/S BH3	19-Aug-19	EM1913513	165	0.001	0.84	< 0.005	4	2	6	23	25	<1	<1	25	8	0.01	2.34	0.6	-	6.88	10	26	34	223	96
Creek U/S BH3	03-Dec-19	EM1920764	200	<0.001	0.95	0.005	4	2	6	30	52	<1	<1	52	6	0.02	0.08	0.2	81.7	6.79	7	12	57	289	10
Creek U/S BH3	14-Feb-20	EM2002405	1,270	<0.001	1.69	0.012	35	4	57	171	95	<1	<1	95	11	0.08	0.01	0.3	-	7.21	3	16	512	1,680	10
Creek U/S BH3	18-May-20	EM2008378	312	<0.001	8.86	0.018	9	3	15	62	67	<1	<1	67	4	0.09	0.02	0.5	-	7	6	16	134	506	10
Creek U/S BH3	17-Aug-20	EM2014279	150	<0.001	1.03	0.006	6	1	9	27	48	<1	<1	48	5	<0.01	<0.01	0.3	-	6.81	6	<10	48	276	35
Creek U/S BH3	25-Nov-20	EM2021046	210	<0.001	1.39	<0.005	5	2	7	26	56	<1	<1	56	4	0.06	<0.01	0.4	-	7.37	6	<10	43	254	14
Creek U/S BH3	23-Feb-21	EM2102910	480	<0.001	3.07	<0.005	16	2	24	84	94	<1	<1	94	2	0.01	<0.01	0.6	-	7.17	11	22	202	808	13
Creek U/S BH3	24-May-21	EM2109755	378	<0.001	3.66	0.005	12	2	21	82	66	<1	<1	66	3	0.16	<0.01	0.4	-	6.74	4	<10	208	764	24
Creek U/S BH3	13-Sep-21	EM2118306	168	<0.001	0.78	<0.005	6	2	7	24	39	<1	<1	39	6	0.02	1.59	-	8	23	42	264	17	-	-
Creek U/S BH3	17-Nov-21	EM2123379	188	<0.001	1.32	< 0.005	5	1	8	27	49	<1	<1	49	4	0.2	0.36	-	7	22	49	271	19	-	-
Creek U/S BH3	28-Feb-22	EM2203466	1030	0.002	4.21	0.007	27	4	43	149	103	<1	<1	103	2	0.52	<0.01	-	9	26	383	1270	49	-	
Creek U/S BH3	16-May-22	EM2209019	301	<0.001	5.67	<0.005	9	3	14	58	67	<1	<1	67	4	0.15	0.03	-	6	10	113	516	14	-	-
Creek U/S BH3	31-Aug-22	EM2216860	162	0.002	1.41	<0.005	6	2	7	25	28	<1	<1	28	9	<0.01	1.63	11	-	6.9	11	35	39	229	10
Creek U/S BH3	16-Nov-22	EM2222748	160	0.004	2.56	0.013	6	2	7	19	34	<1	<1	34	3	0.03	0.72	1.2	-	7.05	20	72	31	207	23
Creek U/S BH3	13-Feb-23	EM2302400	341	<0.001	13.8	<0.005	17	3	18	55	88	<1	<1	88	<1	0.21	<0.01	1	-	7.06	13	14	122	545	14
Creek U/S BH3	11-May-23	EM2308446	470	<0.001	6.54	0.01	28	19	31	108	70	<1	<1	70	6	1.17	0.02	1.8	-	7.21	7	31	186	695	13



SAMPLE NO.	SAMPLE DATE	REPROT No.	TDS	Chromium	Iron	Zinc	Calcium	Potassium	Magnesium	Sodium	Bicarbonate	Carbonate	Hydroxide	Total Alkalinity	Sulphate	Ammonia	Nitrate	Total Kjeldahl Nitrogen	Total Phosphate	рН	Total Organic Carbon	Chemical Oxygen Demand	Chloride	EC	Volatile Fatty Acids (as Acetic Acid)
Decides Hale	04.0-1.00	040000	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg CaCO3/L	mg CaCO3/L	mg CaCO3/L	mg CaCO3/L	mg/L	mg N / L	mg N / L	mg N / L	mg P / L	Units	mg/L	mg/L	mg/L	uS/cm	mg/L
Dredge Hole Dredge Hole	31-Oct-03 29-Jan-04	619306 648478	560 680	<0.01 <0.01	<0.05 0.11	0.03 <0.01	11 19	2.9 21	34 29	160 110	-	-	-	28 38	15 17	0.1 <0.1	0.21	<0.3 <0.3	-	6.9 6.9	3 4	13	290 320	780 1000	-
Dredge Hole	7-Apr-04	673240	600	<0.01	0.73	<0.01	13	4.6	31	120	-	-	-	26	16	<0.1	0.08	0.6	-	7.1	5	4	330	1200	-
Dredge Hole Dredge Hole	21-Jul-04 27-Oct-04	707750 743751	590 600	<0.01 <0.01	0.89	<0.01 <0.01	9.8	6.8 4.8	33 30	120 120	-	-	-	22 28	18 19	<0.1 <0.1	0.04	1.2 0.3	-	8.2 8.2	<u>6</u>	19 5	320 310	1100	-
Dredge Hole	20-Jan-05	775532	630	<0.01	0.1	0.01	6.8	4.2	35	150	-	-	-	32	19	<0.1	0.03	0.6	-	7.2	3	17	380	1200	-
Dredge Hole	13-Apr-05	804585	680	<0.01	1.6	0.01	13	3.3	36	170	-	-	-	35	18	<0.1	<0.01	1	-	6.7	7	15	350	1200	-
Dredge Hole Dredge Hole	28-Jul-05 31-Oct-05	841927 872634	660 580	<0.01 <0.01	2.1 0.99	<0.01 0.01	11	3.3 2.4	29 29	140 130	-	-	-	30 28	18 15	<0.1 <0.1	0.24 <0.01	1	-	6.9 6.9	<u>6</u> 5	19 7	330 310	1100 1000	-
Dredge Hole	30-Jan-06	903883	690	<0.00	0.06	0.04	13	3.1	33	160	-	-	-	32	18	<0.1	0.01	1.1	-	7.7	3	8	360	1200	-
Dredge Hole Dredge Hole	20-Apr-06 25-Jul-06	933448 965731	710 550	<0.01 <0.01	0.28	0.07	13	3.7 3.2	36 30	160 170	-	-	-	30 34	15 15	0.2 <0.1	0.07 0.01	1.2 1.1	-	7.1	<u>9</u> 8	9 14	340 320	1200 1100	-
Dredge Hole	24-Oct-06	993117	560	<0.01	0.7	<0.01	11	2.9	33	150	-	-	-	62	17	<0.1	0.01	1.5	-	7.1	7	22	320	1200	-
Dredge Hole	24-Jan-07	1108120	590	<0.01	0.68	<0.01	11	10	34	180	-	-	-	26	16	<0.1	<0.01	0.5	-	7.2	9	17	350	1200	-
Dredge Hole Dredge Hole	17-Apr-07 25-Jul-07	1150665 1219308	700 560	<0.01 <0.01	0.81	<0.01 <0.02	9.8	6.4 4.4	40 31	190 150	-	-	-	56 27	15 15	<0.1 <0.1	0.01	0.9	-	6.9 6.9	12 5	<2 20	370 380	1200 1,200	-
Dredge Hole	22-Oct-07	1297219	590	<0.01	<0.2	<0.02	12	3.6	36	170	-	-	-	26	17	0.2	0.06	0.8	-	6.9	6	18	330	1,200	-
Dredge Hole	22-Jan-08 22-Apr-08	1375496 1458431	660 640	<0.01 <0.01	<0.2 <0.2	0.01	12 10	3.0 2.2	37 35	190 190	-	-	-	28 23	<1 14	<0.1 <0.1	<0.01 <0.01	0.5 0.7	-	7.2 7.21	<u>6</u> 8	17 13	370 400	1,200 1,400	-
Dredge Hole Dredge Hole	22-Apr-08 22-Jul-08	1539826	530	<0.01	<0.2	0.03	11	3.1	34	150	-	-	-	8	16	<0.1	<0.01	1.0	-	6.85	5	17	380	1,300	-
Dredge Hole	21-Oct-08	1620244	620	<0.01	<0.2	0.03	10	4.3	33	160	-	-	-	19	17	<0.1	<0.01	0.9	-	6.43	5	18	340	1,200	-
Dredge Hole Dredge Hole	28-Jan-09 28-Apr-09	1706039	730 670	<0.01 <0.01	<0.2 0.2	0.02	12 18	2.9 2.9	37 32	170 180	-	-	-	24 22	15 17	<0.1 <0.1	0.09	0.6	-	7.0	<u>5</u>	<10 11	380 380	1,300	-
Dredge Hole	29-Jul-09	1882869	620	-	-	0.03	10	3	35	160	-	-	-	18	20	-	-	0.7	-	7.1	4	14	340	1,200	-
Dredge Hole Dredge Hole	29-Oct-09 28-Jan-10	1976823 2070260	610 670	< 0.01 < 0.001	0.4 0.27	0.07 0.004	11 10	3	35 38	180 160	17 23	< 2	< 2 < 2	17 23	20 19	< 0.1 < 0.1	< 0.01 0.02	0.6 0.4	-	6.7 6.8	4 34	11 14	360 390	1200 1300	-
Dredge Hole	20-Jul-10	2259584	580	< 0.001	0.49	0.004	11	4.7	34	160	20	< 2	<2	20	18	< 0.1	0.02	0.5	-	6.8	4	7	330	1100	-
Dredge Hole	20-Oct-10	2367035	590	< 0.001	1.4	0.008	17	2.9	33	150	42	< 2	< 2	42	22	< 0.1	0.26	1.3	-	6.8	9	16	360	1200	-
Dredge Hole Dredge Hole	24-Jan-11 19-Apr-11	2474619 2574918	530 590	0.002 < 0.001	2.5 1.2	0.008	14 15	3.7 2.9	27 30	140 160	48 50	< 2 < 2	< 2 < 2	48 50	18 14	0.2 < 0.1	0.47 < 0.01	1.1 0.6	-	6.8 6.8	12 7	33 18	280 300	980 1100	-
Dredge Hole	28-Jul-11	2688220	580	< 0.001	1.2	0.003	13	2.4	30	160	42	< 2	< 2	42	16	0.3	0.22	0.7	-	6.7	6	17	330	1100	-
Dredge Hole	18-Oct-11	2784848 2895501	600	< 0.01	1	< 0.01	11	2.3	27	140 150	38 40	< 2	< 2	38 40	17 17	< 0.1	< 0.01	0.6	-	6.9 7	5	14	310	1100	-
Dredge Hole Dredge Hole	19-Jan-12 22-May-12	3045829	610 530	< 0.01 < 0.01	0.8 2.2	< 0.01 < 0.01	10 8.7	2.4	30 25	120	36	< 2	< 2 < 2	36	15	< 0.1 0.1	< 0.01 0.18	0.6	-	7.1	6	12 15	290 290	1100 980	-
Dredge Hole	02-Aug-12	3131140	470	< 0.001	1	0.01	7.9	2.7	24	130	34	< 2	< 2	34	19	0.3	0.22	0.7	-	6.8	4	7	250	890	-
Dredge Hole Dredge Hole	29-Nov-12 27-Feb-13	3274868 3383771	590 490	< 0.01 < 0.01	0.6	< 0.01 < 0.01	6.8 7.3	2.9 2.5	23 25	120 130	41 90	< 2 < 2	< 2 < 2	41 90	16 17	< 0.1 < 0.1	0.05	0.7 0.5	-	7	20 5	14 8	250 250	900 940	-
Dredge Hole	16-May-13	3478282	430	< 0.01	1.3	< 0.01	8.6	2.3	23	130	40	< 2	< 2	40	15	0.1	0.16	0.9	-	7	5	11	240	900	-
Dredge Hole	28-Aug-13 26-Nov-13	3598518 3705736	430 430	< 0.01 < 0.01	1.4	< 0.01 < 0.01	8.1 4.9	2.1 2.1	22 17	67 90	31 34	< 2	< 2 < 2	31 34	16 17	< 0.1 0.3	0.1 < 0.01	0.8	-	6.8	<u>4</u> 5	12 10	220 230	790 820	-
Dredge Hole Dredge Hole	25-Feb-14	3807900	500	< 0.01	1.5	< 0.01	7.6	3	24	140	44	< 2	< 2	44	16	0.3	0.06	0.7	-	7.2	5	11	240	880	-
Dredge Hole	28-May-14	3917836	420	< 0.01	0.8	< 0.01	6	2	18	99	34	< 2	< 2	34	< 100	< 0.1	0.13	0.8	< 0.05	6.8	5	14	230	820	-
Dredge Hole Dredge Hole	26-Aug-14 26-Nov-14	4022969 4133549	350 420	< 0.01 < 0.01	< 0.2	< 0.01 < 0.01	6.1	2.1 2.5	20 20	99 110	30 30	<2	< 2 < 2	30 30	16 16	< 0.1 < 0.1	< 0.04	1.3 0.8	0.17	6.9	<u>4</u> 6	16 11	220 220	770 810	-
Dredge Hole	23-Feb-15	4237814	430	<0.01	0.6	<0.01	8.3	3.9	17	96	32	<2	<2	32	16	<0.1	0.02	0.8	0.06	7	4.1	13	260	850	-
Dredge Hole Dredge Hole	24-Feb-16 17-Jan-17	4674182	470 550	< 0.01 0.001	0.6	< 0.01 0.007	6.5 9	2.7	22 25	120 148	28 35	< 2 <1	< 2 <1	28 35	16 18	< 0.1 0.03	0.02	0.1 <0.1	-	6.8 7.03	<u>3</u> 5	9 <10	220 296	870 1010	- 11
Dredge Hole	21-Mar-17	-	568	<0.001	1.11	0.006	8	2	22	130	36	<1	<1	36	16	0.02	0.02	0.4	-	7.08	5	12	307	1020	13
Dredge Hole	24-May-17	-	511	<0.001	1.17	<0.005	48	13	92	440	68	<1	<1	35	16	0.06	0.24	0.5	-	7.22	6	15	318	939	18
Dredge Hole Dredge Hole	24-Aug-17 09-Nov-17	EM1711445005 EM1715409006	434 455	<0.001 <0.001	0.81	0.024	7	2	21 23	110 118	23 29	<1 <1	<1 <1	23 29	16 17	0.11	1.34 0.02	0.5 0.4	-	6.97 7.17	6 5	14 14	244 290	848 856	19 13
Dredge Hole	26-Feb-18	EM1803674010	524	<0.001	1.27	0.006	6	3	21	121	30	<1	<1	30	15	0.04	0.06	0.3	-	6.82	4	10	255	917	15
Dredge Hole Dredge Hole	29-May-18 02-Aug-18	EM1808881006 EM1812371006	490 464	<0.001 <0.001	0.34	0.008 <0.005	7	2	22 20	119 101	29 25	<1 <1	<1 <1	29 25	14 15	0.18 0.1	0.05 0.15	0.4	-	6.7 6.8	4	14 12	261 263	894 785	18 10
Dredge Hole	28-Nov-18	EM1819277008	412	<0.001	0.75	<0.005	5	2	20	103	23	<1	<1	23	16	0.03	<0.01	0.5	-	7.3	5	13	257	808	26
Dredge Hole	26-Feb-19	EM1902808009	536	<0.001	0.8	0.009	5	3	20	116	29	<1	<1	29	15	0.03	<0.01	0.6	-	7.18	4	11	308	900	20
Dredge Hole Dredge Hole	21-May-19 19-Aug-19	EM1907812003 EM1913513		<0.001 0.002	0.75 1.29	<0.005 <0.005	5	2	20 18	110 99	26 26	<1 <1	<1 <1	26 26	13 12	0.15 0.08	0.08	0.5 1.1	-	6.66 6.94	9	<10 22	284 222	925 788	10 18
Dredge Hole	03-Dec-19	EM1920764	367	<0.001	0.18	<0.005	5	2	19	109	36	<1	<1	36	15	0.03	<0.01	0.6	33.2	6.95	5	<10	272	853	6
Dredge Hole Dredge Hole	14-Feb-20 18-May-20	EM2002405 EM2008378	684 460	<0.001 <0.001	0.68 1.7	<0.005 <0.005	7	3	23 22	119 111	32 29	<1 <1	<1 <1	32 29	12 13	0.01 0.11	<0.01 0.1	0.2	-	7 6.47	3	12 10	285 276	914 852	10 15
Dredge Hole	19-Aug-20	EM2008378 EM2014471	417	<0.001	2.31	0.006	5	2	20	104	31	<1	<1	31	14	0.11	<0.01	0.6	-	7.19	<1	14	262	876	38
Dredge Hole	23-Nov-20	EM2020734	415	<0.001	0.82	<0.005	5	2	19	105	33	<1	<1	33	14	0.01	<0.01	0.8	-	6.94	4	<10	238	816	7
Dredge Hole Dredge Hole		EM2102856 EM2109946	490 520	<0.001 <0.001	1.24 2.43	<0.005 <0.005	6	3	20 20	114 104	30 31	<1 <1	<1 <1	30 31	13 12	0.02	<0.01 <0.01	0.5 0.7	-	6.69 7.12	4 4	<10 <10	288 252	886 840	13 16
Dredge Hole	14-Sep-21	EM2118437	453	<0.001	0.87	0.008	6	2	21	109	31	<1	<1	31	14	<0.01	0.09	-	4	15	244	876	14	-	-
Dredge Hole	18-Nov-21 03-Mar-22	EM2123390	524	<0.001	0.88	<0.005	7	2 4	21	113	34	<1	<1	34	15	0.21	0.63	-	4	16	270	921	13 14	-	
Dredge Hole Dredge Hole	17-May-22	EM2203751 EM2209262	359 396	<0.001 <0.001	<0.05 3.9	0.01 <0.005	6	4	18 17	90 94	36 41	<1 <1	<1 <1	36 41	10 11	0.35 0.51	0.02	-	5	11 15	198 223	678 759	18	-	-
Dredge Hole	31-Aug-22	EM2216860	400	<0.001	2.16	0.007	6	2	17	99	30	<1	<1	30	14	<0.01	0.22	0.7	-	7.19	5	15	235	799	11
Dredge Hole Dredge Hole	18-Nov-22 16-Feb-23	EM2222858 EM2302773	503 518	<0.001 <0.001	2.45 1.42	0.005 <0.005	12 11	3	24 24	118 126	65 58	<1 <1	<1 <1	65 58	15 16	0.01 <0.01	0.11	1.1 0.7	-	6.85 6.93	9	28 47	248 286	940 976	25 8
Dredge Hole		EM2308222		<0.001	3.93		10	3	22	113	49	<1	<1	49	12	0.43	0.09	1.1	-	6.91	7	21	246	878	13
																		<u> </u>							



SAMPLE NO.	SAMPLE DATE	REPROT No.	TDS	Chromium	Iron	Zinc	Calcium	Potassium	Magnesium	Sodium	Bicarbonate	Carbonate	Hydroxide	Total Alkalinity	Sulphate	Ammonia	Nitrate	Total Kjeldahl Nitrogen	Total Phosphate	рН	Total Organic Carbon	Chemical Oxygen Demand	Chloride	EC	Volatile Fatty Acids (as Acetic Acid)
1 1 1 5 1	24.0 + 22	040005	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg CaCO3/L	mg CaCO3/L	mg CaCO3/L	mg CaCO3/L	mg/L	mg N / L	mg N / L	mg N / L	mg P / L	Units	mg/L	mg/L	mg/L	uS/cm	mg/L
Leachate Pond Leachate Pond	31-Oct-03 29-Jan-04	619305 648477	420 650	<0.01 <0.01	0.17	<0.01 <0.01	32 13	16 10	21 22	80 94	-	-	-	140 160	1.2 <1.0	0.3	0.32 0.17	0.7 1.2	-	7.9	8 17	30	140 260	590 1100	-
Leachate Pond	7-Apr-04	673239	800	<0.01	1.6	<0.01	45	30	41	140	-	-	-	240	<1.0	1.1	0.09	2.5	-	8	18	38	350	1600	-
Leachate Pond Leachate Pond	21-Jul-04 27-Oct-04	707749 743750	490 530	<0.01 <0.01	23	0.02 <0.01	36 30	17 17	26 27	78 87	-	-	-	160 170	17 1.8	1.8 0.6	0.52 0.44	2.3 1.2	-	7.4 7.2	9 15	22 42	180 210	910	-
Leachate Pond	20-Jan-05	775531	700	<0.01	<0.05	<0.01	46	30	39	140	-	-	-	260	3	1.3	0.44	2.4	-	7.2	13	36	320	1300	
Leachate Pond	13-Apr-05	804584	680	<0.01	3.2	0.02	50	28	35	130	-	-	-	220	6	2.1	0.14	2.6	-	7.4	15	28	230	1200	
Leachate Pond Leachate Pond	28-Jul-05 31-Oct-05	841926 872633	620 250	<0.01 <0.01	3.2 2.9	0.26	49 20	27 12	30 12	130 41	-	-	-	230 94	1 <1	2.5 0.1	1.5 <0.01	2.9 1.5		7.7	12 12	35 28	220 74	1200 440	-
Leachate Pond		903882	550	<0.00	0.64	0.43	45	24	28	110	-	-	-	210	4	1.6	0.03	3.8	-	8.4	15	83	220	1000	-
Leachate Pond		933447	770	<0.01	0.35	0.03	54	33	39	150	-	-	-	250	<1	2	0.04	3.7	-	7.9	24	34	290	1400	-
Leachate Pond Leachate Pond	25-Jul-06 24-Oct-06	965730 993116	550 680	<0.01 <0.01	0.38 1.9	0.04 <0.01	45 57	31 36	30 37	150 140	-	-	-	190 290	8 <1	0.8 1.7	0.56 0.01	3 5.4	-	7.7	23 11	47 45	230 280	1100 1400	-
Leachate Pond	24-Jan-07	1108119	1100	<0.01	2.8	0.02	46	52	63	280	-	-	-	69	<0.5	<0.1	0.2	0.7	-	8	22	76	490	2000	-
Leachate Pond Leachate Pond	17-Apr-07 25-Jul-07	1150664 1219307	1100 680	<0.01 <0.01	1.3	0.02 <0.02	77 41	37 30	60 38	210 130	-	-	-	460 240	5	3.2 <0.1	<0.01 <0.01	5.9 1.5	-	7.4 8.4	32 16	360 48	380 300	1,300	-
Leachate Pond	22-Oct-07	1297218	880	<0.01	0.5	<0.02	53	34	57	200	-	-	-	270	<1	0.1	0.11	1.2	-	8.6	23	64	350	1,600	-
Leachate Pond	22-Jan-08	1375495	1,600	<0.01	0.4	0.01	76	52	95	370	-	-	-	460	<1	<0.1	0.22	1.8	-	8.4	30	91	730	2,600	
Leachate Pond Leachate Pond	22-Jul-08 21-Oct-08	1539825 1620243	670 990	<0.01 <0.01	0.7	0.01	46 46	31 37	39 53	150 210	-	-	-	74 280	9 <1	<0.1 <0.1	<0.01	1.0 1.8	-	7.70 7.4	16 20	39 42	290 440	1,400 1,700	-
Leachate Pond	28-Jan-09	1706038	1,600	<0.01	<0.2	<0.01	79	55	89	360	-	-	-	440	<1	<0.1	0.01	2.5	-	7.6	23	74	750	2,900	-
Leachate Pond	28-Apr-09	-	2,900	<0.01	0.3	0.03	220	110	140	690	-	-	-	170	190	0.2	1.2	3.0	-	8.0	40	110	1,500	4,900	
Leachate Pond Leachate Pond	29-Jul-09 29-Oct-09	1976822	820 710	<0.01 < 0.01	0.3	0.02	48	35 34	42 43	170 160	220	10	< 2	240 240	9 <1	<0.1 < 0.1	0.089 < 0.01	1.3 2.1	-	8.1 8.5	20 27	45 65	310 300	1,500 1300	-
Leachate Pond	28-Jan-10	2070259	1400	< 0.001	0.06	0.005	66	50	81	320	430	< 2	< 2	430	<1	< 0.1	< 0.01	1.5	-	7.9	2	81	610	2600	-
Leachate Pond Leachate Pond	20-Jul-10	2259583 2367034	540 440	< 0.001 < 0.001	0.3 1.2	0.017	30	16 13	33 27	130 90	180 170	< 2 < 2	< 2 < 2	180 170	<1 <1	0.1 < 0.1	0.01 0.21	0.6 1.4	-	7.9 7.5	21	43 33	230 170	1000 810	-
Leachate Pond	20-Oct-10 24-Jan-11	2474618	290	< 0.001	1.7	0.001	21	10	18	65	130	<2	<2	130	<1	0.1	< 0.01	1.3	-	7.3	22	57	100	550	-
Leachate Pond	19-Apr-11	2574917	570	< 0.001	0.21	0.001	30	22	29	120	190	< 2	< 2	190	<1	< 0.1	< 0.01	0.6	-	7.8	16	41	210	1000	
Leachate Pond Leachate Pond	28-Jul-11 18-Oct-11	2688219 2784847	500 520	< 0.001 < 0.01	0.73	< 0.001 < 0.01	29 29	16 15	26 28	110 100	160 190	< 2 < 2	< 2 < 2	160 190	12 9	< 0.1 < 0.1	< 0.01 < 0.01	0.6 1.9	-	7.5 7.6	14	32 65	210 200	930 940	
Leachate Pond	19-Jan-12	2895500	740	< 0.01	0.7	< 0.01	39	20	38	130	240	22	<2	260	1	< 0.1	< 0.05	1.6	-	7.5	24	46	250	1300	-
Leachate Pond	22-May-12	3045828	740	< 0.01	1.7	< 0.01	36	25	38	140	240	< 2	< 2	240	<1	< 0.1	0.08	1.6	-	7.7	23	43	270	1300	-
Leachate Pond Leachate Pond	02-Aug-12 29-Nov-12	3131139 3274867	430 770	< 0.001 < 0.01	0.74	0.003 < 0.01	22 42	13 21	24 40	96 140	140 260	< 2 < 2	<2 <2	140 260	11 <1	0.3	0.02 0.01	0.8	-	7.7 7.5	10 6	24 44	180 280	810 1300	-
Leachate Pond	28-Feb-13	3383774	1600	< 0.01	0.9	< 0.01	80	57	75	330	130	< 2	< 2	130	210	0.2	0.06	2.6	-	7.6	30	72	730	2600	-
Leachate Pond		3478112	1700	< 0.01	1.7	< 0.01	67	44	71	290	260	< 2	< 2	260	66	< 0.1	0.44	1.8	-	7.6	27	76	810	2900	-
Leachate Pond Leachate Pond	28-Aug-13 26-Nov-13	3598482 3705705	650 710	< 0.01 < 0.01	1.4 1.6	< 0.01	31	23 13	37 28	120 100	190 220	< 2 < 2	<2 <2	190 220	<1 <1	< 0.1 < 0.1	< 0.01	0.8 1	-	7.6 7.5	16 18	40 43	230 250	1100 1200	
Leachate Pond	28-May-14	3917835	1200	< 0.01	0.9	< 0.01	72	46	60	260	240	< 2	< 2	240	63	< 0.1	< 0.01	1.1	0.06	7.4	19	45	510	2100	
Leachate Pond Leachate Pond	26-Aug-14 26-Nov-14	4022973 4133548	650 1100	< 0.01 < 0.01	0.7 < 0.2	< 0.01 < 0.01	42 61	23 28	39 60	140 220	220 320	< 2 < 2	< 2 < 2	220 320	<1 <1	< 0.1 < 0.1	< 0.01 < 0.01	0.6 1.1	< 0.05	7.8 7.7	13 21	35 51	260 480	1200 2000	-
Leachate Pond	27-Aug-15	4455822	640	<0.001	0.89	0.02	46	21	43	160	230	<2	<2	230	<5 LINT	<0.1	0.020	0.8	-	7.9	13	48	270	1300	-
Leachate Pond	17-Jan-17	-	701	0.002	1.77	0.034	42	24	34	154	243.00	<1	<1	243	1	4.77	0.02	4.2	-	7.37	13	36	287	1300	19
Leachate Pond Leachate Pond	21-Mar-17 24-Mav-17	-	718 769	<0.001 0.027	2.01 5.42	0.007	39 33	26 41	29 32	135 140	231.00 284.00	<1 <1	<1 <1	231 284	2 <1	2.41 9.58	0.07	3.7 9.6	-	7.53 7.4	18 21	49 120	303 326	1330 1380	27 59
Leachate Pond	23-Aug-17	EM1711442007	503	0.016	19.4	0.594	24	22	22	97	161	<1	<1	161	2	1.22	0.53	44.9	-	7.53	14	1810	204	931	19
Leachate Pond Leachate Pond	09-Nov-17	EM1715409004 EM1803674009	611 794	0.004 0.043	7.51	0.145 1.44	34	19 29	30	129 143	206	<1 <1	<1 <1	206	1 4	6.7 2.02	0.12	6.7 14.5	-	7.66	7 17	65 398	298 316	1170	16 38
Leachate Pond	26-Feb-18 29-May-18	EM1808881004	608	<0.001	109 0.1	0.008	36 32	19	32 28	125	224 196	<1	<1	224 196	2	4.41	0.06	5.4	-	7.2 7.5	7	49	267	1384 1180	37
Leachate Pond	02-Aug-18	EM1812371004	477	<0.001	4.17	0.007	24	21	22	93	165	<1	<1	165	3	4.56	0.04	11.9	-	7.44	5	26	221	850	21
Leachate Pond Leachate Pond	27-Nov-18 26-Feb-19	EM1819193003 EM1902808008	602 895	<0.001 <0.001	<0.05 3.23	<0.005 0.006	30 28	22 26	28 34	127 161	194 201	<1 <1	<1 <1	194 201	<1 4	6.29 1.33	0.01	7.2 2.9	-	8.16 7.96	11 17	36 37	291 429	1,220 1,440	30 28
Leachate Pond	21-May-19	EM1907812001	718	<0.001	1.37	<0.005	26	23	26	128	133	<1	<1	133	9	1.92	0.01	2.1	-	7.29	11	27	327	1,280	9
Leachate Pond	19-Aug-19	EM1913513	398	0.001	9.72	0.016	20	20	18	83	154	<1	<1	154	7	4.42	0.07	5.3	-	7.17	14	36	164	821	36
Leachate Pond Leachate Pond		EM1920764 EM2002050	600 754	<0.001 <0.001	0.08 1.61	<0.005 <0.005	27 28	23 24	27 31	122 138	214 204	<1 <1	<1 <1	214 204	1 <1	7.27 2.67	<0.01 0.06	7.5 3.6	-93.3	7.45 8.11	12 8	30 24	274 322	1,170 1,280	10 20
Leachate Pond		EM2008378	588	<0.001	3.12	<0.005	29	21	27	114	196	<1	<1	196	1	3.1	0.02	3.8	-	7.44	6	33	273	1,030	15
Leachate Pond Leachate Pond		EM2014279 EM2020734	561 643	<0.001 <0.001	2.56 2.04	<0.005 <0.005	31 23	19 21	27 27	101 112	194 193	<1 <1	<1 <1	194 193	3	6.2 3.62	0.02	6.2 3.8	-	7.43 7.6	6 10	11 22	227 243	1070 1070	38 12
Leachate Pond		EM2020734 EM2102856	629	0.001	15.8	0.032	28	32	28	112	221	<1	<1	221	1	4.95	<0.03	9.4	-	7.45	11	136	292	1220	20
Leachate Pond	25-May-21	EM2109822	460	0.015	8.68	0.322	8	29	5	32	66	<1	<1	66	28	0.07	0.04	3.7	-	6.62	42	203	42	357	13
Leachate Pond Leachate Pond		EM2118437 EM2123390	536 554	<0.001 <0.001	12.7 2.04	0.008 <0.005	31 25	25 18	26 24	101 107	210 181	<1 <1	<1 <1	210 181	5 4	5.15 4.76	0.05 0.13	-	13 10	46 29	224 254	1060 1040	31 27	-	-
Leachate Pond		EM2203633	635	<0.001	2.04	<0.005	41	26	32	124	214	<1	<1	214	1	4.76	0.13	-	9	35	303	1120	30	-	-
Leachate Pond		EM2209262	622	<0.001	3.1	<0.005	37	26	28	117	246	<1	<1	246	1	5.6	<0.01	-	11	29	275	1220	28		
Leachate Pond Leachate Pond		EM2216860 EM2222858	466 480	0.005 0.006	18.3 23.5	0.033 0.036	23 27	28 32	17 19	72 73	160 171	<1 <1	<1 <1	160 171	5	3.78 5.35	0.05 <0.01	6 5.5	-	7.55 7.25	38 29	147 108	132 136	745 834	14 28
Leachate Pond		EM2302525	638	<0.001	5.48	<0.005	40	24	30	130	194	<1	<1	194	3	6.26	0.06	6.6	-	7.54	13	53	264	1,180	<5
Leachate Pond	09-May-23	EM2308222	518	<0.001	1.42	<0.005	29	22	23	100	163	<1	<1	163	4	4.11	0.01	3.8	-	7.58	10	34	210	950	26



SAMPLE NO.	SAMPLE DATE	REPROT No.	TDS	Chromium	Iron	Zinc	Calcium	Potassium	Magnesium	Sodium	Bicarbonate	Carbonate	Hydroxide	Total Alkalinity	Sulphate	Ammonia	Nitrate	Total Kjeldahl Nitrogen	Total Phosphate	рН	Total Organic	Chemical Oxygen	Chloride	EC	Volatile Fatty Acids (as
57 till 22 1101	0,1111 == 2,11		ma/L	ma/L	ma/L	mg/L	ma/L	ma/L	ma/L	ma/L	mg CaCO3/L	mg CaCO3/L	mg CaCO3/L	mg CaCO3/L	mg/L	ma N / L	ma N / L	mg N / L	ma P / L	Units	Carbon mg/L	Demand mg/L	mg/L	uS/cm	Acetic Acid) mg/L
Wetland	17-Jan-17	-	1160	<0.001	5.82	<0.005	59	33	66	279	322	111g CaCO3/L	111g CaCO3/L	322		0.06	0.01	2.2	IIIg F / L	7.54	29	91	511	2090	mg/L
Wetland	21-Mar-17	-	1330	<0.001	9.62	0.041	67	20	51	234	54	-1	-1	54	219	0.5	0.35	1.7	_	7.21	12	29	564	2320	<del></del>
Wetland	24-May-17		901	<0.001	0.18	<0.005	35	29	42	202	211	-1	<u> </u>	211	27	0.03	<0.01	0.8	_	7.63	16	48	454	1610	<del></del>
Wetland	23-Aug-17	EM1711442008	604	<0.001	1.38	<0.005	32	17	31	129	211	-1	-1	211	2	<0.01	<0.01	0.7	-	7.99	13	33	277	1160	25
Wetland	09-Nov-17	EM1715409005	821	<0.001	3.18	0.006	47	17	50	189	290	<1	<1	290	<1	0.05	0.01	6.1	-	7.71	33	89	410	1570	16
Wetland	29-May-18	EM1808881005	900	<0.001	0.18	< 0.005	37	29	36	187	135	<u>&lt;1</u>	<1	135	42	0.04	0.01	0.8	-	7.41	16	50	403	1570	33
Wetland	02-Aug-18	EM1812371005	806	0.006	4.06	0.008	29	26	26	140	128	<1	<1	128	2	0.09	0.01	1.6	-	7.32	18	68	374	1,150	23
Wetland	28-Nov-18	EM1819277007	986	<0.001	1.64	0.008	50	34	48	198	291	<1	<1	291	<1	0.06	0.01	1.3	-	7.92	24	52	476	1.670	30
Wetland	21-May-19	EM1907812002	801	< 0.001	1.42	0.008	32	31	28	144	98	<1	<1	98	33	0.07	<0.01	1.8	-	6.47	18	56	397	1470	12
Wetland	19-Aug-19	EM1913513	438	< 0.001	4.39	< 0.005	22	15	20	84	143	<1	<1	143	5	0.04	<0.01	1.4	-	7.62	19	63	176	821	22
Wetland	03-Dec-19	EM1920764	757	<0.001	0.24	0.024	30	24	34	149	242	<1	<1	242	14	0.08	<0.01	1.2	-49.8	7.52	23	51	330	1,370	12
Wetland	18-May-20	EM2008378	652	<0.001	6.24	0.005	32	30	30	124	214	<1	<1	214	10	0.02	<0.01	1.8	-	7.4	19	52	282	1,110	18
Wetland	17-Aug-20	EM2014279	587	<0.001	4.41	0.008	33	20	31	103	218	<1	<1	218	3	0.1	0.01	0.9	-	7.45	8	30	214	1050	38
Wetland	23-Nov-20	EM2020734	370	<0.001	10.8	0.03	20	16	20	70	174	<1	<1	174	6	0.48	0.06	1.7	-	7.34	16	39	129	712	16
Wetland	22-Feb-21	EM2102856	900	<0.001	5	< 0.005	46	33	47	176	326	<1	<1	326	<1	0.3	< 0.01	1.1	-	7.7	16	36	419	1690	24
Wetland	25-May-21	EM2109822	2190	0.005	60.5	0.02	55	25	110	490	217	<1	<1	217	19	0.05	< 0.01	0.8	-	6.76	22	<50	1140	4120	8
Wetland	14-Sep-21	EM2118437	492	< 0.001	2.38	< 0.005	18	11	24	112	122	<1	<1	122	9	< 0.01	<0.01	-	18	50	234	962	25	-	-
Wetland	18-Nov-21	EM2123390	641	< 0.001	0.71	< 0.005	23	16	32	141	196	<1	<1	196	2	0.14	<0.01	-	15	50	302	1280	23	-	-
Wetland	01-Mar-22	EM2203633	997	< 0.001	3.36	< 0.005	49	37	58	202	342	<1	<1	342	<1	0.14	<0.01	-	31	69	473	1720	32	-	-
Wetland	17-May-22	EM2209262	730	< 0.001	2.89	< 0.005	36	27	41	151	300	<1	<1	300	1	0.03	<0.01	-	15	155	333	1470	23	-	-
Wetland	31-Aug-22	EM2216860	313	0.002	2.43	< 0.005	9	6	12	67	64	<1	<1	64	13	0.01	0.08	0.8	-	7.56	13	37	123	544	10
Wetland	17-Nov-22	EM2222858	236	0.004	9.71	0.006	9	5	10	38	66	<1	<1	66	3	0.04	0.01	0.9	-	6.99	18	45	55	361	17
Wetland	14-Feb-23	EM2302525	892	<0.001	7.65	0.01	30	33	50	207	244	<1	<1	244	<1	0.01	<0.01	10.4	-	7.7	44	374	404	1,660	17
Wetland	09-May-23	EM2308222	768	< 0.001	69.4	< 0.005	33	25	26	108	195	<1	<1	195	1	3.32	< 0.01	3.8	-	6.92	13	<10	236	1,060	38